
Frontiers in Science

OPEN ACCESS

EDITED BY

Francesca Turroni,
University of Parma, Italy

REVIEWED BY

Michael Gänzle,
University of Alberta, Canada
Christophe Lacroix,
ETH Zürich, Switzerland

*CORRESPONDENCE

Paul D. Cotter

Paul.Cotter@teagasc.ie

RECEIVED 12 February 2025
ACCEPTED 02 June 2025

PUBLISHED 31 July 2025

CITATION
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Abstract

Food system microbiomes include complex microbial networks that range from

soil andmarine environments to primary agriculture, farming, food processing, and

distribution, and which influence human and environmental health. Advances in

“omics” technologies, such as metagenomics, metatranscriptomics,

metaproteomics, metabolomics, and culturomics, and their integration have

deepened our understanding of microbiome dynamics and interactions. This

growing knowledge is being leveraged to develop microbiome-based solutions

enabling more sustainable food systems. This review explores microbiome

interconnections along the food system and how this and other knowledge

relating to microbiomes can be harnessed to, among other things, enhance

crop resilience and productivity, improve animal health and performance, refine

management practices in fishing and aquaculture, or prolong shelf life and reduce

food spoilage during distribution. The often-overlooked role of bacteriophages on

shaping microbiomes is discussed, as is the impact of diet on the human gut

microbiota and, in turn, health. Despite advances, knowledge remains incomplete

in particular areas and targeted experimental approaches are necessary to fill these
gaps—going beyond merely predicting microbiome functionality. Ultimately, the
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ideal development of microbiome-based innovations in food systems will require

collaboration between stakeholders and regulators to ensure safety, efficacy, and

widespread adoption, unlocking its full potential to improve the health of animals,

humans and the environment globally.
KEYWORDS

meta-omic approaches, microbiome mapping, high-throughput sequencing, food-
omics, microbiome interconnection, bacteriophages, agri-food system
Key points
• Food system microbiomes form a complex, dynamic, and
interconnected network that can be traced across soil and
marine environments to primary agriculture, farming,
and food processing sectors, ultimately influencing
human gastrointestinal niches. These microbiomes
impact both human and environmental health.

• Meta-omic technologies are valuable tools that contribute
to advancing our understanding of the composition,
functionality, and interactions of food system
microbiomes within and across ecosystems to fully
leverage the potential of microbiomes.

• Advances in microbiome-characterization technologies
have helped to highlight the deterioration of specific
microbiome networks, including decreased microbial
diversity and the spread of antimicrobial resistance, and also
to design positive microbiome modulation interventions.

• Microbiome-based innovations and applications have the
potential to improve the resilience and sustainability of
agri-food systems, and the global health of animals,
humans, and the environment.

• An integrated approach involving all relevant stakeholders
is vital for protecting existing microbiomes and restoring
damaged microbial networks.
Introduction

Agri-food systems are crucial for society. They consist of

multiple integrated sectors that provide nourishment while also

contributing significantly to employment, trade, and innovation

(1, 2). In 2021, the global annual value of agriculture, forestry, and

fishing reached US$3.7 trillion and the sector was estimated to

provide a livelihood for around one billion people, accounting for

27% of the global workforce (3). In addition, agriculture can have a

variety of positive and negative impacts on environmental health,

including various aspects of nutrient cycling, water purification,

landscape conservation, as well the emission of ammonia

and methane.
02
The 21st century has brought a wide spectrum of climate-related

challenges, including prolonged droughts, extreme flooding episodes,

and biodiversity loss, which test the resilience of agri-food systems.

Moreover, (intense) agriculture is one of the most important

anthropogenic drivers of these crises, contributing to six of nine

planetary boundaries already being crossed. The planetary

boundaries concept defines safe limits for nine critical processes

that maintain a stable and resilient Earth. The boundaries “climate

change”, “biosphere integrity”, “biogeochemical flows”, “land-system

change”, and “freshwater use” are those that are already outside what

has been defined as a safe operating space for humanity (4).

An estimated one-fifth of food produced globally for human

consumption is lost or wasted (5), which highlights the necessity

to reduce food losses along production and supply chains as well as

at retail and consumer levels. Indeed, the targets associated with

United Nations (UN) 2030 Sustainable Development Goals (SDGs)

include reducing by 50% food losses per capita along production

and supply chains, doubling agricultural productivity, ensuring

sustainable and resilient food production systems, increasing

water-use efficiency, and reducing land degradation (6).

Ultimately, innovation is critical to ensure food availability,

accessibility and affordability while addressing the need to reduce

greenhouse gas emissions, energy demand and waste, increase

productivity, and preserve environments and biodiversity (7).

In recent decades, there has been a notable increase in research

dedicated to understanding microbiomes along the food system. A

microbiome is defined as a characteristic microbial community

occupying a well-defined habitat that has distinct physio-chemical

properties. This term refers not only to the microorganisms

involved but also includes their theatre of activity (8).

Microbiomes, including those in food systems, are dynamic and

interactive micro-ecosystems that are susceptible to changes over

time and scale, including processes of coalescence among

microbiomes that come into contact (9).

Agri-food-related environments—soil, water, air, plant, food-

processing industries, food products, and animals, including

humans—contain microbiomes that are often linked to form

complex interacting networks. Indeed, microbiomes can influence

each other directly, by the inter-microbiome dispersion of

microorganisms able to colonize different ecosystems, or indirectly,
frontiersin.org
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through the exchange of different molecular mediators (10).

This trans-microbiome molecular crosstalk is mediated by the

microbiome secretome, which includes proteins and metabolites,

which can control, in many cases selectively, the growth of certain

taxa. Other mechanisms of microbiome interaction depend on

predatory dynamics, involving inter-microbiome exchanges of

bacterial, protist, and/or viral predators, such as phages (11). The

rhizosphere microbiome offers an example of such a complex trans-

microbiome interaction dynamic. Closely connected to soil and

aquatic ecosystems, this microbiome can regulate the content of

complex polysaccharides or secondary metabolites (e.g.,

polyphenols or tannins) produced by edible plants; moreover,

once ingested by herbivores or omnivores (including humans),

these plant foods can shape the composition and functional

layout of their respective gut microbiomes.
Frontiers in Science 03
This concept of interconnected environments is encompassed

within the One Health approach, which aims to balance and

optimize the health of people, animals, and ecosystems (12), with

microbiomes playing a pivotal role (13). More specifically, microbial

communities along the food system influence and shape the

nutritional, quality, safety, and sensory attributes of food products.

