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Abstract

Despite the development of potent drugs for modifiable risk factors and advances

in mechanistic biomedical research, cardiovascular diseases (CVDs) collectively

remain the leading cause of death globally, indicating a need for new, more

effective therapies. A foundational challenge is the multilevel heterogeneity that

characterizes CVDs—from their complex pathobiological mechanisms at the

molecular and cellular levels, to their clinical presentations and therapeutic

responses at the individual and population levels. This variability arises from

individuals’ unique genomic and exposomic characteristics, underscoring the

need for precision approaches. Other key challenges include the long navigation

times, high costs, and low success rates for drug development, often compounded

by the poor “druggability” of new targets. In this article, we explore how these

challenges have inspired novel technologies that offer promise in improving health

outcomes globally through an integrative precisionmedicine approach. Key to this

transformation is the use of systems biology and network medicine, whereby the

application of artificial intelligence to “big data”, ranging from clinical information

to unbiased multiomics (e.g., genomics, transcriptomics, proteomics, and

metabolomics) can elucidate disease mechanisms, yield novel biomarkers for
disease progression, and identify potential drug targets. In parallel, new
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computational approaches are helping translate these discoveries into novel

therapies and overcome druggability barriers. The transition to a precision-based

research and innovation paradigm in cardiovascular medicine will require greater

interdisciplinary collaboration, data science implementation at every stage, and

new partnerships between academia and industry. Global policy leadership is also

essential to implement suitable models of research funding and organization,

data infrastructures and policies, medicines regulations, and patient access

policies promoting equity.
KEYWORDS

cardiovascular disease, cardiology, precision medicine, systems biology, network
medicine, heterogeneity, artificial intelligence
Key points
• Heterogeneity in the complex pathobiology and presentation
of cardiovascular diseases (CVDs)—the leading cause of
death globally—limits the effectiveness of conventional “one-
size-fits-all” therapies.

• Integrative systems approaches, which involve unbiased
omics analyses (especially proteomics and single-cell
analyses), bioinformatics, and network science, now offer
the potential for a precision medicine innovation
paradigm to tackle CVDs.

• Artificial intelligence (AI) is driving new opportunities in
patient profiling and computational precision drug design
and development.

• Various RNA therapeutics in development offer promise
for effective precision therapy and could help address
conventional drug development obstacles, such as cost
and time.

• Interdisciplinary and intersectoral collaboration throughout
the research and innovation pathway, underpinned by
global health policy leadership, is necessary to implement a
precision cardiovascular medicine paradigm.
Introduction: challenges are
opportunities
“The greater the obstacle, the more glory in overcoming it.”

Molière
Challenges are opportunities. Clinical problems and

unanswered questions in cardiovascular medicine have driven

enormous global efforts aiming to understand the underlying
02
causes of cardiovascular disease (CVD) (1–10). Such needs have

also triggered a series of highly valuable technological innovations.

Investigation into cardiovascular research in its current form began

over a century ago (11–14). In the last several decades, our

community has focused on educating the public about lifestyle

modifications and dietary interventions to prevent or manage

CVD (15). The successful development of effective medicines,

such as statins and the newer proprotein convertase subtilisin/

kexin type 9 (PCSK9) inhibitors, has significantly contributed to

reducing the incidence of certain cardiovascular conditions (16–19).

Additionally, advances in basic science have identified various

molecules and pathways, including interleukin (IL)-1b and IL-6,

which highlight the role of inflammation beyond traditional

modifiable cardiovascular risk factors (20).

Despite these efforts and remarkable advancements, a

substantial risk persists for many patients (17, 21–23). While

some therapies, such as glucagon-like peptide-1 receptor (GLP-

1R) agonists, can reduce the burden of chronic diseases (24, 25),

there is still a dire need to identify additional strategies to address

the complex interplay across these diseases. While there is a benefit

to optimal treatment of type 2 diabetes in terms of being able to

reduce the excess mortality risk associated with CVD, this effect was

only seen in patients with no previous diagnoses of CVD. This

suggests a strong rationale for fine-tuning therapeutic strategies to

combat complex diseases (26). From 2010 to 2019, the number of

deaths caused by hypertension increased among adults aged 35–64

in 86.2% of counties in the United States (27). The burden of CVD

is projected to grow over the next few decades. The number of

elderly patients with calcific aortic valve stenosis, a major

complication of chronic kidney disease, is projected to more than

double by 2050 in the United States and Europe (28). Overall, CVD

continues to be the leading cause of death globally (17), resulting in

19 million deaths worldwide in 2020. This toll increased by 18.7% in

the past decade and will likely rise to 26 million by 2030 (28–30).

Difficult problems require innovative solutions. One of the

foundational challenges that complicates CVD treatment is the

heterogeneity of the complex pathobiological mechanisms and
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clinical presentations of CVDs. High-throughput, multimodality,

multiomics data have ushered in a new era of big data in CVD

research, with each type of data introducing a new layer of

complexity to the existing challenge of identifying novel

mechanisms and biomarkers (31). Addressing these numerous

challenges is necessary for advancing precision CVD medicine.

In this article, we explore how key challenges in cardiovascular

medicine have inspired novel technologies that offer promise in

improving health outcomes globally. We illustrate how systems

biology, network medicine, and artificial intelligence (AI),

supported by technological innovations in omics, are providing

meaningful biological insights into the complexity of disease

heterogeneity—fostering new discoveries and targets for precision

medicine interventions. We then discuss computational drug

discovery and new classes of medicines that may overcome the

limitation of conventional small-molecule drugs. Finally, we outline

the interdisciplinary and intersectoral actions, underpinned by

global policy leadership, necessary to implement a precision-

based paradigm for innovation in cardiovascular medicine globally.
Current challenges in CVD research

Biology of heterogeneity in CVD

CVD heterogeneity is evident in the diversity observed in clinical

presentations, underlying causes, and responses to treatments. This

variability arises from individuals’ unique characteristics at the

genomic (e.g., single-nucleotide polymorphisms) and exposomic

(e.g., air pollution or pesticides) levels (32–37) (Figure 1A),

underscoring the need to discover new mechanisms and drug

targets to advance precision cardiovascular medicine (38).

Multiomics approaches have provided more detailed explanations

of how such genomic or exposomic signatures contribute to the

development of complex diseases (32–36, 39). Recent evidence

suggests that human pathobiology is also heterogeneous at multiple

levels, from cellular responses to disease mechanisms and clinical

features (Figure 1A). Such heterogeneity presents major challenges

that have hindered our ability to gain a comprehensive understanding

of disease mechanisms and develop more effective therapies for

complex human diseases, which have proven to be even more

intricately mechanistic than traditionally thought (35, 38, 40–44).

Between 1954 and 1977, epidemiological findings of the renowned

Framingham Heart Study established risk factors for coronary heart

disease and stroke, with a particular emphasis on dyslipidemia and

hypertension (45–47). Notably, elevated low-density lipoprotein

cholesterol (LDL-C) became a viable target for lowering the

incidence of CVD events primarily via statin therapy. Despite the

efficacy of statins in reducing LDL-C levels and the incidence of major

CVD events, a significant residual risk remains (48).

Clinical, epidemiological, and genetic evidence also points to the

presence of phenotypic heterogeneity within CVDs, encompassing

conditions such as myocardial infarction, angina pectoris,

hypertrophic cardiomyopathy, and heart failure (49–54). For

example, genomic mutations in cytochrome P450 2C (CYP2C9),
Frontiers in Science 03
solute carrier anion transporter family 1B1 (SLCO1B1), and

adenosine triphosphate (ATP)-binding cassette super-family G

member 2 (ABCG2) impact the response to drugs such as statins

(55, 56). Additionally, interacting pathologies can lead to CVD,

including patients with a predisposition to venous or arterial

thrombosis—there is even evidence of familial clustering in some

cases, leading to inherited hypercoagulable states. Genetic,

environmental, and other phenotypic modifiers can also contribute

to this group of conditions, making the diagnosis and management

of these disorders particularly challenging (57). Many pathways that

contribute to human diseases influence disease severity by interacting

within a large and complex biological network of genes, proteins, and

signaling pathways.

