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In this paper we discuss how nanotech-based sensors and biosensors are providing the
data for autonomous machines and intelligent systems, using two metaphors to exemplify
the convergence between nanotechnology and artificial intelligence (AI). These are related
to sensors to mimic the five human senses, and integration of data from varied sources and
natures into an intelligent system to manage autonomous services, as in a train station.
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INTRODUCTION

The rapid progress in autonomous systems with artificial intelligence (AI) has brought an
expectation that machines and software systems will soon be able to perform intellectual tasks
as efficiently as humans (perhaps even better), to the extent that in a near future, for the first time in
history such systems may be generating knowledge, with no human intervention (Rodrigues et al.,
2021). This tremendous achievement will only be realized if these manmade systems can acquire,
process and make sense of a lot of combined data from the environment, in addition to mastering
natural languages. The latter requirement appears particularly challenging since machine learning
(ML) and other currently successful AI approaches are not yet sufficient to interpret text (Rodrigues
et al., 2021). Another stringent requirement is in the capability of continuously acquiring
information with sensors and biosensors, in many cases having to emulate human capabilities.
As for shorter-term applications, medical diagnosis and any other type of diagnosis are among the
topics that may benefit most from AI. This is due to a convergence with multiple technologies that
are crucial for diagnosis, namely the nanotech-based methodologies which allow for ubiquitous
sensing and biosensing to be integrated into diagnosis and surveillance systems (Rodrigues et al.,
2016). Diagnosis is essentially a classification task, for whichML has been proven especially suited, in
spite of its limitations in performing tasks that require interpretation (Buscaglia et al., 2021).

Living beings depend on sensing for their survival, growth, reproduction, and interaction.
Humans, in particular, use their five senses (touch, sight, hearing, smell and taste) at all times to
monitor their environment and interact with it, where most of the sensorial detection relies on
pattern recognition. Through history, a range of devices and instruments have been developed to
augment and assist human monitoring capability, but the field of sensing (and biosensing) became
well established only in the final decades of the 20th century. By way of illustration, in a search in the
Web of Science in May, 2021, for published papers containing these terms only a few dozen papers
per year were found for the period from 1900 to 1950, most of which unrelated to sensor devices, but
rather associated with sensorial phenomena. In the 1970s, an order of magnitude of 1,000 papers
published per year was reached, and in the 1990s the annual numbers increased to 10,000 and 20,000,
whereas in the last 2 years the number of papers published ranged between 140,000 and 150,000 per
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year. This outstanding increase in scientific production was
obviously a consequence of the progress in research on novel
materials, including manmade as well as natural materials adapted
for sensing purposes. Though Nature provided inspiration from
the early stages, particularly with sensing in animals, two reasons
contributed to the field expanding as if entirely independent of
human (or animal) sensing. First, real-time monitoring was
unfeasible in many sensing applications, and integration of
different types of sensors—e.g., to emulate the five
senses—remained mostly elusive. Another significant distinction
lies in the underlying detection principles: unlike the natural
sensors in living beings, normally the analysis of data from
manmade sensors does not rely on pattern recognition methods.

The significant progresses in analytical techniques and in sensors
and biosensors as nanotech products introduce opportunities for
bridging these gaps. Cheap sensors are now routinely fabricated
that permit ubiquitous sensing and real-time monitoring in specific
applications. Some of these sensors can be wearable and even
implantable, and may be more sensitive than their corresponding
sensors in humans. An archetypical example is that of an electronic
tongue (e-tongue), whose sensitivity for some tastes can be as high as
10,000 times the average sensitivity value for humans (Riul Jr. et al.,
2010). Sensing and biosensing employ distinct detection principles,
which permits integrating different types of data (e.g., obtained with
electronic tongues and electronic noses). Furthermore, computational
methods are now available to process the large amounts of data
generated with ubiquitous sensing and real-time monitoring, with
the bonus of a substantially expanded capacity in terms ofmemory and
processing power, compared to living beings. Thesemethods also allow
exploiting pattern recognition strategies, thus bringing the sensing tasks
somewhat closer to how sensing is performed by humans. Last, but not
least, sensing principles are much broader than those prevailing in
living beings, which may open novel ways to fabricate intelligent
systems and robots with unprecedented capabilities.

In this paper we focus on two aspects: 1) sensing systems that
mimic human senses to exemplify how manmade sensors are
being developed with bioinspiration; 2) sensors and biosensors
aimed at integration into intelligent systems, in which a
discussion will be presented of the stringent requirements that
must be fulfilled for data analysis based on computational
methods, especially machine learning.