Conversely, human activities can modify those microbiomes, with both

positive and negative outcomes for global health (Figure 1).

The rapid development of omics technologies has allowed us to

analyze the structural and functional dynamics of these microbiomes

at unprecedented spatiotemporal resolution, as well as the complex,

interdependent networks that microbes and their host form in

ecosystems. This has included the use of complementary

approaches, such as metagenomics, metatranscriptomics,

metaproteomics, metaproteomics, metabolomics, and culturomics,
FIGURE 1

Microbiome connections. General microbiome interconnections map in agri-food systems and their potential to impact human health. The arrows
represent the bidirectional influences between the most relevant food system environments, which have been grouped into broader categories
(left-hand side labels) that correspond to the different sections of the review.
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to provide valuable insights into the composition, functional capacity,

and biochemical activity of microbial communities and specific

components thereof (14, 15). It has also involved the development

and use of large data modelling techniques, such as those from

network science (16, 17). These advancements have led to

several applications for sustainable food systems, as previously

reviewed (18–23).

Figure 2 depicts the general pathway followed for the

development of microbiome-based agri-food solutions. High-

throughput DNA sequencing technologies have been particularly

useful to help track the movement of specific strains into and through
Frontiers in Science 04
different ecological niches, thanks to the downstream analysis of these

data through bioinformatic pipelines. Whole genome sequencing has

been used for strain tracking during outbreak investigations, using

well-defined thresholds of single nucleotide polymorphisms (SNPs)

between genomes to differentiate strains, and allowing

the identification of contamination routes in food processing

facilities (24). Whole metagenome sequencing has also been used

to characterize microbial networks and track strain movement

through the reconstruction of metagenome-assembled genomes

(MAGs), as in the case of the tracking of individual

Bifidobacterium strains between mothers and infants (25, 26).
FIGURE 2

Multi-omics for microbiome interconnections research. Pathway for microbiome exploration using diverse omics methodologies and for the
development of novel solutions leveraging microbiome interconnectedness. The importance of considering the different components of the
microbiome and the functional capacity of the secretome (proteins and metabolites) is highlighted. The interconnections between microbiomes can
be studied at different levels, from laboratory scale (increasing the systems complexity), followed by models of real environments (using ex vivo
models, animal studies, greenhouses tests, etc.) and finally real-world communities (including field studies, studies with humans and livestock, and
studies on rivers, oceans, soils or food processing facilities). Microbiome modification strategies can be designed by harnessing the knowledge
relating to microbiome interconnectedness and information derived from microbiome monitoring.
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These examples demonstrate how alterations in one microbiome can

subsequently affect other microbiomes and how this knowledge can

be harnessed to develop microbiome modulation strategies.

Influencing microbial communities through intervention has

the potential to alter human and environmental health and improve

our understanding of microbial niches. Efforts to influence the

microbiome in a persistent manner have taken many forms,

including the use of probiotics, prebiotics, starter cultures,

protective cultures and other biotics (27, 28). While pro- and

prebiotics initially came to prominence as supplements for

human health, they are now also widely used in agriculture,

where they can also be referred to as biostimulants and

biofertilizers, and aquaculture with a view to protecting farm

animals and fish against disease or to enhance health. Some

examples of microbes being used in agri- and aquaculture in this

way include the application of bacterial communities to desert crops

to protect against abiotic stress (29), the use of yeast to decrease

postharvest disease in strawberry production (30, 31), bioprotective

lactic acid bacteria treatments used to prevent spoilage in food

production (30, 32), and targeted vaccination against the louse

microbiome to reduce salmon infections (33). Microbial

modulation approaches can also be employed to control a

microbial population, and as such, decrease the use of antibiotics,

which should be limited to strictly therapeutic purposes due to the

potential spread of antibiotic resistance as well as collateral damage

that can be inflicted on desirable microorganisms. Microbiome-

targeted interventions also have the potential to restore

deteriorating biodiversity and increase the resilience of entire

(agricultural) ecosystems (34). While such interventions have

proven to be successful in specific circumstances, there are also

many examples of failures, with challenges including difficulties in

translating research in laboratories or on a pilot scale to a

real-world setting.

This review aims to highlight the importance of food system

microbiomes in the context of environmental and societal health

through a series of examples. More specifically, we highlight how

the interconnectedness of microbiomes can be apparent through

continuous links from soil and marine environments, to primary

agriculture, farming and food processing sectors, and ultimately

influencing the human gastrointestinal niches and, in the process,

impacting both human and environmental health.
Microbiome interconnections and
interventions throughout the food
system

Primary production environments

Land used for agriculture
The implementation of agricultural practices that promote soil

health is key in order to achieve the One Health objective, i.e.,

accomplishing the best health outcomes for people, animals, plants,

and our environment (35, 36). The soil microbiome is closely
Frontiers in Science 05
interconnected with the microbial communities found within

above- and below-ground plant microbiomes (Figure 3A). These

short- and long-term associations are influenced by various abiotic

and biotic factors. Ultimately, they play a crucial role in crop growth

and health (37, 38), and can be harnessed to, for example, improve

the yields, quality, and resilience of agricultural crops (39). In this

regard, abiotic factors, such as soil type and salinity, water, and

nutrient availability or photoperiod, have traditionally been the

focus of strategies such as irrigation and fertilization.

Some soil–plant interactions with potential applications in

agriculture have been observed in non-managed field environments

where plants are exposed to extreme conditions. The current

knowledge regarding the role of plant-associated microbiomes on

abiotic stress protection has been described in multiple review articles

on drought stress (40), flooding stress (41), and salt tolerance (42, 43).