In parallel with clinical evidence, findings from single-cell RNA

sequencing datasets have suggested that each cell type associated with

CVD, such as macrophages, represents a heterogeneous population

(58–66). The balance between subsets of immune cells (e.g., pro- vs.

anti-inflammatory macrophage subpopulations) in a local

microenvironment, such as the atherosclerotic plaque, may determine

the risk of disease progression or the onset of clinical complications (e.g.,

myocardial infarction) (67, 68). As various new technologies capable of

unbiased screening for target discovery continue to emerge (e.g., plasma

proteomics of clinical samples and single-cell RNA sequencing of cells

within cardiovascular tissues or blood), subsequently generated datasets

become larger and more complex (69, 70). To identify promising new

targets from large datasets analyzing complex factors, we must involve

analytic platforms capable of processing the vast amounts of data

generated (71).
Complex pathobiological mechanisms for
CVD

CVDs are complex entities shaped by multiple factors. It has

become increasingly clear that simply focusing on a single molecule

or pathway does not allow a comprehensive understanding of the

complex interactions and interdependencies among molecules and

pathways acting within a larger biological system. Despite their

phenotypic diversity, CVDs exhibit common underlying

pathophysiologies. This is seen in conditions such as atherosclerosis,

which is shared among vascular diseases such as coronary and

peripheral artery diseases (CAD and PAD, respectively). The

progression of atherosclerosis, however, involves different components

of the immune system. CVDs—including heart failure, arrhythmias,

hypertension, cardiomyopathies, and thrombosis/embolism—may

exhibit varying degrees of complex pathobiological mechanisms that

involve factors such as immune response, lipid metabolism,

neurohormonal activation, structural variations, sympathetic nervous

system modulation, and endothelial dysfunction (72).

Along with lifestyle factors and environmental factors, genetic

heterogeneity also plays an important role in complex disease

phenotype. Modern technologies such as whole-genome, whole-

exome, and targeted sequencing provide sequence information of

DNA bases, giving insights into genetic variation. Both allelic and

locus heterogeneity can contribute to the development of CVD (43).
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FIGURE 1

Precision cardiovascular medicine as a solution to heterogeneity in cardiovascular diseases (CVDs). (A) The heterogeneity in CVDs arises due to
many different factors and manifests at multiple levels. (B) A multipronged systems approach leads to precision medicine. On one front, the
integration of multiomics data using network medicine techniques unveils molecular pathways and disease biomarkers. Simultaneously, an artificial
intelligence (AI)-powered approach utilizes clinical data to offer translational endpoints, such as patient stratification and the development of
precision drugs and therapies. Together, these approaches hold the potential to significantly enhance patient outcomes.
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Large biobanks and databases of multi-ancestry genetic studies

now play a crucial role in advancing our understanding of CVDs

and thus aid the precision medicine approach (73, 74). While the

traditional linear biology approach has been valuable for dissecting

individual mechanisms and driving critical discoveries, it does not

allow a comprehensive understanding of complex disease

pathobiology (75). Preclinical research is powered by many studies

built on cell lines and inbred mouse strains (76, 77). The availability

of these tools has enabled many mechanistic advances but has failed

to capture the heterogeneity observed in the patient population. The

use of large animal models and outbred mice could be an important

consideration for a systems biology approach. Furthermore, the use

of human primary cells to capture the heterogeneity of cells (68)

could bring new insights into factors governing inflammation and

disease progression. Multi-organ-on-a-chip technologies could be

used to mimic the complex cross-organ interactions that regulate

cardiovascular diseases (78, 79). These approaches could be bolstered

by the utilization of patient-derived induced pluripotent stem cells

(iPSCs) reprogrammed into diseased cell types (e.g., endothelial cells,

cardiomyocytes, and macrophages) which in turn could be used to

perform clinical-trials-on-a-chip for screening patient specific drugs

(80, 81). Developing new treatments informed by a holistic view of a

complex biological system requires a transition toward a more

integrated approach, involving unbiased omics data at multiple

levels (e.g., epigenetic, transcriptomic, and proteomic) from the

same samples. The identification and understanding of the

underlying processes that govern the clinical outcomes are

fundamental to the success of precision medicine.
Long navigation time, high costs, and low
success rates for drug development

Other major challenges in cardiovascular medicine include the

timelines and costs for target discovery and drug development.

Estimated development times for new drugs, from target discovery

to launch, range from 5 to 20 years—averaging at 9.1 years for

innovative medicines (e.g., first-in-class drugs) (82, 83). However,

development times for RNA-targeted therapeutics are generally

shorter (82, 84, 85). During the COVID-19 pandemic, open

science approaches that mobilized the sharing of data and ideas

between academic institutions, the pharmaceutical industry, and

governmental institutions, helped accelerate the development and

implementation of RNA therapeutics (86, 87).

Low success rates of new drugs in clinical development present

another major hurdle. Approximately 90% of drugs fail between

their entry into phase I trials and regulatory approval (88, 89). If

preclinical drug candidates are included, success rates fall below

10%. The most common cause of failure is the lack of anticipated

effects, with the exception of genetic disorders, followed by toxicity/

side effects, poor pharmacokinetic parameters, and poor overall

clinical development strategies (88–91). For example, hidden drug

cardiotoxicity can lead to the discontinuation of clinical trials as

well as the withdrawal of drugs post-approval (92). The

conventional drug discovery approach that targets a single causal
Frontiers in Science 05
factor also shows limited effectiveness in finding new drugs for

complex human diseases, as they involve multiple and overlapping

molecular pathways and pathologies. This is, in part, due to this

approach relying on a simplified hypothesis for a drug target. Such

simplistic hypotheses are often tested using monoclonal cell lines

and inbred mice, models that do not fully recapitulate the

heterogeneity of complex chronic diseases in humans. Phenotype-

driven drug discovery, as opposed to target-based strategies, can

address diseases for which mechanisms remain incompletely

understood and has been widely used in the pharmaceutical

industry (93). Network analysis-powered prediction of the

potential impact of each candidate target in human disease may

also limit the failure of new drugs at the clinical development stage

to a certain extent, owing, in part, to its ability to predict off-target

adverse effects (94–96). The benefits of such a comprehensive

systems approach to drug discovery ultimately lower the overall

costs of development and yield a more efficacious and safe

therapeutic agent. These approaches can predict the toxicity

profiles of drugs, which in turn avoids the selection of

compounds that may fail in later drug development stages due to

harmful effects (97, 98).

Following the development of numerous drugs targeting

previously identified causal proteins, the need to assess the

potential ability of a novel target to be modulated positively or

negatively by treatments, colloquially known as “druggability,”

remains a key challenge in the development of new drugs (99,

100). Fortunately, technological advances have provided solutions

to this challenge. The accumulation of biological and chemical data

and the rapid evolution of high-performance computing have

enabled the development of various computational strategies,

including AI, and helped to design new, effective compounds or

predict the potential effects of existing drugs via phenotypic

screening. The use of such new technologies and novel

computational approaches in drug discovery has opened

possibilities for making traditionally undruggable targets druggable

(101–103). New platforms, particularly those focused on RNA-

targeted therapeutics, also offer precise methods for modulating

previously undruggable targets while also reducing development

timelines and costs (84, 104–106).
Precision cardiovascular medicine: through
systems biology

The essence of the solution to these challenges is the concept of

precision medicine (Figure 1). The National Institutes of Health and

the Food and Drug Administration of the United States define

precision medicine as an innovative approach that considers

individual differences among patients. The goal is to use the right

treatments in the right patients at the right time. Each individual

possesses unique genomic characteristics, experiences distinct

exposures (i.e., environmental factors), and exhibits various

combinations of traditional risk factors (e.g., dyslipidemia,

hypertension, diabetes, lifestyle, diet, and sex). Moreover, the

same stimuli and therapies may elicit heterogeneous responses in
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different individuals. Considering the specific characteristics of each

patient to tailor medical care and interventions with the goal of

optimizing treatment effectiveness and minimizing adverse effects is

key to precision medicine (107). This necessitates an approach that

enables comprehensive molecular profiling, fosters integration to

comprehend complex interactions among diverse components, and

facilitates the development of predictive models for diseases and

biological processes. Systems biology serves as a valuable framework

for fulfilling these objectives: it is an interdisciplinary field where the

central tenet is that the behavior of a biological system as a whole

arises from the complex interplay between its constituent parts

(leading to emergent system properties), which cannot be fully

understood by studying them individually (108, 109). Below we

discuss different aspects of systems biology and potential solutions

to challenges in CVD research.
A systems approach to unraveling the
biology of heterogeneity

As discussed, CVD arises from diverse factors affecting complex

molecular networks. Such complex mechanisms imply that a

traditional reductionist approach to exploring a single cause of

disease in the average population, testing a linear hypothesis

focused on a single target, and developing a “one-size-fit-all”

medicine is overly simplistic (75) and may account for reduced

efficacy in a substantial group of patients for which the approved

drug has been developed (110). This major challenge has driven our

efforts to develop a more holistic, integrative systems approach

involving unbiased omics analyses, bioinformatics, and network

science to establish precision medicine (Figure 1B) (38, 40,

111, 112). The generation of large amounts of biomedical data, or

“big data”, ranging from clinical information in electronic health

records (EHRs) to the molecular measurement of analytes using

different omics platforms (e.g., genomics, transcriptomics,

proteomics, and metabolomics) has also prompted the need for

analytical frameworks that can holistically interrogate disease

pathobiology. Studying CVDs using multiple omics modalities

also requires a systems approach because of the involvement of

not only complex tissues, including the heart, vasculature, and

valves, but also various common underlying mechanisms—termed

endophenotypes—including inflammation, immunity, thrombosis,

fibrosis, and calcification.

