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A Viewpoint on the Frontiers in Science Lead Article

Breakdown and repair of metabolism in the aging brain
Key points
• Brain function depends on the interplay of neurons, glia, and vascular
elements working in a coordinated way as the neurovascular unit; a
detailed modeling framework based on current knowledge provides a
powerful tool for investigating the working brain and understanding
brain aging.

• Building on this framework will be an ongoing effort as new experimental
results on the basicmechanisms emerge,modifying both the connections
and rates of different processes.

• A thermodynamic perspective offers an important complement to
traditional modeling, ensuring a thermodynamically consistent model
and potentially explaining the physiological functions involved even
when the underlying mechanisms are not known.
Introduction

In their lead article, Shichkova and colleagues report a remarkably detailed model of the

metabolic dynamics underlying energy metabolism in the brain (1). By incorporating many

metabolic pathways based on a broad range of earlier work, they have designed a useful tool

for probing the dynamics of brain energetics. By comparing a young and an aged brain

metabolic state, they identified key differences and tested how modifications of specific

metabolic components in the aged state could restore the young state. For example, in one

case it was sufficient to simply increase the activity of the sodium/potassium ATPase, the

transporter of three Na+ ions out of the cell and two K+ ions into the cell coupled with the

conversion of one molecule of adenosine triphosphate (ATP) to one molecule of adenosine

diphosphate (ADP). This so-called “sodium pump” is thought to be a key player in brain
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energetics, consuming most of the ATP required for neural

function, especially at excitatory synapses (2, 3).

The goal of modeling brain energy metabolism is to incorporate

all the features of the neurons, glia, and vascular elements

that function as a neurovascular unit. This would provide a

framework for integrating a wide range of studies from genetics to

neurophysiology to non-invasive functional neuroimaging to novel

therapeutics. It is a sweeping goal, and a challenging one because we

are still trying to understand key elements of physiology. For

example, many metabolic and neural factors affect cerebral blood

flow (CBF) (4), but it is not clear how all these potential mechanisms

combine to create a smoothly functioning CBF response to neural

activity. Expanding the model to include this ongoing work is an

important direction for the future. Nevertheless, by including many

aspects of brain energetics, the model by Shichkova et al., which is

openly available (1), is an important framework on which to build.

The central question in modeling brain energetics is: how do we

know the rates of different processes? Shichkova and colleagues

used RNA expression data to estimate enzyme concentrations and

extrapolate to the associated enzyme kinetics. They acknowledged

the caveat that messenger RNA (mRNA) levels do not fully reflect

protein levels and activities. In addition, however, there are

thermodynamic effects on reaction rates when the processes are

not far from equilibrium—as the change in entropy decreases, the

process slows down, independent of the details of the enzyme

kinetics. These are essentially physiological effects that cannot be

predicted from RNA expression alone but instead depend on the

dynamically changing concentrations of key ions and metabolites.

This viewpoint article considers the modeling of brain

energetics from a thermodynamic perspective, clarifying the basic

ideas and describing an important, and somewhat counterintuitive,

physiological effect.
Thermodynamic limitations of
dynamic modeling in the context of
the fluctuation theorem

Thermodynamic reasoning enables us to identify aspects of the

dynamics that are independent of the specific mechanisms involved.

For example, to model how a cup of hot coffee cools, we could

include the thermal conductivity of the coffee and the cup, possible

convective motions within the coffee, and even convective air

motions due to blowing gently on the surface. However,

independent of the exact mechanisms, the thermodynamics alone

predicts the endpoint of the cooling process: the temperatures of the

coffee and the room will equalize, and the detailed mechanistic

modeling must be consistent with this endpoint. Creating a model

that conforms to thermodynamic constraints can be challenging if

the rates of the different mechanisms are taken from empirical data

that are far from equilibrium, and another step may be needed to

achieve thermodynamic consistency (5).

Thermodynamic effects on the rate of a process depend on the

net entropy change (DS) involved, including all the interacting

components. An intuitive way to formulate the role of DS in
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dynamics is in terms of the fluctuation theorem, a perspective

borrowed from physics (6). Essentially, the fluctuation theorem

captures the statistical nature of the second law of thermodynamics

by dealing with probabilities for the forward direction of change

(P+, the direction for positive DS) and the reverse direction of

change (P−, negative DS) within a given time interval t. The
fluctuation theorem relates these probabilities:

P+
P−

= eDS=k (1)

where k is the Boltzmann constant.

The fluctuation theorem provides a way to move beyond

equilibrium and treat the nonequilibrium dynamics of biological

systems (7). Defining R0 = P+/t as the forward rate of the process,

the net rate R of a process is:

R = R0(1 − e−DS=k) (2)

The net rate involves two terms: a kinetic rate constant R0, which

depends on the concentrations of the reactants, enzyme activity,

membrane permeability, and other parameters usually included in

modeling dynamics; and a thermodynamic term, which depends on

the net entropy change. When DS = 0, the system is in equilibrium,

and the net rate of the process is zero. When DS is large, the

thermodynamic term no longer has a significant effect, and the

process is irreversible in a thermodynamic sense with a rate of R0.