MIMICKING THE FIVE SENSES

Today’s technology allows for mimicking the five human senses
(Guerrini et al., 2017) with the multiple methodologies discussed
below and briefly illustrated with one or two examples, as it is not
our purpose to review the major contributions in any of these
areas. We shall also distinguish between sensing systems
conceived as artificial counterparts of human organs and those
simply performing similar functions, even if their shape and
nature have nothing to do with the sensing organs.

Touch
Pressure and strain sensors have been developed toward creating
electronic skins (Lipomi et al., 2011; Hammock et al., 2013), ionic

skins (Qiu et al., 2021) or epidermal electronics (Kim et al., 2011).
The terms used may vary and so do the functions performed by
e-skins or ionic skins, which can go well beyond those of a human
(or other animals) skin. The e-skins share nevertheless the
following features: they should be flexible, stretchable, self-
healing, and possess the ability to sense temperature, and wide
ranges of pressures (not only touch) and strain. With recent
developments in nanomaterials and self-healable polymers, it has
been possible to obtain e-skins with augmented performance in
comparison to their organic counterparts, especially in superior
spatial resolution and thermal sensitivity (Hammock et al., 2013).
Future improvements are focused on adding functionalities for
specific purposes. For health applications, for instance, biosensors
may be incorporated to monitor body conditions and detect
diseases, while antimicrobial coatings may be employed to
functionalize the e-skins to assist in wound healing (Yang
et al., 2019). Within the paradigm of epidermal electronics, on
the other hand, the systems envisaged may include not only
sensors, but also transistors, capacitors, light-emitting diodes,
photovoltaic devices and wireless coils (Kim et al., 2011). Self-
powered tactile sensors produced with piezoelectric polymer
nanofibers are indicative of these capabilities (Liu et al.,
2021a). An example of the sensing ability of self-healing
hydrogels is in detecting distinct body movements, including
from speaking which can be relevant for speech processing in the
future (Liu et al., 2021b). We shall return to this point when
discussing the hearing sense.

Taste
Taste sensing has been mimicked for decades with electronic
tongues (e-tongues), which normally contain an array of sensing
units with principles of detection based mostly on
electrochemical methods (Winquist, 2008) and impedance
spectroscopy (Riul et al., 2002). The rationale behind an
e-tongue is that humans perceive taste as a combination of
five basic tastes, viz. sweet, salty, sour, bitter and umami, thus
meaning that the brain receives from the sensors in the papillae
signals that are not specific to any given chemical compound.
This is the so-called global selectivity principle (Riul et al., 2002),
according to which the sensing units, in contrast to biosensors, do
not need to contain materials with specific interactions with the
samples. Obviously, obtaining sensing units with high sensitivity
require their manufacturing materials to be judiciously chosen,
bearing in mind the intended application. For example, if an
e-tongue is to be used to distinguish liquids with varied acidity
levels, polyanilines can be selected for the sensing units since their
electrical properties are very sensitive to the pH. In practice, an
e-tongue typically comprises four to six sensing units made of
nanomaterials or nanostructured polymer films, where the
distinct sensing units are expected to yield different responses
for a given liquid. This variability is important to establish a
“finger print” for the liquids under analysis, which may have
similar properties. An e-tongue may take different shapes. While
the majority comprise sensing units with nanostructured films
deposited over areas of the order of cm2, microfluidic e-tongues
have also been produced (Shimizu et al., 2017). This is an
advantageous arrangement because it requires small amounts
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of samples for the measurements and allows for multiplex sensing
in miniaturized setups.

Though conceived to mimic the tasting function, e-tongues
may also be employed in several tasks unrelated to taste. Hence, in
addition to their use in evaluating taste in wines, juices, coffee
(Riul Jr et al., 2010), taste masking in pharmaceutical drugs
(Machado et al., 2018), e-tongues have been utilized in
detecting poisoning and pollution in waters, fuel adulteration
and soil analysis (Braunger et al., 2017). Three other aspects are
worth mentioning about e-tongues. The first is related to the
incorporation of biosensors as one (or more) of the sensing units
in the arrays. The overall selectivity can be enhanced in these so-
called bioelectronic tongues, as demonstrated for the
discrimination of two similar tropical diseases (Perinoto et al.,
2010). A second aspect refers to data analysis since the use of a
global selectivity concept requires assessing the combined
responses of various sensing units. As a consequence, a
considerable amount of data configurations is generated which
must be analyzed with statistical and computational methods.
Reduction in the dimensionality of the data representation is thus
a central operation. The methods often applied to e-tongue data
include principal component analysis (PCA) (Jolliffe and
Cadima, 2016) and interactive document mapping (IDMAP)
(Minghim et al., 2006). With these methods, the response
measured for one sample—e.g., one impedance spectrum—is
mapped as a graphical marker, and markers are spatialized so
that those markers depicting samples with similar responses will
be placed close to each other. Hence, one may identify visual
clusters of similar elements, which would suggest a correct
classification of the samples is possible in case one univocal
cluster exists for each class. If the number of samples is too
large, the visualization of clusters on a map is not efficient due to
overlapping of markers and clusters. The data may still be
processed with machine learning algorithms (Neto et al.,
2021), which can be either supervised or unsupervised. In
supervised learning, it may be also possible to correlate the
e-tongue response with human taste (Ferreira et al., 2007).
The third aspect is associated with the combination of
e-tongues and electronic noses (e-noses, described below).
Especially for drinks and beverages such as coffee and wine,
flavor perception depends on taste and smell combined, and
therefore it is advisable to employ e-tongues in conjunction with
e-noses (Rodriguez-Mendez et al., 2014).