A systems approach enables the construction of integrated

models through the concurrent analysis of entities from different

omics layers (e.g., genes, proteins, and metabolites) involved in each

disease (Figure 1B). Combining different interacting units (e.g., genes

and metabolites) into networks enables the identification of key

molecular components and the nature of their interrelationships

(e.g., regulatory or co-expression) (112). Similarly, AI and machine

learning can pinpoint the key combinations of genomic features that

are predictive of disease progression (Figure 1B). A systems approach

thus enables simultaneous identification of biomarkers for disease

progression and potential drug targets. This includes assessing off-

target effects and mechanisms of action, enhancing the translational
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based research has been effectively applied to cellular systems to

reveal a wide variety of emergent biological functions. This approach

has complemented and addressed the limitations of the reductionist

paradigm prevalent in biomedicine, especially following the influx of

high-throughput data during the post-genomic era (109, 113–116).

The incorporation of clinical data and disease etiology using AI and

an advanced systems approach also allows for better patient

stratification into groups based on drug responsiveness, a central

tenet of the precision medicine approach (Figure 1B).
Network medicine for multiomics data
integration

Networks form the cornerstone of the systems approach in

biomedicine (109, 117) and have been used to analyze rich omics

data generated in the past few decades. Being multifactorial, complex

chronic diseases, CVDs have benefited greatly from the application of

systems and network medicine (38, 118, 119). Currently, a myriad of

network-based approaches are readily applicable to a vast array of

high-throughput molecular, interaction, and ontological data that are

publicly available. These approaches are instrumental in inferring key

molecules, subnetworks, and pathways related to CVD, providing

invaluable information that may help to better identify novel drug

targets for preclinical and clinical testing (120). Network methods

have been built and implemented for gene regulation (121–125),

protein–protein interactions (126–131), and metabolic interplay

(132) to shed new light on the drivers of CVDs. Genetic risk loci

identified by genome-wide association studies (GWAS) on features

such as the PR interval (133), QRS duration (134), and atrial

fibrillation (135, 136) have been studied using gene networks. The

structural properties of omics-derived networks help in identifying

CVD phenotypes that correlate with network features such as

functional modules in CVD (137, 138), congenital heart disease

(139), cardiac development, hypertrophy, and heart failure (140).

Network medicine has helped identify candidate disease genes for

CAD (121, 141) or CVD in general (142). Analyzing proteomic data

with the assistance of network-based approaches has revealed the

global impact of macrophage activation in vascular disease (94) and

helped identify the mechanisms behind indoxyl sulfate-triggered pro-

inflammatory macrophage activation (95). Similarly, pathway

network analysis allows us to study macrophage activation through

PCSK9 (143) and in vein graft disease (144), vascular calcification

(145), and rheumatic heart valve disease (146). Simultaneous analysis

of global transcriptomics and proteomics of calcific aortic valve disease

has revealed important associations with various inflammatory

diseases (129). Moreover, horizontal integration of the same omics

datatypes measured under different conditions or sources reveals

correlated features in various layers. For example, integration of

proteomics from valvular interstitial cells—either in two-

dimensional (2D) cultures on flat surface or three-dimensional (3D)

models on hydrogels—with their extracellular vesicles showed

correlated proteins relevant to calcification (147). The unbiased

proteomics and systems biology of abdominal aortic aneurysms of
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mouse models and patients revealed potential novel mechanisms

(148). Integrative omics analyses have also been used to study blood

pressure regulation and hypertension (149, 150). Parallel to the

advances on the omics front, the use of systems pharmacology in

CVD has gained prominence (151–155).
The systems approach to drug discovery

Systems biology—involving unbiased omics screening,

bioinformatics, and network analysis—has facilitated the discovery of

both diagnostic and prognostic biomarkers for CVD. A key strength of

this approach is its ability to discover promising targets with improved

accuracy in predicting drug efficacy in patients (Figure 2) (38, 94, 95,

144, 156–158). This approach has also enabled us to identify potential

targets with a higher likelihood of clinical significance through the

integration of different omics datasets and holistic analysis of the

disease. Using a systems biology approach, we can find connections

between drug target genes and a potentially beneficial clinical outcome

(94, 112, 159, 160) (Figure 3). Analyzing which proteins have

showcased a shared tendency to change within the human

interactome predicted potential regulators of macrophage activation

(161). Protein network databases also help to identify proteins closely

associated with a node or disease target by “proximity” that can be

targeted by new or repurposed drugs to interfere with the disease

network. Investigating pathways, key driver genes (162), and network

modules associated with a potential drug target can provide key

information to researchers by allowing them to choose appropriate

cell culture methods, animal models, or even patient stratification in

clinical trials.
Future perspectives in the systems
approach to cardiovascular medicine

One of the important promises of systems medicine is its focus

on the patient rather than the disease. Specific genes and individual

disease-causing mutations can contribute to an individual’s

apparent monogenic CVD phenotype, such as cardiomyopathies.

However, in some cases, “additive” modifier genes may also play a

role, paving the way for precision genetic medicine (163). For

example, a previous study aimed to identify genetic drivers of

dilated cardiomyopathy, a diagnosis of exclusion among

cardiomyopathies (164). After examining 51 curated genes, they

identified 19 that showed high evidence but could only explain a

minority of cases, suggesting the need for further studies to unearth

the mechanism of disease development. We predict, however, the

realization of precision medicine goals at scale in the next decade.

The implementation of network-based approaches has accelerated

research on integrative single-cell omics (165) and spatially resolved

omics (166), which will further unlock the heterogeneity in complex

diseases (Figure 1) (38, 111, 167). In the context of CVD, identifying

the degree of heterogeneity of cell populations in complex tissues

such as atherosclerotic plaques, calcified aortic valves, or cardiac

muscle can lead to important insights into pathobiological
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mechanisms. For example, single-cell RNA sequencing has helped

identify the diversity of the cardiac cellulome (168). Studies that

combine network medicine and machine learning methods can be

used to fine-tune our understanding and help identify a more

accurate representation of the regulatory underpinnings of

cellular heterogeneity (68, 103, 129–131, 147, 169). Moreover, the

transfer of fundamental concepts across fields, such as a newly

proposed statistical mechanics framework for single-cell biology

(170), can further accelerate advances in systems medicine. As

discussed, the integration of multiscale omics data may also facilitate

the development of precision therapies. Finally, recent advances in

harmonizing network biology methodologies with the power of

machine learning (171–173) will soon come to full fruition, as

high-resolution molecular data are increasingly converging with

corresponding clinical and EHR data from individuals.
Innovative technologies for driving
precision cardiovascular medicine

Proteomics headlines the multiomics
universe of CVD research

Omics technologies, which offer an unbiased survey of multiple

genes and proteins, have significantly increased the likelihood of

identifying potential therapeutic targets. This process can be

effectively complemented with targeted proteomics and the more

recently defined proteoforms resulting from post-translational

modifications. Such an approach can facilitate successful target

discovery and clinical translation (Figure 4), as discussed later in

this section.

The high demand for continued discovery of additional

therapeutic targets has driven the development of global,

unbiased platforms such as epigenomics, transcriptomics,

proteomics, and metabolomics. In particular, mass spectrometry-

enabled protein research has long been recognized as a promising

means to identify novel biomarkers and therapeutic targets for CVD

(174–176). Today, mass spectrometry is a mainstay not only for

proteome profiling (177) but also metabolome profiling (178, 179).

When combined with other omics approaches, such as epigenomics

(179) or transcriptomics (180), it provides solid foundations for

systems biology and multiomics data integration strategies

(Figures 1-4) (38, 167, 181).

