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Earthquake early warning system (EEWS) plays an important role in detecting

ground shaking during an earthquake and alerting the public and authorities to

take appropriate safety measures, reducing possible damages to lives and

property. However, the cost of high-end ground motion sensors makes

most earthquake-prone countries unable to afford an EEWS. Low-cost

Microelectromechanical systems (MEMS)-based ground motion sensors are

becoming a promising solution for constructing an affordable yet reliable and

robust EEWS. This paper contributes to advancing Earthquake early warning

(EEW) research by conducting a literature review investigating different

methods and approaches to building a low-cost EEWS using MEMS-based

sensors in different territories. The review of 59 articles found that low-cost

MEMS-based EEWSs can become a feasible solution for generating reliable and

accurate EEW, especially for developing countries and can serve as a support

system for high-end EEWS in terms of increasing the density of the sensors.

Also, this paper proposes a classification for EEWSs based on the warning type

and the EEW algorithm adopted. Further, with the support of the proposed

EEWS classification, it summarises the different approaches researchers

attempted in developing an EEWS. Following that, this paper discusses the

challenges and complexities in implementing and maintaining a low-cost

MEMS-based EEWS and proposes future research areas to improve the

performance of EEWSs mainly in 1) exploring node-level processing, 2)

introducing multi-sensor support capability, and 3) adopting ground motion-

based EEW algorithms for generating EEW.
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1 Introduction

Disasters have historically had severe effects on people and

infrastructure (Coppola, 2007). Earthquakes are one of them, and

they pose a substantial risk to areas near major active faults on land

or in offshore subduction zones (Adhikari et al., 2018). Unlike other

natural dangers such as cyclones and tsunamis, earthquakes cannot

be predicted hours in advance, and when they are identified,

earthquake detection and alerts occur in seconds. As a result of

the short time between detecting an earthquake event and its

imminent impact, developing an earthquake early warning

system (EEWS) is difficult (Fischer et al., 2012).

Despite having a short warning window, EEWS can be a

valuable tool in increasing safety in regions prone to significant

ground shaking (Allen and Melgar, 2019). The warning period may

be long enough for pre-programmed systems to implement

emergency actions, such as stopping trains to lessen the

likelihood of a derailment, turning off heavy machinery to reduce

the possibility of losses, and closing gas distribution valves (Strauss

and Allen, 2016). In addition, a brief public alert could also enable

individuals to perform basic safety precautions like drop-cover-hold

and mentally prepare for an impending earthquake (Nakayachi

et al., 2019; Becker et al., 2020a; Becker et al., 2020b).

EEWS involves complex earthquake-related processing,

which makes generating reliable alerts challenging (Kanamori

et al., 1997). Technological advances in seismic instrumentation,

digital communication, algorithms, and processing permit the

implementation of a robust EEWS (Kanamori et al., 1997).

Moreover, to identify earthquakes and send alerts in real-time,

EEWSs require a network of geographically dispersed ground

motion sensors to create alerts. As such, EEWS can be expensive

to implement andmaintain. In recent years multiple innovations,

such as low-cost sensors (Wu and Mittal, 2021) and new

networking architecture (Prasanna et al., 2022), have made it

possible to have more affordable systems.

According to their strong-motion data acquisition system

(DAS) class, the four types of ground motion sensors employed

in EEWSs are A, B, C, andD (Myers, 2008). Class A type sensors are

high-performance near state-of-the-art sensors that can record

ground motion in a high DAS resolution and DAS dynamic

range. In contrast, for classes B, C and D, the DAS resolution

and DAS dynamic range tend to decrease accordingly, and the cost

related to each type of sensor will increase with the performance

(with class A being the most expensive) (Myers, 2008). For example,

implementing EEWS with class A sensors will cost millions of

dollars, while the EEWS with class C and D sensors need thousands

of dollars for implementation (Brooks et al., 2021). Therefore,

EEWSs can be classified into two groups according to their

implementation cost: conventional high-end EEWSs and low-cost

EEWSs (Myers, 2008). The conventional high-end EEWSs are high-

cost networks constructed using high-performing class A seismic

sensors. The low-cost EEWSs are constructed using lower-classed

sensors, mainly class C MEMS-based seismic sensors.