In practice, we typically deal with a physiological system

interacting with a thermal bath at temperature T. The net entropy

change DS is expressed as the change in the Gibbs function DG, with
DG = −TDS (positive DS corresponds to negative DG). In the usual

units, expressed on a per mole basis, the exponent DS/k in

Equation 2 becomes −DG/RT, where RT is ~2.6 kJ/mol at human

body temperature. If DG = −12 kJ/mol, the thermodynamic effect

reduces the rate by only ~1%, and the process is essentially

irreversible. The DG for a process depends on the ratio F of

reactant to product concentrations (8):

DG = −RT log
F
F0

(3)

where F0 is the value of F at equilibrium. For the sodium gradient,

F is the ratio of extracellular to intracellular concentrations, andF0

depends on the membrane potential.
The brain’s batteries

Figure 1 is a sketch of the brain’s energy metabolism, focusing

on the key components that involve an entropy change and a few

key mechanisms. For the entropy components, the dependence ofF
on key reactant and product concentrations is indicated for the

forward direction of change when entropy increases. Ion fluxes

involved in neural activity include calcium ion entry into both the

pre-synaptic and post-synaptic neurons and ion currents due to the

opening of Na+ and K+ channels (Na+ influx, K+ efflux). The result

is that neural activity increases the intracellular Na+ and Ca2+

concentrations and the extracellular K+ concentration. The
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energetics pathway indicated by the solid black arrows reverses

these changes.

The sodium gradient between the inside and outside of the cell

is a focal point of brain energetics. It serves as an amplifier for

neural signaling, providing a strong inward sodium current when

sodium channels open. The Na+ gradient also acts as a battery to

power other thermodynamically uphill processes involving

neurotransmitter recycling and ion transport across the cell

membrane. For example, Figure 1 includes the sodium/calcium

exchanger that couples the transport of three Na+ into the cell, a

process with a negative DG, to the transport of one Ca2+ out of the

cell, with a positive DG. The Na+ gradient, in turn, is restored with

the sodium pump by coupling the uphill movement of Na+ out

of the cell (now positive DG) to a stronger battery—the ATP system.

The ATP battery is restored by coupling to an even stronger battery,

the metabolism of glucose with the production of ATP. We can

think of this as a chain of batteries, each charged by the previous

battery and in turn charging the next battery, with voltages

analogous to the associated DG.
Frontiers in Science 03
Balanced metabolic rates despite
failing batteries

In neural activity, the rates of each process indicated by a solid

arrow in Figure 1 must be balanced to achieve a steady state, with

equal rates of Na+ efflux and influx, and ATP restoration and

consumption. If this rate balance is maintained, it is tempting to say

that the system is working well. However, this is complicated by

another effect related to the thermodynamic perspective taken (7),

which depends on downstream effects related to Equation 2.

Essentially, voltage degradation in one of the batteries in Figure 1

can cascade—degrading the voltage in the battery being recharged,

even though the net rates remain balanced.

For example, the net DG for the sodium pump depends on the

negative DGATP from the ATP-to-ADP conversion and the positive

DGNa from pumping sodium against its gradient. If the negative

DGATP degrades (e.g., by reduction of the ATP/ADP ratio), the

net DG will fall, and if it falls low enough, the sodium pump will

slow down according to Equation 2. The sodium gradient will fall,
FIGURE 1

The brain’s batteries. From a thermodynamic perspective, brain energetics can be viewed as a linked sequence of batteries, indicated by the red
boxes. The blue boxes indicate mechanisms that connect these batteries to specific processes (such as the sodium pump). The voltage equivalent of
the batteries is the net change in the Gibbs function (DG) associated with the process, which depends on F, the ratio of reactants to products. The
rate of each process is potentially limited by Equation 2 when the net DG becomes small (see text). The processes are linked through DG: e.g., the
DGNa affects the sodium pump with a positive contribution to net DG but affects the Na+-Ca2+ exchanger with a negative DG, which acts as a driving
battery. The effect of ongoing neural activity in terms of ion movement is indicated in the upper part (green box) and the energetic cost of brain
activity is dominated by restoring the ion gradients.
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but this will also lower the positive DGNa required to pump sodium

against its gradient. If DGNa falls sufficiently to restore the original

net DG, despite the reduction of DGATP, the rate of the sodium

pump can be restored. The somewhat counterintuitive result is that

the overall rate of the sodium pump is maintained but at the cost of

degrading the DGNa available from the sodium gradient. This has a

cascading effect on downstream processes that depend on the

negative DGNa available when a sodium ion moves down its

gradient, i.e., when the sodium gradient is used as a battery. For

example, for the Na+/Ca2+ exchanger, the net DG has been

estimated to be about −7 kJ/mol in cardiac myocytes (9), a range

in which thermodynamic effects are significant.

Another physiological effect that becomes clearer from a

thermodynamic perspective is the observation that increased neural

activity produces an increase in CBF that is two to three times greater

than the increase in cerebral oxygen metabolism (CMRO2)—the

origin of the blood oxygenation level-dependent (BOLD) effect in

functional magnetic resonance imaging (fMRI) studies. Because

the DG associated with oxidative metabolism depends on the O2

concentration in the mitochondria, it is not enough to simply think

about the delivery of O2 to the capillary bed: O2 must be delivered

while maintaining a sufficient O2 concentration in the tissue to avoid

degrading the available DG (7, 10). Modeling shows that a large

increase in CBF is needed to prevent the partial pressure of O2 in

tissue from falling, in good quantitative agreement with studies of

brain activation and hypoxia (7). In this way, a thermodynamic

perspective explains the physiological function served by a large

change in CBF, although the mechanisms that produce this change

in CBF are not yet fully understood.

A thermodynamic perspective changes the way we think about

energy metabolism. Preserving the metabolic rate is necessary but not

sufficient—a healthy brain must also keep its batteries charged. In

practice, there is a buffer in the sense that DG could be reduced

without impairing the next stage. An important research question is to

determine how large this buffer is for each of the systems in Figure 1.

In conclusion, the detailed modeling of brain energetics by

Shichkova and colleagues (1) is an important advance. As the field

progresses, modifying and building upon this framework, a

thermodynamic perspective may provide a useful complementary

angle for modeling and understanding physiology.
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