Proteins are one of the major determinants of the cellular

phenotype, driving initiatives such as the Human Proteome Project

to facilitate translational research to improve overall human health

(182). Unbiased proteomic approaches are consistently used to

identify molecular drivers of CVDs, such as coronary heart disease

(183), abdominal aortic aneurysms (148), and calcific aortic valve

disease (129). In the last example, transcriptomics and proteomics

were used to distinguish fibrotic and calcific regions from non-

diseased regions of aortic valve leaflets but reported only a weak

correlation between the quantified transcripts and proteins (129).

These findings emphasize that protein abundances may not

necessarily occur in proportion to their transcript abundances (184,
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185). Moreover, tissues comprise various cell types such that “bulk

RNA and proteome” data provide average signals, thereby

eliminating the opportunity to glean potential “disease–driver

subpopulations.” While single-cell transcriptomic technologies have

been successfully implemented to reveal the extent of cellular
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subpopulations and heterogeneity in tissues (144), single-cell

proteomics (186, 187) is still too recent a technology, requiring

extensive expertise to yield a similar widespread implementation.

Targeted proteomics is already valued in a clinical setting,

namely, to monitor steady-state kinetics of candidate LDL-C
FIGURE 2

A multilayer systems approach to target discovery and drug development. The hypothesis-driven, reductionist approach may have contributed to
low success rates of new therapies based on conventional, basic science-driven clinical development. A systems approach involving unbiased omics,
followed by bioinformatics for target prioritization and network medicine-assisted prediction of clinical impact, may facilitate the process and
increase the success rate of identifying new targets. Comprehensive in vitro and in vivo experiments substantiate new concepts. Such models enable
earlier implementation of drug design than conventional models.
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lowering targets such as apolipoprotein B (APOB), cholesteryl-ester

transfer protein (CETP), and PCSK9 in cardiovascular outcome trials

(188–190). Innovations in targeted mass spectrometry technologies

enabled tracer kinetics studies in humans that captured the complex

metabolic profiles of several high-density lipoprotein (HDL)-

associated proteins, supporting the notion that HDL is a

heterogeneous lipoprotein class consistent with its multiple

functions (191, 192). These findings underscore that effective CVD

drugs may require targeting a subpopulation with distinct functions

rather than the entirety of a given molecule or cell class.

Proteins themselves comprise various isoforms—known as

proteoforms—that may result from genetic variants, messenger

RNA (mRNA) splice variants , and post-translat ional

modifications, of which only one form may be causal to the

disease of interest. Therefore, the proteomics community has

initiated the Human Proteoform Project, an ambitious endeavor

to generate a reference set of proteoforms for the human genome

(193). Although mass spectrometry is a central technology

supporting this initiative, it is, in essence, a multiomics endeavor

(Figure 4) (193).

As first predicted over 20 years ago, mass spectrometry-enabled

proteomics is providing CVD researchers multiple avenues through

which to identify therapeutic targets. In all likelihood, the next CVD

breakthrough targets may be identified using omics. Before its

arrival on the market, however, the methodology will require
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extensive validation studies that, in part, may very well entail one

or more additional proteomic technologies.
Single-cell technologies to tackle the
complex biology of cellular heterogeneity

As discussed, disease heterogeneity is a major challenge in

cardiovascular medicine. For example, statins reduce the risk of

acute complications such as myocardial infarction in many, but not

all, patients. This can be attributed to factors such as the potency and

pharmacodynamics of different statins, as well as patient

heterogeneity. This may also result from different patterns of

heterogeneity of atherosclerosis-associated cells (e.g., macrophages)

among patients. Evidence has linked sustained pro-inflammatory

activation of macrophages with vascular disorders (67, 194–196).

An earlier paradigm of macrophage heterogeneity proposed a pro-

inflammatory M1 phenotype and an anti-inflammatory/pro-resolving

M2 phenotype (197, 198). More recent evidence (our own included)

however, suggests that macrophage heterogeneity is more complex

than the M1/M2 dichotomy, and involves more subpopulations

(67, 199–202). While the overall balance of macrophage

subpopulations may regulate disease mechanisms or severity,

traditional assays only examine average levels of gene or protein
FIGURE 3

Network prediction of the clinical impact of seed genes on various diseases. The network proximity of the seed genes from analyses (gray), which
could be obtained from differentially expressed genes or proteins and various disease gene modules obtained using databases. The p value indicates
the significance of proximity to the given disease module and other disorders, as compared with random expectation.
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FIGURE 4

Drug-target discovery depends on multiple omics strategies. Unbiased screening of the epigenome, transcriptome, and/or proteome identifies
candidate targets that can be validated using targeted mass spectrometry/proteomics. Ultimately, a specific proteoform (post-translationally
modified form) of the protein may be the best target in some cases.
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expression in the entire population of cells (e.g., Western blot analysis

and bulk RNA-sequencing) and cannot assess how individual cells

behave. This challenge has driven the development of various

platforms for single-cell analysis and their integration (Figure 5).

This challenge has been the catalyst for rapid and expansive

development of single-cell technologies that enable deeper

sequencing in more cells, platforms for simultaneous surveying of

various omics layers in cells, and computational and bioinformatics

infrastructure for innovative data analyses (Figure 5A).

Technologies such as droplet-based, well-based, and sequential

barcoding platforms can be chosen based on the underlying

application. Single-cell analysis has extended beyond profiling

RNA expression levels at the single-cell level with the ability to

map surface expression of receptors (203) and chromatin

accessibility (204). While these omics datasets can either be

individually mined, they can also be paired with mRNA

expression (205) by these cells to provide truly integrated

multiomics characterization (206). Furthermore, recent advances

in single-cell proteomics (207, 208) powered through mass

spectrometry allow unbiased characterization of the proteome at

the single-cell level. Spatial transcriptomics and spatial proteomics

have also become widely available platforms that provide critical

information relating to the spatial disposition of cellular

heterogeneity. Leveraging these technologies allows for the

construction of multilevel spatial multiomics maps through
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disease progression within the heart to identify signaling

pathways specific to different cell types (59, 130, 209, 210). Assays

that characterize different types of omics at single-cell resolution

allow for the simultaneous measurement of epigenetics,

transcriptomics, and proteomics. These include single-cell assays

for transposase-accessible chromatin (ATAC)-sequencing for

chromatin accessibility, single-cell profiling of histone

modifications (211), spatial transcriptomic profiling (e.g., Slide-

seq) (212), and surface receptor profiling (e.g., cellular indexing of

transcriptomes and epitopes sequencing; CITE-seq) (213). Recent

developments have expanded even into the realm of single-cell

metabolomics, which provides opportunities to evaluate substrates

and metabolites within the same cell (214–217). Such approaches

will significantly advance integrative single-cell omics research.

The wide range of available, free software packages that can be

used to analyze these datasets has also removed barriers to entry for

many researchers, enabling them to embrace these approaches to

address their specific research needs. This transition has coincided

with the decreasing cost of cloud computing and the secure

computing capabilities provided by research institutions and

private companies that allow rapid, cost-effective processing of

these large datasets (Figure 5A).

The rapid utilization of single-cell RNA-sequencing technologies

(218) has enabled the construction of a wide range of single-cell

atlases (219). Multi-tissue cell atlases of various model organisms
FIGURE 5 (Continued)
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FIGURE 5

Integration of single-cell analyses for precision medicine. (A) An array of technological advances have occurred in platforms used for single-cell
analysis, together with advances that have increased the complexity of omics types analyzed, and innovations in computational tools and resources.
(B) Systems biology studies in animals and humans are now translating these advances into multi-tissue, single-cell atlases to provide in vivo

Aikawa et al. 10.3389/fsci.2025.1474469
landscapes of cellular heterogeneity. (C) Further extension of single-cell technologies to profile populations at scale could shape the future of
biomedical research, establishing innovative diagnostics/ biomarkers and tailored therapies for diseases driven by specific cell subtypes.
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have provided an important understanding of the in vivo landscape

of cellular heterogeneity (220–222). Human-centric atlases have

mapped specific organs that have been instrumental in identifying

the various cell types and subtypes that make up an organ

(219, 223, 224) (Figure 5B). Specific cell atlases discern how the

same cell identified in multiple tissues has different underlying

transcriptional signaling (58, 62–64, 225–227). Furthermore, recent

studies have deployed single-cell RNA-sequencing technology to

identify novel cell subtypes that could be disease drivers within

specific disease settings (130, 228). These studies help shed light on

specific cellular signaling aspects that regulate cellular heterogeneity.