Low-cost alternative technology solutions are emerging to

create cost-effective EEWSs instead of expensive high-end

EEWSs. Internet of Things (IoT) technologies powered by

microelectromechanical systems (MEMS)-based sensors are a

part of low-cost solutions (Allen andMelgar, 2019). Past research

has been conducted in developing EEWSs using low-cost Micro-

electromechanical systems (MEMS) based sensors. Examples of

systems that use low-cost MEMS sensors include those in Taiwan

(Wu et al., 2013a), California (Clayton et al., 2015), Iceland

(earthquake-turnkey, 2020), China (Peng et al., 2019), and

New Zealand (Prasanna et al., 2022). These affordable EEWS

deployments have shown the practicality and capacity of MEMS-

based sensor networks to deliver EEW. They could become a

solution for earthquake-prone countries that may not have the

sufficient economic capability to afford high-end EEWSs

(Prasanna et al., 2022).

In addition, low-cost MEMS-based networks can be helpful,

as complementary systems, for territories that have already

implemented conventional EEWSs. There are several examples

(e.g., Taiwan, the West Coast of the United States, and parts of

mainland China) where a low-cost EEWS work as a secondary

system supporting their main high-end EEWS (Wu et al., 2017),

(Peng et al., 2020). Having a dense low-cost sensor network as a

complementary system to the conventional EEWS could create a

more robust solution to generate alerts with an acceptable level of

warning time for the areas near the epicentre (Wu et al., 2013b).

Low-cost EEWSs have started showing promising results in

detecting and providing warnings for ground shaking. In parallel,

the affordability of low-cost ground motion sensors has created an

opportunity to build crowdsourced EEWSs supported by

community participation and engagement (Faulkner et al., 2011;

Minson et al., 2015). Along with the inexpensive MEMS-based

ground motion sensors that are easily accessible on the market,

smartphones and laptops with MEMS-based accelerometers built

into their hardware have also emerged as possible sensing tools that

could serve as detection tools in an EEWS. Such ubiquity in

consumer devices raises the possibility that these devices could be

used to achieve operational EEWS via crowdsourcing (Minson et al.,

2015). Therefore, there is a potential for low-cost MEMS-based

sensors to open new avenues and opportunities supported by

crowdsourced open EEWSs.

Recently, a few papers have reviewed EEW research (Cremen

and Galasso, 12020; Tan et al., 2022; Velazquez et al., 2020), they

cover the seismological, engineering, social, and organisational

aspects and general state-of-the-art approaches to EEW. None of

them is a comprehensive review of literature on existing low-cost

EEWSs implemented worldwide focusing on the technical aspects.

Such a technical review can be considered timely as it is invaluable

to identify the strengths and weaknesses of the different

approaches to inform opportunities and directions for future

research in the area of low-cost EEW. In such a context, this

article systematically reviews the existing low-cost EEWSs

worldwide.
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The remainder of this article is organised as follows. Section 2

outlines the methodology used in this study, followed by the

findings from the systematic literature review (SLR) presented in

Section 3. Discussion and future research areas are presented in

Section 4. Finally, Section 5 concludes the paper by summarising

the answers to the research questions raised.

2 Methodology

The steps outlined by Algiriyage et al. (2022) are adopted in

this SLR to help with the reviewing process, including

establishing research questions, finding relevant articles,

applying exclusion criteria, extracting relevant data, and

analysing the literature.

2.1 Research questions

This review asks three research questions to ensure that the

essential components related to low-cost EEWSs are covered:

1. How to classify low-cost MEMS-based EEWSs?

2. What are the existing low-cost MEMS-based EEWSs

implemented globally?

3. What are the limitations, challenges, and future research areas

in the low-cost MEMS-based EEWSs domain?

By searching the literature to answer Question 1, a classification

structure can be drawn for classifying existing low-cost EEWSs. A

classification structure will help the researchers have a consistent

understanding of different types of EEWS, thus will help in the

analysis and comparisons of implemented EEWSs.WithQuestion 2,

the SLR explores and finds details about existing low-cost MEMS-

based EEWSs, their processing, warning type, and EEW algorithm

used. However, details on how EEWSs deliver early warning is not

discussed in this study since most articles do not discuss their alert

distributionmethod. The third question explores the limitations and

challenges of the current low-costMEMS-based EEWSs. Answers to

the question provide future research areas which will enable

researchers to design low-cost EEWS that could overcome the

identified challenges and difficulties.

2.2 Search for relevant articles

The search for the relevant articles in the literature was conducted

using a keyword search in the Scopus and Web of Science databases

on 30 March 2022. A review of the body of literature revealed little

relevant material about low-cost EEWSs before September 2009;

hence only articles published after that date were considered. To

answer the research questions, “earthquake early warning” and “low-

cost” were the primary keywords in the search. In addition,

“earthquake warning” and “earthquake detection” were used as

alternatives to “earthquake early warning.” Alternatives to the

phrase “low-cost” include “low cost,” “MEMS,” “cost,” “mobile,”

“phone,” “smartphone,” “community-engaged,” “economical,” and

“crowdsourced.” Peer-reviewed academic papers accessible online in

full-text format and pertinent to the research aims are the only sources

included in the initial literature search. Publications written in

languages other than English, grey literature like government or

corporate reports and non-academic research were all excluded.