Moreover, the influence of plant microbiomes on nitrogen fixation

(44–46) and the mobilization of other minerals (47) have been well

documented. Even host-associated microbiomes, such as those of soil

nematodes, can be important for the decontamination of a polluted

soil and the release of important macro- and micronutrients for soil

fertilization (48). There are also studies that address the influence of

microbiomes in mitigating the effects of other limiting abiotic factors

on plant fitness, including cold stress (49), freezing stress (50), and

other extreme conditions, such as the presence of heavy metals or

acidic and alkaline soils (51). Additionally, co-cultivation and

intercropping strategies have been widely adopted to increase

production and quality by improving soil fertility. To this end,

understanding the role of microbial communities in this response

has greatly benefited from the application of omics-based

technologies (52–54).

Extensive research has focused on how the composition and

activities of soil microbiomes, the plant genome, and environmental

characteristics combine to impact plant health (38, 55, 56). This

approach is based on the so-called “microbiome-associated

phenotype” models that consider the contributions of the host

genotype, environmental factors, and microbiome to the final host

phenotype (57). However, even more interesting is the possibility of

intentionally modifying soil microbiomes to replicate similar

benefits (58–63). Some successful applications include the

engineering of soils with plant-associated bacteria consortia to

protect different crops against abiotic stresses such as high

salinity, to preserve stable wheat yields under drought, to improve

phosphorus solubilization and nitrogen fixation, and to inhibit

pathogen invasion (64–67). The last of these is particularly

important as plant pathogens can result in substantial losses for

producers, and these novel mitigation approaches might offer an

alternative to the traditional use of phytosanitary products that can

be toxic to soils, water bodies, and even consumers. However, more

detailed information about the effectiveness of microbial consortia,

including potentially synergistic and antagonistic/competitive

interactions between strains, under operational conditions is

essential for future implementation (68).

As noted above, the interaction between soil–plant

microbiomes is not limited only to the below-ground niches.

In fact, colonization occurs primarily at three distinct levels, i.e.,
frontiersin.org
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the rhizosphere (zone of influence of root exudates), endosphere

(internal plant compartments), and phyllosphere (aerial plant

surfaces) (37, 69). Changes in climate and agricultural

management also impact the phyllosphere microbiome, which is

involved in diverse functions such as pathogen suppression,

tolerance to extreme temperatures, and nitrogen fixation (70, 71).

For example, water stress, fertilization, and arbuscular mycorrhizal

colonization can affect the plant phyllosphere (72) and, a large

proportion of leaf bacterial species are shared with those in the soil,

thereby representing an example of microbiome transmission with

implications for foodborne pathogen transmission (73). These

findings provide evidence that below-ground microbial

interactions and abiotic conditions can shape above-ground

microbia l communit ies and show the importance of
Frontiers in Science 06
understanding the whole plant microbiome in the context of

developing sustainable agriculture solutions.

There are also strong connections between soil, food crops, and

animal microbiomes (13, 74). Ruminant livestock are a very

important component of agriculture due to their ability to feed

on grass, crops, or fiber-rich crop residues not digestible by humans

—often utilizing land not suitable for human food production (75).

The common practice of companion cropping in pasture, such as

the inclusion of clover, results in distinctive soil microbiome profiles

and can increase yields by improving the efficiency of nitrogen

fixation (76). As a result, a lower usage of fertilizers is needed, which

in turn improves water quality in surrounding water bodies owing

to reduced nitrogen runoff. Also, the re-inoculation of endophyte

isolates can enhance drought tolerance and improve the growth of
FIGURE 3

Microbiome interconnectedness in agri-food environments (A) in horticulture and silviculture cropping, livestock farming and aquatic environments,
and (B) in distribution, processing, transport to retail, storage, markets, and household handling before reaching the consumer.
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pasture and forage crops (77, 78). The application of animal manure

instead of chemical fertilizers can also improve fodder crop yields

and the nutrient efficiency of the system. However, this practice

presents several risks that have led to increasingly restrictive

regulations on its use. More specifically, while soil microbial

communities decompose manure to release nutrients for plant

and microbes, and this process temporarily alters the composition

of these communities (79), the introduction of microorganisms

through manure treatments on the grass phyllosphere and soil

microbiome can have other implications of even greater concern,

such as the spread of antimicrobial resistance between livestock and

grassland. Manure application can introduce bacteria harboring

antimicrobial resistance genes (ARGs) into soil and grass

microbiomes, increasing also the risk of horizontal gene transfer

within these microbial communities. These ARGs can ultimately be

transmitted back to livestock through grazing or other interactions

with the contaminated environment, highlighting the importance of

understanding microbiome interconnections in order to mitigate

biological risks (80, 81). Additionally, manure application can cause

an excessive nitrogen input and, if not well managed, increased

nutrient levels in run-off waters from the field that end up in the

aquatic environment, seriously damaging biodiversity. Indeed, it

has been estimated that, in 2018, manure contributed to around

55 million tonnes of nitrogen, either being dispersed in the air,

mostly as ammonia gas, or leached in water bodies. Also of

importance, nitrous oxide emissions from livestock manure left

on pasture are the largest source of greenhouse gas emissions after

methane from enteric fermentation (82).

A final example relates to green foliage crops that are commonly

preserved as silage through fermentation for use as animal feed. Even

though this is a traditional practice worldwide, there is potential to

improve the nutritional and functional quality of silage using specific

lactic acid bacteria, with consequent benefits for animal health and

welfare (83). An important component within this process is the

microbial community within the associated phyllospheres, which

have been shown repeatedly to influence silage fermentation

processes and final product characteristics (84, 85). Unsurprisingly,

the introduction of silage into the diet of cattle has an effect on growth

performance and the rumen microbiome (86). There remains

considerable room for further optimization of these processes

through the identification of effective strains, consortia, and/or

modes of delivery that could provide persistent benefits across a

range of crops and environments.
Aquatic environments
When looking at the effect that primary agricultural production

can have on the environment, it is important to include potential

impacts on both terrestrial and marine aquatic environments

(Figure 3A). Recent technological advancements have allowed

scientists to gain a better insight into bioprocesses performed by

the marine microbiome that are essential to the health of the planet,

such as oxygen production and global biogeochemical cycles (87).