While unbiased single-cell omics datasets have become

increasingly cost-effective, generating, annotating, and sharing them

remain expensive and resource-intensive. Reproducibility and data

access are important aspects of large omics datasets that have made

major strides recently. Easy and accessible computational pipelines

are now widely available (229, 230). Journal requirements that make

detailed single-cell datasets publicly available also help extend their

utility once generated, which will also facilitate comparisons of

datasets to enhance reproducibility.

Importantly, using publicly available unbiased single-cell omics

data, researchers can fine-tune their approaches and generate follow-up

experiments using targeted approaches to either validate these findings

in a larger dataset or perform hypothesis-testing experiments. In this

regard, the development of methods to perform targeted single-cell

mRNA sequencing significantly reduces the costs of sequencing and

facilitates the sequencing of a large number of cells (231). Similarly, the

utilization of high-parameter flow cytometry (232) as well as sequential

staining of tissue sections are becoming increasingly attractive (232,

233). Large-scale panels of validated probes and antibodies allow for

the rapid adoption of these platforms across a wide range of tissues.

The characterization of cellular heterogeneity through these

approaches helps to identify key cell types within in vivo settings.

However, future studies can also use both unbiased and targeted

approaches within monoculture systems to evaluate cellular

heterogeneity in response to classical stimuli (234–236). Past efforts

have typically utilized bulk omics studies to identify heterogeneity in

responses (94) but are not limited in their capacity to highlight how

different cells within a monoculture system can respond differently to

the same stimulus (Figure 5B). Single-cell RNA sequencing and single-

cell ATAC sequencing (237, 238) will allow the identification of novel

subpopulations within a single cell type.

While single-cell technologies have developed rapidly, a few key

questions remain (239). It is of critical importance to leverage cellular

heterogeneity information to identify new mechanisms that translate

into the clinic. We also need to consider the contribution of a small

subset of disease driver cells to disease progression. Another point of

consideration is the temporal dynamics of measured proteins and

genes and their relative contribution to chronic disease. Most

importantly, we also need to ask how understanding macrophage

heterogeneity can provide molecular bases for the development of new

diagnostics and therapies (240, 241). Recent studies offer examples of

how cell heterogeneity data can be translated into drug development

(169). How can we associate the information of subsets of cells

associated with CVD with high-risk patients? Further extension of
Frontiers in Science 13
single-cell technologies, such as high-content live cell tracking for

longitudinal monitoring and histologic localization of high-

dimensional single-cell data in disease tissues, may help to facilitate

clinical translation (31, 242–245). The combined use of single-cell data

and computational drug screening methods (68, 169), discussed below,

may also lead to potential new therapies. These methods may help us

develop new approaches in precision cardiovascular medicine (246),

establish innovative diagnostics/biomarkers (247), and enable

intelligent enrollment criteria trial design, focused data interpretation,

and improved patient safety in clinical trials (248, 249) (Figure 5C).
AI supporting translational discoveries for
complex CVD

Medical scientists have faced challenges in analyzing the

massive biological and clinical datasets necessary to address the

complexity and heterogeneity of human diseases. Exponential

technological advances and their integration into basic science

and clinical activities, such as omics and EHRs, have accelerated

this trend. Over the last several decades, the field of AI has led to a

major technological revolution that has already significantly

impacted practically every aspect of the human experience,

including medical research and practice (250, 251). However, the

use of AI-powered technologies in medical sciences is not

necessarily new. In the 1980s and 1990s, decision support

systems, such as Health Evaluation through Logical Processing

(HELP) or DXplain, assisted physicians through the diagnostic

process (252, 253). However, with the increase in computational

power and the availability of large volumes of data, AI has unveiled

its extensive capabilities in the last decade.

The application of AI in cardiovascular sciences has focused on

two main tasks: prediction and clustering (Figure 6) (254–256).

Prediction tools are used to estimate future prognosis and

survivability of CVDs, including heart failure (257–259) and

cardiomyopathies (260–263). AI prediction has also been

implemented successfully to assist diagnosis (264–266), especially

by using medical imaging data (e.g., echocardiogram, computed

tomography, or magnetic resonance imaging) (267–274). Although

not as common as contemporary AI-based prediction technologies,

unsupervised learning has been used to cluster patient populations

into different phenotypes (275–278), aiding the design of more

precise therapeutic paths. Further, a new AI tool called

AlphaMissense, which builds on the protein structure prediction

tool AlphaFold2 (279), can be used to evaluate specific genetic

variations (e.g., rare missense variations)—addressing the previous

“bottleneck” in the bioinformatic analysis and assignment of causality

to link a particular candidate genetic variant to the phenotype.

Considering differences among individuals, recent target

discovery efforts have used large clinical data sources such as gene

expression datasets associated with specific diseases and EHRs in

addition to, or in place of, preclinical samples from cultured cells or

animal models to address the biology of disease heterogeneity at the

population level (71). The 21st Century Cures Act, initiated by the

United States Government in 2016, promoted the use of clinical
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data sources such as the EHR (“real-world data”) in drug

development and regulatory decision-making (280). Generative

AI programs can autonomously create new content by learning

patterns from existing data. AI’s role in changing the regulatory

paradigms will involve improvements at all stages, from creating

regulatory documents and designing the protocols to patient and

site matching. The ability of AI to navigate huge datasets and

construct detailed patient profiles based on demographics, medical

history, and genetics to create “digital twins” can be used to simulate

outcomes using virtual trials. These are the new AI frontiers:

promises of refined therapeutics, improved patient care, and

enhanced regulatory processes.

In the near future, integrating health records, clinical medical

knowledge, and data provided by “smart” devices, such as phones

and watches with AI technologies, will lead to unprecedented

changes in our understanding of cardiovascular medicine (281).
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Technology companies such as IBM (282–284), Microsoft (285),

Google (286), and Apple (287) have recognized its potential and

have announced significant investments accordingly. The use of AI

in continuous real-time monitoring, precision drug design,

precision phenotyping, and the precise prediction of the

development of CVDs represents a major breakthrough driven by

new technology in the history of medicine.
Data science-powered drug development

The cost and time required for drug discovery have increased

annually, presenting the pharmaceutical industry with major

challenges in developing and marketing new drugs (82–85, 288).

Another challenge is the low success rate of new targets progressing

to clinical stages and achieving favorable outcomes in clinical trials
FIGURE 6

An artificial intelligence (AI)-powered precision medicine approach. An in-depth exploration of the AI workflow in medicine, highlighting diverse data
inputs and delineating between supervised and unsupervised learning applications in clinical and research settings.
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(88, 89, 91). As discussed earlier, generating compounds for

undruggable targets is a major obstacle in the development of

innovative drugs (99, 100). On the other hand, valuable medical,

biological, and chemical data have accumulated, and the

performance of computers in handling “big data” has evolved. To

save cost and time, computational approaches have increasingly

contributed to various aspects of drug discovery. In particular, the

computational exploration and design of effective therapeutic

compounds are major emerging fields. Such innovative

technologies may also help to make traditionally undruggable

targets druggable (101).

One such technique uses the quantitative structure–property

relationship (QSPR) and quantitative structure–activity relationship

(QSAR)—a prevalent statistical approach that correlates molecular

structure with properties or biological activity using quantifiable

descriptors. These descriptors are often generated through density

functional theory (DFT) (289), a widely applied quantum theory to

calculate the electronic structures of atoms and molecules. Selecting

the most relevant descriptors among them poses a significant

challenge, as they encapsulate molecular characteristics responsible

for the observed biological activity or chemical properties (290).

Recent advancements have introduced novel QSAR methodologies

that enrich the analysis of bioactivity. Nevertheless, QSAR models

require rigorous testing and validation to assess their predictive

accuracy and practical applicability (291).

One resource for drug identification is the Connectivity Map

(CMap) (292). This database includes changes in many gene

expression profiles (“signatures”) that occur when various

compounds are exposed to various cell types. The CMap has been

expanded to include over 1 million signatures using over 20,000 small

molecules through the introduction of the L1000 assay, a low-cost,

high-throughput, and highly reproducible gene expression profiling

method (293, 294). The L1000-based CMap quickly identifies small

molecules that modify gene expression signatures by either reversing

or mimicking the changes caused by certain diseases. Therefore, such

approaches have been widely used for rapid drug repurposing (102,

103, 295–297). This phenotypic screening as a counterstrategy to

traditional target-based drug discovery has been successful in the

development of “first-in-class” drugs (298, 299).