The initial keyword search produced 354 relevant articles.

Duplicates were removed, resulting in 218 unique papers.

2.3 Exclusion criteria

The scope was narrowed to papers that only discussed low-

cost MEMS-based implementations related to earthquake

detection. The abstracts were manually examined, and those

that contained the following information were discarded:

FIGURE 1
Systematic Literature Review process flow diagram.
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• low-cost EEW that uses different types of sensors other

thanMEMS-based accelerometers (e.g., optical fibre cables,

satellite-based, resonant switches, etc.),

• low-cost implementations related to different disaster

detections or structural monitoring,

• surveys or perceptions related to implementing low-cost

EEWSs,

• EEWSs that use smartphones solely to notify the

stakeholders (as notification tools rather than detecting

sensors),

• articles lacking sufficient details related to the EEWS

implementation, and

• articles that only broadly discuss earthquake detection

algorithms without focusing on EEWS implementation

were excluded.

After filtering and applying the inclusion-exclusion

criteria, 59 articles were selected for this study. The

methodology for the literature search, the selection criteria,

and the number of papers returned at each stage are shown in

Figure 1.

2.4 Extract relevant data and analyse the
literature

After identifying relevant articles, the next step of the

methodology is to extract relevant information and analyse

them to find answers to the research questions. The main

activity to analyse qualitative data is to compare them through

naming and classifying (Flick, 2007). As a result of this

procedure, a structure for the data is created using

Microsoft Excel, paving the way for a thorough

comprehension of the problem, the field, and the data

themselves. Constant comparison is conducted to analyse

the articles to understand the different approaches

implemented toward EEW and to develop a classification

structure (Hernon, 2004). After extracting the relevant data

using the literature, this SLR process is presented to answer

the research questions.

3 Findings

This section shows the findings from the SLR of 59 articles.

It shows the classifications for EEWS, which can help navigate

the varying combinations of different characteristics of

EEWSs that exist worldwide. Discussion follows on low-

cost EEWSs that have already been implemented worldwide

and the contexts and technologies used in the different

systems.

3.1 Classification of earthquake early
warning systems

The filtered articles revealed that there are different

approaches to implementing EEWSs. However, to the authors’

understanding, no existing framework classifies such approaches

to implementing EEWSs according to their characteristics.

EEWSs are complex systems, and a comprehensive

classification of such systems can help better organise the

study of EEWS. This will particularly be helpful for those

researching, designing, or implementing EEWSs.

3.1.1 Classification of the earthquake early
warning systems based on the warning type

Findings show that EEWSs can be classified based on the

number of sensors used to detect an earthquake (i.e., on-site

networks use a single sensor and regional-based networks use an

array of sensors) (Chen et al., 2015; Bindi et al., 2015; Picozzi

et al., 2015).

On-site-based EEWS use only one sensor to detect an

earthquake. To be more precise, it takes information from a

sensor at a location to detect earthquakes and generate alerts at

the same location using a single sensor, with all algorithm processing

taking place at that station (Allen and Melgar, 2019; Bindi et al.,

2015; Picozzi et al., 2015). In general, on-site EEWS serves a

significant role in bridging the gap of the blind zone, which

frequently experiences the worst ground shaking and where an

EEWS cannot issue an alarm close to the epicentre (Chen et al., 2015;

Wang et al., 2022). The basic form of an on-site EEWS can be a

ground motion threshold-based method that sounds an alarm or

warning as soon as unusual or harmful groundmotion is discovered.

However, few more advanced systems can identify P-waves and

send out an alarm when the matching S-wave’s intensity is expected

to be damaging (Hoshiba and Aoki, 2015).

On the other hand, regional EEWS use a network of sensors

deployed in several parts of a particular earthquake-prone

geographical area. Earthquake detection happens by processing

the earthquake data collected by the network of sensors. The

number of earthquake detection sensors can vary according to

the sensor distribution and considered geographical area (Bindi

et al., 2015; Picozzi et al., 2015). Generally, regional EEWSs can

benefit areas far from the epicentre (Chen et al., 2015).

3.1.2 Classification of regional earthquake early
warning systems based on the implemented
earthquake early warning algorithm

Regional EEWSs can be further classified according to the type

of algorithm used. Regional EEWSs are primarily implemented

using two different kinds of EEW algorithms, namely: source-based

and ground motion-based algorithms (Allen and Melgar, 2019).