Moreover, host-mediated microbiome interactions can also be
Frontiers in Science 07
important for the restoration of degraded marine ecosystems. For

example, the microbiomes associated with filter feeders, such as

mussels, sponges or cnidarians, can nurture and contribute to the

recovery (and protection) of damaged marine habitats (88).

As noted above, fertilizer use is particularly important to the effect

of primary food production on the aquatic environment. Fertilizers

can have a considerable effect on aquatic environments, especially in

rivers and lakes where fertilizer run-off is more concentrated than at

sea. The unintended effect of inappropriate fertilizer use can be severe

disruption to the existing aquatic microbiome by the spread of

pathogens (89, 90), as well as the dissemination of antimicrobial

resistance genes (91). Fertilizer spread can also cause the overgrowth

of particular species at the expense of others and can change nitrogen

and phosphorus cycling, potentially causing severe alterations to

aquatic microbiomes (92). Due to the risk of these damaging

effects, both direct and indirect, fertilizer use must be monitored,

well managed, and clearly regulated.

Aside from the study of unintended impacts on aquatic

microbiomes, these communities have been the focus of ever-

greater interest due to the growth of the aquaculture production

industry. Notably, over the last 50 years, aquaculture-based

production of fish and seafood has increased four-fold, overtaking

the wild fish catch biomass, and so reducing the pressure on wild

fish catches to support the growing population (93). This is

important, as excessive fishing of wild fish can cause substantial

harm to aquatic ecosystems by disrupting ecological balances.

Regulations such as protected areas, types of fishing equipment

allowed, fish catch limits, and size exclusion criteria are essential to

ensuring population stability and biomass protection (94, 95).

However, despite the benefits of aquaculture, associated practices

can also have multiple noteworthy effects on marine waters and on

the general microbiome of waters as a result of temperature and pH

changes, nutrient availability, microplastics, or pest proliferation

(96–98). This type of human activity has been shown to increase

microbial load in water and lead to algal blooms that cause oxygen

depletion and large-scale fish kills, thereby ruining entire

ecosystems (99).

Other factors polluting aquatic environments include direct

microbial contamination, resulting in an increase in microbial

numbers (100, 101), and indirect contamination, such as by

microplastics, pharmaceuticals, pesticides, and fertilizers—as next-

generation pollutants (96, 102). The use of antimicrobials in

agriculture, aquaculture, and clinical applications—especially

when not necessarily needed—all contributes to an increase in the

antimicrobial stress on aquatic system bacteria (103). Disruption of

the aquatic microbiome can result in changes to the overall balance

of aquatic species, including changes to plant-microbiome

associations, which are essential for the general health of the

aquatic ecosystem (104). One clear marker of aquatic disruption

is coral decline. Although corals occupy a relatively small area of the

ocean, they are a vital part of the marine ecosystem and their decline

is of particular concern (105). The special sensitivity of corals to

environmental changes is related to their nutritional dependency on

a symbiotic association with populations of photosynthetic
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dinoflagellates. In this context, the identification of a possible

pathway to recover damaged coral microbiome after the removal

of algal stress shows the potential of microbiome-based studies in

developing strategies to restore previously damaged ecosystems

(106). In parallel, being able to monitor the bacterial communities

of coral can allow a better understanding of the microbial shifts that

have happened in response to human activity—including global

temperature shifts, increasing ocean acidity, and higher aquatic

microbial loads—and hopefully enable human intervention to help

preserve these delicate bionetworks (107).

In this regard, the use of beneficial microorganisms is a

promising strategy to help corals and sponges to respond to

anthropogenic stressors (108).

Technological advances offer considerable opportunities to

monitor aquatic microbiomes, including modelling shifts in fish

communities (109) and using the skin and gill microbiota as

indicators of fish gut health (110). One particularly interesting

example is the application of novel sequencing technologies in the

Continuous Plankton Recorder (CPR) survey, a major sampling

programme implemented in 1931 and one of the oldest in the

world (111). The use of molecular technologies for analysis in the

CPR offers a significant opportunity to majorly advance

our knowledge of global marine ecosystems. Indeed, pico- and

nano-plankton, which could not be studied until recent decades,

can be used as general indicators of marine health and provide a

basis for the formation of marine policy (112). Although the

insights from such surveys are not always immediately

translatable to aquaculture settings, it is to be hoped that an ever-

greater understanding of marine microbiomes will ultimately be

valuable in a broad variety of ways. Thus, as nations worldwide

prioritize sustainable environmental practices, integrating

metagenome-based solutions into public policies regarding the

health of aquatic ecosystems has the potential to improve the

outcomes of conservation and restoration efforts.
Post-harvest, processing, and distribution
environments

Fruit, vegetable, and cereal production
Continuing our overview of the interconnectedness between

specific microbiomes in the food system (Figure 1), we now shift the

focus from primary production to the interactions occurring during

the distribution, transformation, and commercialization of produce.

Fruits and vegetables can have quite direct routes from the field

to the consumer (Figure 3B). These types of food are often minimally

processed and, if they are not subjected to microbial

decontamination methods, can retain much of the microbiome

present during harvest (113, 114). Indeed, the term “edible plant

microbiome” has been used to describe these communities

(115, 116). However, these microbiomes can be impacted by a

variety of factors such as storage conditions, transportation, and/or

packaging. These are particularly important in light of the increased

demand from consumers for products that are out of season and/or
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not available locally due to the climate of a given region (117–119).

Despite advances in the storage and distribution of these products, it

has been estimated that globally between 25 and 50% of fruits and

vegetables are lost post-harvest (120), emphasizing the importance

of spoilage prevention to achieve a more sustainable food system.