In target-based drug discovery, which generally favors the

development of “best-in-class” drugs, the identification of

compounds that interact with target proteins is a key task (300, 301).

Drug–target interactions (DTIs) have been experimentally surveyed

using high-throughput screening. However, the number of

compounds that can be tested this way is limited compared with

the theoretical number of drug-like compounds—estimated to range

from 1023 to 1060 (302). It is therefore desirable to narrow-down

candidate compounds using computational approaches.

Computational DTI prediction can be divided into ligand-based,

docking-based, and chemogenomic approaches.

Ligand-based approaches exploit the principle that compounds

structurally similar to a known binder of a target protein are likely

to interact with that protein in a similar manner. While such

methods are rational and easy to follow, nothing can be predicted

when there is no compound known to bind the target protein.
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Docking-based approaches calculate the binding affinities

between compounds and target proteins by simulating their 3D

structures. Although this approach can evaluate interactions with

any compounds, it requires knowledge of the in vivo structure of the

target protein. The prediction thus becomes more difficult for

compounds that interact with membrane or receptor proteins

owing to their complex, flexible structures.

Chemogenomic approaches util ize the compound ’s

physicochemical features, such as molecular fingerprints, and the

protein’s genomic features, such as amino acid sequences. Machine

learning models learn the pattern of these features required for the

interactions by using known DTI datasets, and then the model

predicts whether an unknown compound indeed interacts with the

target protein. This approach has attracted attention recently

because it overcomes the inherent disadvantages of the ligand-

based and docking-based approaches (303). Various frameworks

employing classical machine learning methods, such as support

vector machine or random forest approaches, and advanced

techniques, such as deep learning (DL), have been proposed as

relevant computational models and have already improved DTI

prediction accuracy significantly (304–306).

Scientists have also attempted to computationally design novel

compounds with desired molecular profiles (e.g., bioactivity, drug

metabolism, pharmacokinetics, or synthetic accessibility). In this field,

denoted de novo molecular design, various generative models based

on DL architecture, such as the recurrent neural network, variational

autoencoder, and generative adversarial network models, have

emerged (307–309). Benefiting from the remarkable development of

AI, these AI-powered generative models create feasible, plausible, yet

entirely new compounds that have never been synthesized in the real

world. These generated compounds can be used seamlessly as a new

compound library for DTI prediction. Moreover, by providing the

L1000-based CMap signatures to the aforementioned generative

models, the design of novel compounds that induce desired gene

expression signatures has been used in an attempt to expand the

applicable range of L1000-based CMap (310, 311).

Notably, computational approaches are beginning to be used to

predict the tertiary structure of proteins. A recently developed AI-

based algorithm, AlphaFold2, predicts 3D protein structures from the

amino acid sequences with high accuracy (312). AlphaFold2 may

accelerate DTI prediction, especially via docking-based and

chemogenomic approaches, because it can provide accurate protein

structures whenever an experimental protein is unavailable and

extract more structural features than the amino acid sequences can

when used alone (313). Through such improvements, computational

approaches will likely have an increasingly important role in

compound exploration for drug discovery.
New therapeutic platforms: from proteins
to RNAs

Most CVDs are currently treated with small-molecule drugs

that are orally administered to bind to proteins contributing to

disease mechanisms. As we discussed, however, some new targets
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are undruggable with conventional strategies. Therapeutic options

other than small molecules include monoclonal antibodies against

proteins, e.g., evolocumab and alirocumab targeting PCSK9 for

familial hypercholesterolemia (314). While these types of drugs are

effective and can overcome some druggability issues, targets are

limited to cell membrane proteins or circulating proteins, and their

production costs are high. Innovative technologies that enable

targeting of undruggable targets include targeted protein

degradation, such as proteolysis-targeting chimera (PROTAC)

molecules that can degrade a target protein by controlling the

ubiquitin–proteasome system. Compared with small molecules

that block protein function but leave protein levels unchanged,

small interfering RNA (siRNA) and PROTAC-based approaches

can help modulate protein levels directly. While PROTAC

technology has mainly been used for cancer targets, recent

advances have extended its application to non-cancer diseases,

part icularly immune, inflammatory, and neurological

disorders (315).

RNA-targeted interventions, a new class of innovative

therapeutics, may overcome some of the aforementioned

challenges (84, 104–106). Their advantages include (i) each gene

of interest is potentially targetable by RNA therapeutics, whereas

protein-targeted small molecules or antibodies can target only

0.05% of the human genome (316); (ii) manufacturing costs are

lower than those of protein-targeted therapeutics; and (iii)

development times are substantially shorter than those for

conventional medicines. RNA interventions include antisense

oligonucleotide (ASO), siRNA, clustered regularly interspaced

short palindromic repeats (CRISPR)-based genome editing,

aptamer, and mRNA vaccines (317–321).

The first ASO drug was fomivirsen, approved by the United

States FDA in the late 1990s for the treatment of cytomegalovirus

(CMV) retinitis (322, 323). Mipomersen, an ASO targeting

apolipoprotein-B-100 mRNA, was the first RNA-targeted therapy

approved by the FDA for a CVD—familial hypercholesterolemia

(324). Inclisiran, an siRNA targeting PCSK9, has proved safe and

effective for lowering LDL (by approximately 50%) and

cardiovascular outcome trials are ongoing (325). Another

developmental ASO, pelacarsen, is directed against lipoprotein(a)

[Lp(a)], which is linked clinically with CVD, including aortic

stenosis. Specifically, pelacarsen targets the production of

apolipoprotein(a) [Apo(a)], a key component of Lp(a) disulfide-

linked to apolipoprotein B100. Pelacarsen proved safe and lowered

Lp(a) levels by up to 80% in phase 2 trials (326). Clinical trials of

siRNAs that reduce both normal and mutated transthyretin (TTR),

causing TTR amyloidosis, reported attenuated progression not only

of the associated peripheral neuropathy but also cardiomyopathy

(327, 328). In addition to these developments, the COVID-19

mRNA vaccines showed that delivering native or chemically

modified (e.g., pseudo-uridine) mRNA by encapsulation in lipid

nanoparticles is another potential option to treat various diseases,

including CVD. Yet, all such methods are directed toward

interacting with proteins.

We know from increased usage of next-generation sequencers

that most of our coding genome is transcribed as RNA (329). Only a
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small percentage codes for proteins, leaving a majority of

transcribed RNAs as non-protein-coding RNAs (ncRNAs). In

addition to the well-known ncRNAs, ribosomal RNAs (rRNAs),

and transfer RNAs (tRNAs), other regulatory ncRNAs have been

identified and characterized in recent years, including microRNAs

(miRNAs), circular RNAs, and long ncRNAs (lncRNAs) (330). Not

surprisingly, the dysregulation of ncRNAs is linked to various CVD

etiologies, and hence, these ncRNAs are being investigated as

potential CVD diagnostic biomarkers or therapeutic targets (331).

Preclinical and clinical trials of miRNA-based therapeutics for

CVDs are ongoing (332) while most projects on lncRNA-targeted

therapeutics are still in the preclinical stage. LncRNAs are

associated with many human diseases and many efforts are

underway to develop technologies to target them therapeutically

(333, 334). LncRNAs involve diverse modes of action, providing

different opportunities to modify their functions (e.g., via siRNAs,

ASOs, CRISPR/Cas9, small molecules). Some mitochondrial

lncRNAs have reached clinical trials as cancer therapies (334).

Accumulating preclinical evidence has implicated lncRNAs in the

pathogenesis of various CVDs, including atherosclerosis,

myocardial infarction, heart failure, and arrhythmias, providing

molecular bases for their clinical applications as therapeutic targets

or biomarkers (331, 335, 336). While lncRNA-targeted therapeutics

have high potential, their clinical development is lagging. This may

be due to our incomplete understanding of their mechanism of

action, necessitating more mechanistic studies of each lncRNA. In

addition, innovative computational methods should help elucidate

their interactions with miRNAs, coding RNAs, and proteins. The

combined use of such targeted systems approaches will help

translate advances in lncRNA biology into clinical CVD medicines.

These novel modalities can also be partnered with a wide array

of drug delivery strategies to maximize their effectiveness (337) and

reduce off-target effects (338). These have been key partnerships for

emerging modalities, such as RNA-targeted therapeutics (339).