Smell
Electronic noses (e-noses) are the counterparts of e-tongues for
smell, being also based on global selectivity concepts where arrays
of vapour-sensing devices are employed tomimic the mammalian
olfactory system (Rakow and Suslick, 2000). Similar to e-tongues,
varied principles of detection can be exploited, including
electrical, electrochemical, and optical measurements, or any
type of measurement used in gas sensors. The materials for
building the sensing units are selected to allow for interaction
with various types of vapours, as with metalloporphyrin dyes
whose optical properties are affected significantly by ligating
vapours such as alcohols, amines, ethers, phosphines and
thiols (Rakow and Suslick, 2000). The e-noses are mostly

obtained with nanostructured films, e.g., Langmuir-Blodgett
(LB) (Barker et al., 1994) and, as in biosensor, may include
sensing units capable of specific interaction with analytes. An
example of the latter was an e-nose with field-effect transistors
made with carbon nanotubes functionalized with lipid nanodiscs
containing insect odorant receptors (Murugathas et al., 2019).
Their selective electrical response to the corresponding ligands
for the odorant receptors allowed for distinguishing the smells
from fresh and rotten fish (Murugathas et al., 2019).

Sight
Spectacular developments have been witnessed in computational
vision owing to the widespread deployment of all sorts of
cameras. Though one may argue that the availability of high-
quality cameras is far from sufficient for mimicking the sight
sense, recent breakthroughs in the field of computational vision
demonstrated that artificial systems can already equal, or even
surpass the human ability in executing certain image or video
analysis tasks (Ng et al., 2018). Facial recognition, for example,
can certainly be performed with superior performance by
intelligent systems employing deep learning strategies
(NandhiniAbirami et al., 2021). Also, cameras may be used to
detect and observe phenomena beyond human capabilities, as in
the case of infrared vision (Havens and Sharp, 2016). The
challenge of replicating the functionality of the human eye in
a single device is, nevertheless, still formidable, especially if
prosthetic eyes are desired, since a fully functional analogue of
the eye remains a long-term goal (Regal et al., 2021). Research on
novel materials for bionic eyes and special cameras focuses
essentially on bioinspired and biointegrated electronics to
fabricate deformable and self-healable devices that preserve
functionality while being deformed (Lee et al., 2021). This is
analog to other types of devices to mimic human senses, e.g.
electronic skin and electronic ear (see below). Another feature
shared by these mimicking systems is the need to process large
amounts of data, in many cases of entirely different natures. A
recent example is represented by an evaluation of withering of tea
leaves upon combining data from near-infrared spectroscopy, an
electronic eye, and a colorimetric sensing array, which were
treated with machine learning algorithms in a machine vision
system (Wang et al., 2021).

Hearing
The hearing ability may bemimicked with the so-called electronic
ears (Solanki et al., 2017) and other devices, which basically work
with strain or pressure sensors. The simplest ones are
chemiresistive sensors containing nanomaterials, whose
response varies with the mechanical stimulus with sufficient
sensitivity to detect whistling, breathing and speaking (Solanki
et al., 2017). In terms of materials for sensing, as already
mentioned they are similar to those employed for the touch
sensors and electronic skins. One issue yet not exploited to a
reasonable extent is speech processing. Current applications
involving speech processing—prevailing in intelligent
assistants, for example—use high-quality microphones to
acquire sound. The new developments in wearable strain and
pressure sensors allow us to envisage sound acquisition directly
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from the human (or other living being) body. This would
revolutionize the working principles of speech processing,
especially in the biomedical area as it would enable real-time
online monitoring. Obviously, such an intrusive data collection
approach raises ethical issues, for any type of user utterance
would be captured and recorded. Another thread is represented
by innovative applications made possible by the wide availability
of low-cost autonomous microphones, such as the study of
environmental soundscapes, for purposes that go from
monitoring biodiversity in natural environments (bioacoustics
monitoring) (Gibb et al., 2019) or the ocean fauna (Sánchez-
Gendriz and Padovese, 2017).