Improved strategies to monitor spoilage microbiota and food safety

verification systems, such as strain-resolved metagenomics, have

the ability to provide information regarding, for example, the

presence of spoilage and pathogenic microbes, source attribution,

temporal, and geographic distribution and cross contamination

(121). This knowledge can then be harnessed to improve post-

harvest storage practices. For example, using a biological control

approach (122–124) technological advances in high-throughput

sequencing methods can facilitate a more targeted identification

of antagonistic bacteria and fungi for disease and spoilage

postharvest control based on a deeper understanding of microbial

interactions on epiphytic microbiomes (125, 126). Some specific

recent examples have included the identification and successful

application of biocontrol agents to decrease postharvest problems

with strawberries and peaches (31, 127). This highlights the

importance of collaborative efforts between academic research

and industry stakeholders in order to translate metagenomic

research into real-world applications. The practical experience

and insights provided by the industries can help identify the main

challenges in the sector and the best ways to apply the knowledge

and cutting-edge technology necessary to successfully implement

novel microbiome-based solutions.

Not all fruits and vegetables are consumed directly—some are

prepared/processed in multiples ways, for example to produce

juices, ready-to-eat salads, or fermented foods. Storage time and

transportation between harvest and processing/fermentation can

affect the final microbiome diversity and microbial load of the

product, as shown for example in a tracking study developed on

romaine lettuce (128). Often, and particularly for more complex

produce distribution chains, a decontamination step is typically

included to ensure the safety of the final product that arrives to the

consumer. In this context, microbial distribution and interactions

inside vegetable processing plants become relevant and the recent

application of microbiome mapping as part of routine monitoring

programs in food industries has shown potential as a way to

decrease spoilage-related issues and ensure food safety (129). In

the case of fermented products, the microbiota of the substrate and

processing environment can become especially relevant if a

spontaneous fermentation is involved (130).

Terrestrial farm animal production
It has been estimated that the terrestrial animal biomass

(Figure 3) needs to almost double by 2050 in order to meet the

global demand predicted by the UN Food and Agricultural

Organisation (131). Farm animal microbiome research and its

applications will be of key importance in the move towards more

environmentally friendly intensification of animal husbandry on

Earth. An increased understanding of microbial interactions in the

digestive tract of production animals could allow for the
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development of diet-based modulation strategies to improve their

metabolism, immune system, and overall feed efficiency (132).

Notably, the application of omics technologies to the investigation

of cattle rumen microbial composition and functionality patterns

has greatly helped to unravel its role in the relationship between

nutrition, nitrogen excretion, and methane emission (133–138),

with a view to the development of new intervention products

and strategies. For example, in beef cattle and lambs, diet has a

direct effect on the rumen microbiome, with the abundance of

certain genera of bacteria and archaea being a potential predictor of

growth performance (139, 140). Interventions based on diet

supplementation with prebiotics, probiotics, or a combination of

both have been developed for different types of livestock,

including dairy calves, bulls, sheep, and camels, generally showing

positive effects on the rumen microbiome and improving general

feed efficiency and other health markers (141–145). Diet can also

affect the production of the greenhouse gas methane, a by-product

of the fermentation of complex carbohydrates by methanogenic

archaea in the rumen, with considerable implications for global

warming (146–148). Notably, greenhouse gas emission intensities

show geographic differences being lower in areas with a high level

of specialization and productivity and higher in regions with

lower quality of feed, reproduction efficiency, herd management

practices, and animal genetics (149).

Microbiome interconnections are not unidirectional, and

livestock grazing has been shown to influence the microbiome

and productivity of soil. Grazing livestock species (cattle, sheep,

swine, or multi-species) can impact soil microbial community

structure and antibiotic resistance gene profiles in a variety of

ways (150) and, over the long-term, intense grazing can

detrimentally decrease soil carbon and nitrogen mineralization

rates (151, 152).

As for plant-based foods, high-throughput sequencing

technologies have also provided a better understanding of

contamination routes in foods of animal origin (153–156). In the

dairy sector, for example, microbiome-based studies have shown

the influence of the grazing system on the microbiota of cow teat

skin, which can be a reservoir of many microorganisms found in

raw milk (157). Similarly, the microbial exchange between feed,

bedding material, and cow teat skin was shown by the detection of

live yeast provided as a supplement in a grass-diet system (158).

Given the importance of the teat canal and the udder surface as a

source of milk contamination and intramammary infections by

mastitis pathogens, the effectiveness of different disinfection

protocols has been extensively evaluated (159, 160). There is

growing agreement that a better understanding of the mammary

microbiota can lead to the identification of improved therapeutic

products and disinfection protocols that favour beneficial

microorganisms (161, 162). Importantly, while this review focuses

on non-pathogenic microorganisms, microbial transfer is also

critically important to the transmission of zoonotic pathogens

such as Listeria monocytogenes, Salmonella, and Shiga-toxin
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producing Escherichia coli from plant or animal sources, as

reviewed elsewhere (163).

Microorganisms can end up within the microbiome of food

products via the raw ingredients or the food processing

environment (Figure 3B). An example of the former relates to

cheese production, whereby some non-starter lactic acid bacteria

(lactic acid bacteria that do not form part of the added starter

culture) originating from the milk became part of the cheese

microbiome, being associated with positive or negative quality

outcomes after cheese ripening (164). The pathways of microbial

transfer along the cheese-making process have been described on

several occasions, gaining special importance in the case of

traditional raw milk cheeses where non-starter bacteria can shape

the fermentation and ripening processes (165, 166).

Similarly, the routes of microbial transmission into and inside

processing facilities have also been studied using next-generation

sequencing approaches, for example, in the meat industry

(167–169). In this way, facility-specific transmission maps can be

created, helping to predict previously unidentified sources of

bacterial contamination (170). Other successful applications of

this approach include the longitudinal tracking of the divergence

and spread of foodborne pathogens (171) and studies of the

microbial colonization of newly open facilities identifying routes

of entrance of pathogens and antibiotic-resistant microorganisms

(172, 173). Despite these advances, investigations into the

transmission of foodborne pathogen outbreaks continue to draw

conclusions based on culture-dependent approaches combined with

whole genome sequencing (24). Once again, academia–industry

partnerships encourage knowledge exchange and contribute to

research whose outcomes address critical issues in food

production and are effectively integrated into industry practices,

accelerating the adoption of metagenome-based innovations in the

food system (174).