While these drug delivery methods remain unproven in the clinic,

they have accelerated preclinical research by serving as powerful

tools for in vivo intervention (95, 144).
Transforming cardiovascular medicine:
innovative approaches and
collaborative initiatives

Interdisciplinary and multistakeholder drug
discovery drives innovation

Facilitating drug discovery and development for innovative

precision medicine requires new paradigms. New technological

developments can help solve specific technical limitations and

promote scientific discoveries. These discoveries can be accelerated

by models that integrate multiple innovative technologies to

holistically address the biology of heterogeneity, identify promising

drug targets, predict their clinical impacts, and design, generate, and

test new drugs. Dynamic and close collaboration between biologists
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and data scientists is essential to establish fully integrated drug

discovery research, as discussed above. Such seamless approaches

also require innovative cross-sector collaboration.

One of the major obstacles is the large gap between target

discovery research in academia and drug development in industry

(Figure 7). Many ideas or targets identified in academic research do

not bridge this gap for various reasons, including the lack of

expertise and funding in academia and industry’s unwillingness to

invest in early, high-risk projects. To solve these major challenges,

several models of academia–industry collaboration have been

established to merge the strengths of both sectors (89, 340–344).

Establishing novel concepts by exploring uncharted territories and

pursuing high-risk projects is a typical strength of academic

investigators, while industrial scientists have specific expertise in

drug design and development and are more strongly supported by

infrastructure and financial resources (341, 342). Indeed, one study
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indicated that academia–industry collaboration showed higher

clinical development success rates than those commonly seen in

either academia or industry with no collaboration (89). Other types

of collaborative arrangements include precompetitive research

between pharmaceutical companies for sharing resources and

expertise, and public–private partnerships (345–348).
Collaborative data science: key to
precision medicine

As discussed, the major challenges in CVD have prompted

precision medicine approaches that in turn necessitate new

technologies; these disruptive innovations not only solve

challenges, but also generate new concepts. The key, essential

component in this synergistic relationship is data science (349).
FIGURE 7

Academia–industry collaboration to fill the gap in drug discovery. (A) Several challenges often impair the transition of targets discovered in academia
to drug development in industry. (B) New models that integrate actions in the two sectors may facilitate the translation of discoveries into the clinic.
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Among new technologies across various disciplines, the evolution of

data science has been particularly rapid. It is now critical for us to

recognize the importance of implementing this discipline and

involving data scientists in every stage of cardiovascular medicine

innovation, from basic science, discovery, and translational research

to the clinical development of new therapeutics and ultimately their

use in clinical practice. We must also recognize the diversity of data

science as characterized by various subspecialties (e.g., biostatistics,

bioinformatics, biophysics, network science, computational biology,

and machine learning-based approaches), which enables the

construction of a multidisciplinary data science team to cover a

wide range of needs. More resources need to be allocated to support

the development of data scientists at the institutional and

government levels to bolster future biomedical innovation in both

academia and industry. Finally, infrastructures that support

interoperability between the multiple data sources involved are

also vital to enhance the synergistic relationships between data

science and cardiovascular medicine (350).
Lessons learned from COVID-19: are we
ready for the next pandemic?

During the COVID-19 pandemic, over 770 million people were

infected with the SARS-CoV-2 virus globally, leading to 7 million

deaths (351). The scientific community came together to respond to

the rapidly evolving demands that arose as a result. Public, political,

and scientific awareness enabled resources to be redirected toward

combating this global threat. This also triggered research interests

in investigating the extensive, long-term consequences of viral

infection on a large scale (352).

The United States FDA demonstrated flexibility and innovation

during this time by modifying existing regulations to accelerate the

approval process of life-changing medications for COVID-19 (353,

354). Similarly, the World Health Organization (WHO) played a

central role in generating and distributing guidelines and tools to the

global medical community (https://covid19.who.int). As a result,

novel technologies, including mRNA vaccines and neutralizing

antibodies (355, 356), were deployed with unprecedented rapidity

to help reduce disease severity. Although these groundbreaking

tools had already been in development (357, 358), the COVID-19

pandemic created the impetus to embrace these platforms to

supplement conventional treatments. This new attention toward

acute viral infection required the scientific, medical, and regulatory

communities to restructure and shorten the drug development and

implementation timeline (359). Governmental programs, such as

the National Institutes of Health RECOVER program in the United

States (360) (https://recovercovid.org/) to characterize post-acute

sequelae of SARS-CoV-2 infection (PASC) syndrome or “long

COVID” promoted the formation of multi-institutional and

multidisciplinary nationwide collaborations by eliminating

barriers to interactive science (361). Technologies developed

through this global effort will be applied to counter other

diseases, such as cardiovascular, pulmonary, and neurological

disorders.
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Knowledge gained in social, political, and clinical realms has

shaped how our scientific community responds to worldwide

challenges. The advent of new technologies has heightened the

level of responsibility, as they allow the evaluation of interventions

more quickly, more precisely, and at greater scales than was

previously possible (362, 363). It will be essential to capitalize on

the collaborations established during this crisis to address future

pandemics successfully.
Revamping global healthcare policies to
tackle the leading global cause of mortality

We have discussed that investing in innovative approaches and

cutting-edge technologies will help develop treatments and

interventions that improve CVD outcomes. However, we cannot

afford to miss the forest for the trees. The “domino effect” of

anthropogenic causes of mortality is the most pressing human

health problem in modern times (364). Climate change leads to

increased natural disasters, which, in turn, cause changes in food

and water security. It also results in supply chain disruptions and

population displacements. All of these consequences collectively

strain the healthcare system. This strain exacerbates the impact of

both lifestyle and environmental components on the development

and progression of CVD. There is also a heightened risk of

respiratory and vector-borne diseases due to these interconnected

factors (365).

Concerted efforts applied to the population scale of the

Millennium Development Goals and the Sustainable Development

Goals (SDGs) are needed to increase public awareness of CVD and

its risk factors (366, 367). Precision medicine approaches can be a

huge asset to meet SDG 3.4, which aims to reduce premature

mortality from non-communicable diseases through prevention

and treatment. Prevention of these diseases should be emphasized

by encouraging healthy lifestyles, tobacco cessation, and more

nutritious dietary alternatives. Strengthening healthcare

infrastructure, increasing equitable access to quality healthcare,

reducing economic disparities (368), and promoting unanimous

support to the WHO’s Global Action Plan for the Prevention and

Control of NCDs (369, 370) are necessary to, in some measure,

mitigate this so-called “disease of civilization” (371).
Political imperative to ensure global equity

The COVID-19 pandemic exposed the vulnerabilities of global

healthcare systems: the lack of cooperation between governments

and the private sector, unequal distribution of medical resources

(including vaccines), and the neglect of needs in the global south. In

the context of CVD, neglect of the disease burden in low-income

and lower-middle-income countries (LICs/LMICs) and excluding

such populations from research (including clinical trials) has led to

major healthcare crises (372). Even though the disease burden is

high in LICs and LMICs, these countries’ contributions to the global
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FIGURE 8

Global policy leadership fuels transformative cardiovascular innovations. Revolutionizing healthcare demands an unprecedented commitment
from global policy leaders to foster interdisciplinary collaborations, funding, and support. This will drive innovation, enhance data science
capacity, establish patient-centric public health policies, and concert efforts to reduce global inequality, addressing the silent pandemic of
cardiovascular disease.
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research output are minimal in part due to limited research capacity

(373). Moreover, at present, global responses to the major global

health threats from both noncommunicable and infectious diseases

are hampered by geopolitical division, conflict, and power

imbalances. (374) Achieving global health equity requires

multisectoral, multifaceted, and multistakeholder engagements

(375) through the emergence of global frameworks such as the

WHO pandemic agreement adopted in May 2025 (376). While

pandemics are temporary, continued cooperation and dedication of

financial resources toward research and outreach are critical to

mitigate future calamities. Effective global leadership is contingent

upon the constructive global healthcare discourse among all

member states, alongside proactive contributions from

intergovernmental institutions. For this to happen, major policy

stakeholders must recognize their lack of attention to the CVD

burden and the insufficient healthcare infrastructure of the Global

South, consequently amplifying their struggles. Concerted efforts

addressing the issues plaguing individuals living in LICs/LMICs will

be globally beneficial by reducing the burden of communicable and

non-communicable diseases alike. Ultimately, addressing the

disparities in global healthcare is not just a moral imperative but

also a strategic necessity in safeguarding the well-being of all humans.

By fostering collaboration, empathy, and a shared commitment to

collective welfare, we can build a world where access to healthcare is a

fundamental right for every individual, regardless of geographic

location or socioeconomic status.