INTEGRATION OF SENSING AND
BIOSENSING INTO INTELLIGENT
SYSTEMS
Some of the examples associated with the five human senses are
already representative of integrated systems based on artificial
intelligence. It is relevant, however, that well beyond these
examples many other types of sensors and biosensors exist
which allow for monitoring substances, phenomena, and

processes. In spite of the advances in integrating sensors and
biosensors, as mentioned here, we should stress that real-time
monitoring and seamless integration of multiple sensing devices
using different technologies are still in an embryonic stage, as
discussed next with a hypothetical scenario of an autonomous
transportation station in a metropolitan area.

Autonomous Public Spaces and
Infrastructures
Intelligent systems supported by sensing and biosensing are likely
to be employed in any type of application involving control and
actuation. Particularly challenging will be such integration in
large infrastructures, for instance in public spaces and combining
multiple initiatives. As an illustration, let us consider a station
serving a busy town area, integrating train and bus services, plus a
parking lot, as illustrated in Figure 1. Let us imagine it is
connected to a large green park area close to a river, with
plenty of vegetation, pedestrian and cycling lanes. City
administrators want this area to be a safe zone for users of the
station and park. The station should be environmentally
sustainable, and they also plan to partner with other city
managers to run a preventive health care program targeted at

FIGURE 1 | A busy urban transportation station and the multiple sensors supporting its automated operation integrated with multiple initiatives of public interest,
that continuously generate data of diverse types.
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the population of users and with researchers from the local
university to study and preserve the fauna in the park. One
may think of the sensing devices deployed in such a scenario.
There will be video cameras for real time monitoring for purposes
of adjusting train timetables according to the population flow and
also of critical areas and spots for security, water and air quality
sensors in the station and in the park and surroundings. The site
may include a photovoltaic plant, for which energy generation by
the plant and energy consumption both in the station and the
park areas are continuously tracked and adjusted as necessary.
Light-sensitive sensors can switch illumination on/off; sound
sensors at multiple spots in the park monitor animal diversity
and how the operation of the busy station affects their behavior.
Station users are encouraged to stop and collect fundamental
health indicators such as blood pressure, glycemic and cholesterol
levels, and oriented towards medical assistance when issues are
identified; the program may keep track of and approach those
users for whom critical issues have been identified.

A hypothetical integrated AI system to manage the station
autonomously is depicted in the flow chart in Figure 2, which
brings an oversimplified abstract view of an intelligent data
processing approach. The top layer represents the data
sources, including the multitude of sensing devices to monitor
internal and external risks in the facilities. These sensors will be
continuously generating data of a variety of types, e.g., images,
audios, measurements, text forms and documents. It must handle
multiple data types, as the data is produced by sensing devices
that will include those related to the human senses, i.e., part of the
sensing will be sight, touch, taste, smell, and hearing. The diverse
data types will demand treatment (storage, filtering, processing)
and curation, as indicated the middle block in the figure.
Furthermore, some processes will be required to verify if the

data makes sense, whether the datasets have sufficient quality as
input information for the AI system, represented as a single block for
simplicity—though more likely it would consist of multiple
integrated systems. Finally, the system will need to learn data
representations for algorithmic processing. This AI system will be
responsible for the analysis (what happened, where, which is the
danger or threat level), then a corresponding action—in some cases
in real time. Analysis tasks essentially consist of looking for specific
patterns in the data indicating the occurrence of an anomalous
situation, or a particular category of event, which in turnmust trigger
the corresponding actions from the different systems represented in
the bottom of the figure. Such a complex scenario consists essentially
of a combination of devices for monitoring (quantities and
processes) and responding (reacting) to the measurements. The
nature of the application may change entirely, e.g., we could think of
diagnosis in a medical care facility, or the integrated operating room
of a smart city, but the core components of such systems are
essentially the same. The implication is that sensing must be
ubiquitous and is bound to generate huge quantities of data,
which can be connected to the Internet, thus enabling tasks and
services to be executed and controlled remotely (Alzahrani, 2017).