Aquaculture
In aquaculture (Figure 3), the microbiomes of fish can have a

major impact on health and growth rates and should thus be of

upmost concern for the associated production industry to prevent

losses and maximise production. Modern sequencing technologies

can greatly advance aquaculture microbiomemonitoring (175), as the

identification of a core microbiome can be essential in understanding

the health of an aquaculture population and the bidirectional

interactions between aquatic microbiomes and aquaculture (176).

Importantly, while pathogens can be a natural part of an ecosystem

they can also be extremely damaging to aquaculture and so need to be

carefully observed, with interventions made when appropriate to

prevent infection and production loss. Careful monitoring of multiple

factors is vital to aquaculture, as the microbiota can be affected by

numerous factors, including diet, disease, oxygenation, pH, and

temperature (177, 178). The use of aquafeed needs to be carefully

examined to ensure that it is providing the necessary nutrients for

its intended recipients but is also free from contaminants, including
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fungal contamination and mycotoxins, which can spread beyond

the aquaculture environment to the wild aquatic environment

(179). Aquaculture can also damage aquatic environments via

algal blooms derived from changes in water conditions and

nutrient availability, and because intensive fish farms are

vulnerable to infections that can spread into the wild (90).

Probiotics are commonly used in aquaculture, especially

particular strains of bacilli (180, 181), lactobacilli (182), and

bifidobacteria (183). Certain strains have been shown to protect

against disease and infection, and to improve the general health of

the aquaculture fish and seafood (184). Antimicrobial use is

sometimes necessary to prevent infections becoming pervasive

but, as in other environments, their use can have unintended but

severe consequences, including the increase of antimicrobial

resistance in the environment (185–187).

Moving to fish processing, food safety and spoilage can be a

major issue, especially considering the short shelf life of seafood.

Although the shelf life of fish and shellfish has been significantly

improved with advances in refrigeration and freezing technologies,

fish losses are still estimated at 27% between landing and

consumption (188). The addition of microorganisms can prevent

spoilage through multiple mechanisms. Microorganisms can be

added directly to act as a bioprotectants against foodborne

pathogens (30), while bacteriocins (189) and bacteriophages can

also be used to help control unwanted pathogens and spoilage

organisms (190).

The improved understanding of aquaculture microbiomes is

also being applied to develop novel monitoring and mitigation

strategies. These include: investigations of the potential of gut

microbiomes to mitigate disease in aquaculture (191); harnessing

knowledge relating to the skin microbiome of fish to predict

population collapse (192); using machine learning models to

predict fish kills and toxic blooms in intensive aquaculture (193);

and using seawater transfer to improve microbiome diversity (194)

and the removal of ammonium and nitrite (195). While

microbiome-informed practices and innovations can help to

protect natural microbiomes, they can also offer advantages to the

aquaculture industry itself. Indeed, such studies have shown that

common practices in aquaculture, such as the use of bleaching

powder to disinfect marine water, may not have the previously

presumed effect as aquatic microbiomes treated in this way have

been seen to recover quickly (196). Ideally, advances in our

understanding of aquatic microbiomes can be leveraged towards a

more efficient production system while, at the same time, reducing

damage to the wider ecosystem.

The future growth of the aquaculture sector will be sustainable

only if the industry transitions to more eco-friendly approaches that

minimise environmental impacts, particularly in terms of reducing

eutrophication in marine water. Integrated multi-trophic

aquaculture (IMTA) provides one concrete solution, as a

sustainable approach to intensive aquaculture. IMTA combines

fish farming with the growth of lower-trophic species that can

recycle/adsorb organic and inorganic nutrients to increase the eco-

compatibility of the aquaculture practice. Crucial to its success is the
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selection of the appropriate combination of productive and

nutrient-extractive species that complement each other from a

trophic perspective. This enables novel eco-designed solutions

that also integrate marine microbiomes as an innovation in the

IMTA design. The selected species contribute to an overall

holobiont solution to nutrient cycling. Indeed, many microbiomes

—environmental and host-associated—can exert a primary role in

the recirculation of organic matter in marine ecosystems, and their

targeted integration at the metacommunity level in IMTA systems

has the potential to lead to even more efficient reductions of

ecological footprints (197).
Retail and household environments

Food uptake impacts all levels of physical and, in higher organisms,

mental health. Access to a reliable food supply facilitates the

development of societies and stabilizes political systems. The

corollary is also true with disturbance of the food supply system

frequently leading to major human crises, including, as an extreme,

famine and mass starvation. Although enough food is produced on

earth to feed the entire population, the biggest challenge in modern

food production remains the logistics behind the food distribution

system that largely determines whether food is consumed or discarded

(198, 199). In developing countries, which lose up to 50% of their

primary production due to spoilage and mismanagement, major

distribution failures result from a lack of power and storage capacity

during and after harvesting campaigns. In developed countries, food is

discarded primarily due to shelf life issues and inappropriate buying

patterns (200). At the retail level, food storage is the most essential

economic parameter, especially for perishable food, and most of the

costs of a supermarket or retail premise go into the energy supply for

food cooling and presentation (Figure 3B). Understanding the

microbial dynamics during cold storage of intermediate and final

products is of utmost importance to lower the levels of foods that are

discarded to an acceptable level. A special advantage for microbiome-

based interventions lies in the enhanced capacity to detect fastidious

growing spoilage-associated microbes that are usually difficult to detect

by culture-based technology (201).

The issues raised above also pertain to households (Figure 3B).