Therefore, transforming to a precision innovation paradigm in

cardiovascular medicine will require more than the scientific and

technological advances described above. Interdisciplinary,

intersectoral and global collaborations throughout the research

and innovation pathway (352, 377, 378), underpinned by global

health policy leadership, are necessary to implement suitable

models of research funding and organization, data infrastructures

and policies, novel clinical trial methods, medicines regulation, and

patient access policies (Figure 8).
Conclusions

We have discussed how major challenges and needs in clinical

cardiovascular medicine have provided opportunities for the

scientific and medical communities to implement innovations and

develop the systems approach needed to facilitate the search for

disease mechanisms and establish unconventional strategies in drug

development. The rapid evolution of cutting-edge technologies has

recently increased our understanding of the biology of heterogeneity

at cellular and patient levels, which would enable the establishment of

new paradigms of precision medicine for CVDs. Advanced

computational methods help to make traditionally undruggable

targets druggable. New platforms, such as RNA therapeutics,

facilitate modulation of undruggable targets (379).

Disruptive innovation not only solves challenges, but also leads us

to new paradigms. Establishing new concepts in turn requires the
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development of new technologies. The key to successful

cardiovascular innovation is a synergistic relationship between new

technology and new paradigms, supported by a dynamic and intimate

interplay between biomedical research and data science. In addition,

cross-sector (e.g., academia–industry) or international partnerships

can help to defend against global residual cardiovascular risks and

address unmet medical needs. We saw this in action during the

COVID-19 pandemic, where our community was forced to develop

“borderless” solutions swiftly. This unprecedented challenge brought

about a worldwide effort among scientists in academia and industry,

leading to progress in comprehending virus transmission, effectively

accelerating the development of novel technologies (e.g., mRNA

vaccines), and reorganizing the medical community to improve

responses to future crises. Such seamless collaboration across

various disciplines, sectors, and nations will shift innovation

paradigms to revolutionize borderless cardiovascular medicine and

speed up the translation of discoveries into the clinic.
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66. Sonawane AR, Pucéat M, Jo H. Single-cell OMICs analyses in cardiovascular
diseases. Front Cardiovasc Med (2024) 11:1413184. doi: 10.3389/fcvm.2024.1413184

67. Decano JL, Aikawa M. Dynamic macrophages: understanding mechanisms of
activation as guide to therapy for atherosclerotic vascular disease. Front Cardiovasc
Med (2018) 5:97. doi: 10.3389/fcvm.2018.00097

68. Decano JL, Maiorino E, Matamalas JT, Chelvanambi S, Tiemeijer BM,
Yanagihara Y, et al. Cellular heterogeneity of activated primary human macrophages
frontiersin.org

https://doi.org/10.1093/eurheartj/ehab841
https://doi.org/10.3389/fcvm.2020.00088
https://doi.org/10.1161/CIRCULATIONAHA.118.035289
https://doi.org/10.3389/fcvm.2023.1187735
https://doi.org/10.3389/fcvm.2024.1446468
https://doi.org/10.3389/fcvm.2024.1446468
https://doi.org/10.1016/j.jacc.2024.08.004
https://doi.org/10.1016/j.jacc.2024.08.004
https://doi.org/10.1016/j.ejim.2024.05.034
https://doi.org/10.1016/j.ejim.2024.05.034
https://doi.org/10.1161/JAHA.121.024785
https://doi.org/10.1161/CIR.0000000000001052
https://doi.org/10.1161/CIR.0000000000001052
https://doi.org/10.1161/CIR.0000000000000485
https://doi.org/10.1016/j.jacc.2020.11.010
https://doi.org/10.1016/j.jacc.2020.11.010
https://doi.org/10.1161/ATVBAHA.124.319571
https://doi.org/10.1161/ATVBAHA.124.319571
https://doi.org/10.1002/em.21985
https://doi.org/10.1002/em.21985
https://doi.org/10.1016/j.envint.2020.105887
https://doi.org/10.1016/j.envint.2020.105887
https://doi.org/10.1093/exposome/osad003
https://doi.org/10.1161/JAHA.122.025235
https://doi.org/10.1056/NEJMra2030281
https://doi.org/10.1152/physrev.00033.2022
https://doi.org/10.3389/fcvm.2022.873582
https://doi.org/10.15252/emmm.202013260
https://doi.org/10.1016/j.cell.2012.03.001
https://doi.org/10.1017/pcm.2022.13
https://doi.org/10.1038/s41576-019-0144-0
https://doi.org/10.1038/s41576-019-0144-0
https://doi.org/10.1002/gepi.22497
https://doi.org/10.1038/s41598-022-14013-3
https://doi.org/10.1172/JCI102960
https://doi.org/10.1161/01.cir.55.5.767
https://doi.org/10.1016/0021-9681(77)90082-0
https://doi.org/10.7326/0003-4819-130-11-199906010-00018
https://doi.org/10.7326/0003-4819-130-11-199906010-00018
https://doi.org/10.1161/CIRCULATIONAHA.117.029870
https://doi.org/10.1161/CIRCULATIONAHA.117.029870
https://doi.org/10.4330/wjc.v8.i1.1
https://doi.org/10.1161/CIRCULATIONAHA.118.031373
https://doi.org/10.1016/j.jacc.2019.01.061
https://doi.org/10.1093/cvr/cvac179
https://doi.org/10.3390/cells9010242
https://doi.org/10.1186/s12872-024-03821-2
https://doi.org/10.1111/joim.13772
https://doi.org/10.1161/CIRCULATIONAHA.108.778837
https://doi.org/10.1038/s41591-019-0590-4
https://doi.org/10.1161/CIRCRESAHA.120.316770
https://doi.org/10.1172/jci.insight.124574
https://doi.org/10.1093/cvr/cvab260
https://doi.org/10.1161/CIRCULATIONAHA.120.048378
https://doi.org/10.1161/CIRCULATIONAHA.118.038362
https://doi.org/10.1161/CIRCULATIONAHA.118.038362
https://doi.org/10.1161/CIRCRESAHA.117.312513
https://doi.org/10.1161/CIRCRESAHA.117.312513
https://doi.org/10.3389/fcvm.2022.849675
https://doi.org/10.3389/fcvm.2024.1413184
https://doi.org/10.3389/fcvm.2018.00097
https://doi.org/10.3389/fsci.2025.1474469
https://www.frontiersin.org/journals/science
https://www.frontiersin.org


Aikawa et al. 10.3389/fsci.2025.1474469
and associated drug-gene networks: from biology to precision therapeutics. Circulation
(2023) 148(19):1459–78. doi: 10.1161/CIRCULATIONAHA.123.064794

69. Geyer PE, Holdt LM, Teupser D, Mann M. Revisiting biomarker discovery by
plasma proteomics. Mol Syst Biol (2017) 13(9):942. doi: 10.15252/msb.20156297

70. Eldjarn GH, Ferkingstad E, Lund SH, Helgason H, Magnusson OT, Gunnarsdottir K,
et al. Large-scale plasma proteomics comparisons through genetics and disease associations.
Nature (2023) 622(7982):348–58. doi: 10.1038/s41586-023-06563-x

71. Leopold JA, Maron BA, Loscalzo J. The application of big data to cardiovascular
disease: paths to precision medicine. J Clin Invest (2020) 130(1):29–38. doi: 10.1172/
JCI129203

72. Mohanta SK, Peng L, Li Y, Lu S, Sun T, Carnevale L, et al. Neuroimmune
cardiovascular interfaces control atherosclerosis. Nature (2022) 605(7908):152–9.
doi: 10.1038/s41586-022-04673-6

73. Caudal A, Snyder MP, Wu JC. Harnessing human genetics and stem cells for
precision cardiovascular medicine. Cell Genom (2024) 4(2):100445. doi: 10.1016/
j.xgen.2023.100445

74. Atutornu J, Milne R, Costa A, Patch C, Middleton A. Towards equitable and
trustworthy genomics research. EBiomedicine (2022) 76:103879. doi: 10.1016/
j.ebiom.2022.103879

75. Loscalzo J, Barabási AL, Silverman EK. Network medicine: complex systems in
human disease and therapeutics. Cambridge, MA: Harvard University Press (2017).

76. Lusis AJ, Seldin MM, Allayee H, Bennett BJ, Civelek M, Davis RC, et al. The
hybrid mouse diversity panel: a resource for systems genetics analyses of metabolic and
cardiovascular traits. J Lipid Res (2016) 57(6):925–42. doi: 10.1194/jlr.R066944

77. Daugherty A, Tall AR, Daemen MJAP, Falk E, Fisher EA, Garcıá-Cardeña G,
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