Existing AI Technology and Major
Challenges
The proposal outlined in Figure 2, of a sensor enabled integrated AI
system with multiple controls over its environment, may seem a far-
fetched view of AI applications today. Yet, a careful analysis of its
components indicates that existing technologies are already sufficient
for implementing most of the tasks. Indeed, the literature is rich with
examples of applications representative of all the components in the
figure. Automation has been observed in a multitude of tasks for
which the input is digital data, such as object detection in images, or
natural language translation, or traffic control, with performance levels
equivalent or superior to that of human operators. Smart integration
of the required components is, however, a mammoth endeavor. For
example, the management and curation of the data from such
disparate natures and formats (i.e., images, text, audio, videos,
sensing data) is a tremendous challenge. The architecture of the AI
system will be highly complex as it must be prepared to detecting and
handling multiple ordinary and anomalous situations timely. Even
more relevant is that such a system, despite its complexity, is limited in
that only classification tasks will be performed efficiently, as already
mentioned. Nonetheless, full autonomous operation demands other
relevant tasks, such as assessing risks and making decisions based on
such assessments. These latter tasks will require at least some degree of
interpretation, and therefore current technologies are still not
sufficient for the autonomous operation envisaged.

The various issues involved in dealing with big data and
machine learning for applications such as the autonomous
station have been discussed in reviews and opinion papers
(Oliveira et al., 2014; Rodrigues et al., 2016; Paulovich et al.,
2018; Rodrigues et al., 2021). We observe a synergistic movement
driven by the combination of data generation at unprecedented
levels of detail, variety and velocity with massive computing
capability. This is crucial to introduce some kind of
“intelligence” into systems that process data to execute

FIGURE 2 | Schematic representation of the automated system to
manage the train station, which should contain various layers of devices and
control systems. The top layer represents the varied data sources, whose data
will be acquired and curated in dedicated repositories. These will feed
the AI system responsible for processing the data and providing the input for
the various applications (surveillance, energy management, etc). The AI
module and these applications will comprise a number of independent
analysis and control systems.
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complex tasks. For instance, data now plays an “active” role in
science discovery, meaning that rather than solely supporting
hypothesis verification, data collected at massive scales with
ubiquitous and networked sensing devices connected to
“things” (the “Internet of Things”) can support “intelligent”
automation of complex tasks and foster active search for
hidden hypotheses.

It must be stressed that building complex autonomous systems
as the hypothetical case of the transportation station will demand
considerable human effort. Human experts need to be prepared to
inspect a system´s underlying algorithms and supervise task
execution and decision making during development and
operation, in order to ensure it complies with the intended
goals. This is different than just inspecting results yielded by a
standalone algorithm on a relatively small data set. ML algorithms
can be trained to identify patterns from data, but data quality is a
fundamental issue (otherwise, “garbage-in, garbage-out”).
Moreover, ensuring quality and correctness of the outcomes
may demand considerable user supervision. The complexity
posed by the sheer scale of data generation and processing, plus
the need to handle distinct data types produced bymultiple sources
in an integrated manner, requires substantial changes in the role of
the experts. It also modifies the type of expertise required. Help can
be found from researchers working in the field known as “visual
analytics” (Endert et al., 2017), in which the goal is to study ways of
introducing effective user interaction into data processing and
model learning. An additional concern addressed with visual
representations is to enhance model interpretability. Domain
experts in charge of analysis, as well as decision makers, must
be well informed on the concepts behind the techniques,
understand their limitations and learn how to parametrize
algorithms properly and how to interpret the results and the
performance measures. Techniques for data and model
visualization can contribute to empowering the mutual roles of
a human expert and a ML algorithm in conducting analysis tasks.

CONCLUDING REMARKS

The integration of sensing and biosensing with machine learning
algorithms to develop sophisticated autonomous systems has
been explored here using two metaphors. In the first, we

highlighted recent developments in nanotechnology to
fabricate devices that can mimic the five human senses. The
motivation behind this choice was not only because these
nanotech devices constitute an essential requirement for
autonomous entities, but also due to the data processing
involved. The other metaphor was related to an autonomous
transportation station where we illustrated how an integrated
“intelligent” system could manage the station using the input data
from amultitude of sensors. This latter example was intended as a
mere illustration, for there is a virtually endless list of complex
problems could be similarly tackled at a large scale with systems
directly fed with data from sensors, with limited human
intervention. These range from traffic control to population
health and environmental monitoring, precision agriculture to
manufacturing processes, amongst others. The wider
dissemination of solutions based on machine learning from
data provided by sensors is an inescapable trend. Their
successful application depends less on technological issues and
more on tackling important conceptual and practical ethical, legal
and social issues regarding data collection and usage. Yet, some
technological issues remain, such as seamless integration of data
from different systems and ensuring continuously adaptive
learning in highly dynamic environments.
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