More and more households store food for an extended period of time

due to the conditions of the modern working world. Knowledge

relating to spoilage processes and control of the cooling processes in

household refrigerators is still surprisingly scarce, even though a link

between microbial communities found in the kitchen and the skin

microbiome of humans has been described (202). Microbiome

tracking strategies can also be used to detect routes of

contamination in consumer households to, for example, show the

importance of refrigerated storage of products that could limit the

proliferation of opportunistic human pathogens (203). These

approaches have also been taken even further to track the

movement of lactic acid bacteria, such as Weissella and Leuconostoc

species, from ready-to-eat salads to the human gut after their

consumption (204, 205). Although microbiome tracking approaches
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continue to be applied predominantly for academic research, as costs

and other barriers are reduced, it is expected that these approaches will

be used more widely by industry and, eventually, consumers.
The role of bacteriophages in shaping
microbial communities

While the bacterial and fungal components of food production

systems and food products have been widely studied, the viral

component of these ecosystems is less well defined. Bacteriophages

(or phages) are bacterial viruses that typically infect strains of a given

bacterial species. Phages may be considered beneficial in certain

situations, for example, in the elimination or reduction of human or

animal pathogens, or spoilage bacterial numbers (206). Conversely,

phages that infect starter bacterial cultures are a major threat to food

fermentations as they may compromise the acidification or flavor

development of the product. In recent decades, studies have focused on

defining the phage populations in food fermentation facilities relating

to lactic acid bacteria such as Lactococcus lactis/cremoris and

Streptococcus thermophilus (207–209). These studies initially used

culture-based approaches to tease apart the interactions of phages

and their hosts. In the context of phages, this requires the ability to

perform plaque assays. More recently, high-throughput DNA

sequencing has allowed a more unbiased examination of the viral

component of the microbiome. The role of the virome, and more

specifically the “phageome”, in influencing bacterial compositional

changes in microbiomes has garnered increasing research attention

(210–212). From an evolutionary perspective, the phages and their

bacterial hosts have been in conflict for millennia, and recent studies

have allowed us to question the mode of these interactions and their

impact on microbiome maintenance, modulation, and functionality,

including through horizontal gene transfer across food system

niches (213–216).

One such example is the initial interaction between a phage and

its host, dictated by the presence of a suitable receptor on the cell

surface of the host bacterium, which may be a carbohydrate,

protein, or (lipo)teichoic acid. These early interactions are

exceptionally well studied in a small number of bacterial host

systems, including specific spoilage and pathogenic species such

as E. coli (217), L. monocytogenes (218, 219) and beneficial starter

bacterial culture species such as Lactococcus lactis/cremoris (220)

and Streptococcus thermophilus (221). These foundational studies

have provided insights into generalized and specialized modes of

host recognition and subsequent infection by phages of these

species, and which may be applied to the development of tools to

improve the consistency, sustainability, and safety along the food

production chain. Combining these studies with developments in

sequencing, computer-assisted prediction of the folding and

functionality of structural proteins, and imaging is allowing

further elucidation of these interactions and serves as a blueprint

to studying the interactions of players within a microbiome.
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The impact of microbiome
interconnections and interventions on
human health

One major area greatly enhanced by recent advances in multi-omics

approaches is the study of the human gutmicrobiota and its contribution

to human health. Many factors can influence the human gut microbiota,

including genetics, geography, socioeconomic status, age, and health

status. Notably with respect to this article, diet is a key modulator and

diet–microbiome interactions are often at the forefront of

microbiome research.

Having a diverse gut microbiome is frequently associated with

health, potentially through protection against pathogens and

disease (222, 223). However, this diversity can be affected by

multiple factors. There is evidence that a modern, Western diet

(high in simple carbohydrates, saturated fats and salt, but low in

fiber, complex carbohydrates, and micronutrients) has a damaging

effect on the gut microbiome and can contribute to multiple

health problems including cancer, obesity, gastrointestinal and

gut–brain-related issues (224, 225). Specific ultra-processed foods

that are high in fat, sugar and/or salt are of particular note as an

issue in a modern, Western diet. These foods often lack

microorganisms, complex nutrients, prebiotics, and fiber, can

contribute to decreased gut microbiome diversity and, in turn,

various health issues (226).

There is growing evidence of the occurrence of food-to-gut

microorganism transmission (116, 227). Although necessary to

ensure food safety in large-scale production, many food

processing techniques remove most or all naturally occurring

microorganisms, thus contributing to an altered human gut

microbiome and an increase in non-communicable diseases (228).

Historically, food was sourced from the local area and was subject to

seasonal variation. Some of this food would have been completely

unprocessed and consumed quickly so microorganisms naturally

present in the food were introduced to the consumer gut

microbiota. Advances in processing, refrigeration, storage, and

transport techniques have allowed for more food to be sourced

from further afield and have allowed for foods not to be restricted to

a particular season. However, these advantages in food availability

are also contributing to the decrease in diversity in human gut

microbiota as many of these foods now need to have a longer shelf

life and many techniques to prevent spoilage and pathogenic

activity also decrease or completely remove the indigenous

microbiota of the foods. Similarly, the higher demand for

convenience foods, for example, a pre-packaged, pre-washed salad

in contrast to unprocessed salad, has further distanced the

consumer from food’s naturally occurring microbiota. In any

case, the safety of the food that reaches the consumer is of utmost

importance. While the emphasis of this review is on the broader

microbiome interconnections between food and the human gut, it is

important to acknowledge that the food system also serves as a

route of transmission of opportunistic human pathogens (229, 230).
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In addition to live microorganisms, prebiotics and bioactive

compounds are other components in food that can alter the gut

microbiota. Prebiotics, such as certain fermentable fibers,

polyphenols, and oligosaccharides, can promote positive effects on

health through gut microbiota alteration (231–233). However,

modern Western diets are often deficient in fiber and contain an

overabundance of fat and sugar (234). The high proportion of meat

in the modern Western diet has also been seen to decrease gut

microbiota diversity, while plant-based diets have been shown to be

advantageous to human health (235). Nevertheless, it is important

not to overlook the possible nutrient inadequacies that can be

associated with different dietary patterns, including vegan,
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vegetarian, and meat-based diets (236, 237). Bioactive compounds

can contribute to human health, including via antioxidant and anti-

inflammatory effects, and can come from a variety of sources,

including marine algae-sourced bioactive compounds (238, 239).

A relatively underutilized source of bioactive compounds are those

resulting from food wastes and by-products, which could offer

benefits without the need for further alterations to natural

microbiomes through additional production streams (240).

Another diet-based approach that can beneficially impact gut

microbiome diversity and function is through the consumption of

fermented foods. Fermented foods have been widely shown to be

advantageous to the gut microbiota through the promotion of a
TABLE 1 Potential microbiome-based solutions for different sectors across the global agri-food system and the private and/or public
stakeholders involved.

Agri-food ecosystems
and system components

Microbiome-based solutions Agri-food system
stakeholders

Relevant references

Soils and crops Plant-associated microbial consortia to:
- protect crops against high salinity and drought
- improve crops phosphorus solubilization and nitrogen
fixation
- inhibit pathogen invasion

Private sector
- crop production
Policymakers

(65–67)

Soil and pasture Inclusion of clover as companion cropping in pasture to
increase yields and improve nitrogen fixation efficiency

Re-inoculation of endophyte isolates on pasture and
forage crops to enhance drought tolerance and to
improve the growth

Private sector
- crop and animal production
Policymakers

(76–78)

Pasture and farms Use of specific lactic acid bacteria to improve the
nutritional and functional quality of silage

Livestock diet supplementation with prebiotics,
probiotics or a combination of both to improve the
general feed efficiency and other health markers

Private sector
- crop and animal production
Policymakers

(83, 141–145)

Aquaculture Monitoring fish skin microbiome as an indicator of fish
gut health and to predict population collapse

Improvement of microbiome diversity through seawater
transfer and removal of ammonium and nitrite

Fish diet supplementation with probiotics to protect
against disease and infection, as well as improving the
general health

Private sector
- aquaculture
Policymakers

(110, 180–184, 192, 194, 195)

Marine environments (coral reefs) Use of beneficial microorganisms to help corals and
sponges to respond to anthropogenic stressors

Public sector
- environmental protection initiatives
Policymakers

(108)

Processing plants and distribution Application of biocontrol agents to decrease postharvest
problems with strawberries and peaches

Microbiome mapping of food processing industries to
predict sources of bacterial contamination and decrease
microbial spoilage and foodborne pathogen-related
issues

Use of starter cultures and protective cultures to
improve food product characteristics and shelf live

Private sector
- fruit production
- vegetable, meat and dairy products
processing
Policymakers

(31, 127, 129, 170–173)

Foods Consumption of probiotics, prebiotics, bio-active
compounds and fermented foods to promote positive
effects on human health through gut
microbiota alteration

Private sector
- producers
- consumers
- media
Policymakers

(231–233, 238, 239, 241,
249–252)
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diverse microbiota and the potential to simultaneously provide

prebiotics, probiotics, and bioactive compounds (241). Indeed, the

European Food Safety Authority (EFSA) has approved the claim that

live yoghurt cultures improve yoghurt lactose digestion in individuals

with lactose maldigestion (242). Although some fermented foods have

been produced over hundreds or thousands of years, many are not yet

well characterized (243). Foods and feeds produced by spontaneous

fermentation have been shown to typically result in products that

contain very similar microbial taxa and applying ecological and

evolutionary frameworks can be valuable with respect to

understanding the assembly of fermented foods microbiomes (244,

245). Indeed, establishing a better understanding of such

microbiomes, and the strains present therein, may offer advantages

to human health that have not yet discovered. Some of these benefits

may relate to the consumption of live microbes specifically (246–248).

In addition, the consumption of specific probiotic strains, added to

foods or taken as supplements, can contribute to reducing the

incidence of particular human diseases (249–252).
Conclusions

Food system microbiomes form complicated and connected

networks that can be very difficult to disentangle. Advances in

technologies, especially in high-throughput sequencing

technologies, have enhanced our understanding of these

networks. Developments, especially in soil, plant, animal and

marine microbiome research, have been instrumental in the

recent progress of agriculture and aquaculture practices, including

practical management strategies and interventions for more

sustainable and resilient food systems (Table 1). However,

understanding is only one step in the process of protecting and

promoting the health and diversity of our microbiomes. Advances

of knowledge, facilitated by new technologies, have illuminated

many issues in microbiome networks, including reductions in

microbial diversity and the spread of antimicrobial resistance.

In addition to ensuring continuous advances in the

understanding of food system microbiomes, developing a greater

understanding of their composition, functionality, and interactions

within and across ecosystems and the development of microbiome-

based applications is necessary to fully leverage microbiome

potential. In this regard, it is also essential to ensure that other

framework conditions are met, e.g., societal awareness and

understanding, and the establishment of a suitable regulatory

landscape. Further promoting microbiology and microbiome

education among different stakeholder groups would enable them

tomake well-informed decisions about microbiome-related products

(21, 253). This is not only important for the end-users but also for

the industry developing new microbiome-based products/

applications and for the regulators who must assess them. The

challenges faced by regulators are multifaceted. On the one hand,

there is an absence of explicit legal requirements to account for

microbiome-related effects when risks/benefits are considered (254).

On the other hand, the roadmap for the approval of microbiome-

based innovations is particularly complex because microbiome
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science has been generated in the absence of standards and

validated methodologies (255). The implementation of a systemic

approach involving all relevant stakeholders is vital to aid in

protecting existing microbiomes and restoring damaged

microbiome networks relating to the food system (256, 257).

While understanding microbiome composition is increasingly

achievable, deciphering the functional roles of microbiome

constituents remains a challenge. Culture-based approaches are

crucial for translating this research into innovations and for

understanding the causality behind correlations. Similarly, the

generation and integration of omics data needs to be complemented

with synthetic biology, high-throughput screening, and targeted

experimental approaches in order to validate the functions of these

microbiomes. These strategies can enable the translation of

microbiome research into innovations within food systems, with the

potential to improve human and animal health as well as the health of

the planet at large.
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41. Martıńez-Arias C, Witzell J, Solla A, Martin JA, Rodrıǵuez-Calcerrada J.
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206. Tabla R, Gómez A, Rebollo JE, Molina F, Roa I. Effectiveness of a bacteriophage
cocktail in reducing cheese early blowing caused by Escherichia coli. LWT (2022)
153:112430. doi: 10.1016/j.lwt.2021.112430

207. Lavelle K, Murphy J, Fitzgerald B, Lugli GA, Zomer A, Neve H, et al. A decade
of Streptococcus thermophilus phage evolution in an Irish dairy plant. Appl Environ
Microbiol (2018) 84(10):e02855–17. doi: 10.1128/AEM.02855-17

208. Paillet T, Lossouarn J, Figueroa C, Midoux C, Rué O, Petit M-A, et al. Virulent
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