Figure 2 illustrates the classification based on EEW algorithms.
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3.1.2.1 Source-based methods

Source-based approaches detect the earthquake and

disseminate the alert to EEW stakeholders with detailed

information about the detected earthquake. These methods

typically identify an earthquake and characterise the position,

origin time, and magnitude by using a suitable ground motion

prediction equation plus a few seconds of P-wave data (0.5–4 s)

from two to six sensors around the epicentre (GMPE) (Peng

et al., 2021a).

Generally, source-based approaches could be implemented

using two different types of algorithms: point source-based and

finite fault-based (Figure 2). Even though both types of

algorithms detect the earthquake characteristics using the

P-waves, point source algorithms typically saturate for

earthquake ~ M > 6. The main causes of saturation are two:

1) it is difficult to distinguish earthquakes with a magnitude

greater than six from those that occur in the first few seconds of

the P-wave window, and 2) the lateral extent of the fault rupture

is necessary for large earthquakes to determine the earthquake’s

magnitude (Won et al., 2020). On the other hand, finite fault

algorithms tend to estimate the earthquake’s magnitude without

any saturation limitation by determining the fault rupture’s finite

extent.

3.1.2.2 Ground motion or wavefield-based methods

Ground motion or wavefield-based algorithms became

popular due to their robustness and fast processing time.

They do not estimate the source parameters of an earthquake

(Hoshiba, 2013; Hoshiba and Aoki, 2015; Kodera, 2018). Thus,

they avoid vulnerabilities of the source-based algorithms

(Hoshiba, 2021). The main idea behind these algorithms is to

forecast the likely evolution of ground motion intensity in the

future using the current state of ground shaking and knowledge

of propagation physics in a short period of time. These

algorithms assume that the observation sites are close to the

hypocentre than the prediction sites, meaning that the seismic

sensor network plays a major role (Hoshiba, 2021). Table 1

summarises the number of EEWSs implemented according to the

proposed classification.

3.2 Low-cost earthquake early warning
systems implemented around the world

MEMS-based technologies have inspired researchers to

implement low-cost EEWS in several countries worldwide

over the last 10 years, demonstrating promising results and

robustness during an earthquake event. Even though many

countries are prone to seismic hazards, only a few have

successfully implemented any form of EEWS (Bindi et al.,

2015). However, several countries are currently in the process

of implementing more affordable low-cost EEWSs. This section

summarises existing low-cost MEMS-based EEWSs into types:

the experimental or initial stage and the public alert generation

stage according to the classification proposed in Section 3.1. In

general, experimental or initial stage EEWSs deliver EEWs only

to a selected set of people primarily for testing, whereas EEWSs in

the public alert generation stage, deliver EEWs to the general

public in a seismic-prone area that can be a region or an entire

nation. Table 2 summarises the low-cost MEMS-based EEWSs

identified from the selected articles.

3.2.1 Regional earthquake early warning systems
As identified in the classification section above, regional

EEWSs are implemented using two different algorithms for

earthquake detection, namely source-based and ground

motion or wavefield algorithms. Here, the source-based (point

source and finite fault) and ground motion-based approaches are

analysed separately.

3.2.1.1 Source-based regional earthquake early warning

systems

Source-based algorithms can be divided into two different

algorithms: point-source-based and finite-fault-based. However,

minimal information is available on the low-cost EEWSs that use

a finite-fault algorithm for earthquake detection. Therefore,

unless otherwise stated, all the implementations discussed here

use point-source-based algorithms. Here, EEWSs were reviewed

according to the type of sensor used.

3.2.1.1.1 Systems implemented using dedicated

microelectromechanical systems-based sensors.

The first ever low-cost EEWS was developed by Fleming et al.

(2009) from Germany. They used their in-house built low-cost

sensors SOSEWIN 1 and SOSEWIN 2 to implement an

experimental self-organizing seismic early warning network in

Istanbul and Berlin (Fischer et al., 2012). The system consisted of

a decentralised, self-organizing wireless mesh sensor network,

with sensors connected via WLAN (Wireless Local Area

Network 2.4 GHz or 5 GHz). This system detects the P-waves

FIGURE 2
The proposed classification for the adopted EEW algorithm in
regional EEWSs.
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using the short-term-average (STA)/long-term-average (LTA)

method and captures the details of the P-waves to determine the

source characteristics of the earthquake.

In contrast to the above approach, most regional low-cost

EEWSs are implemented using a centralised processing unit.

A low-cost EEWS implemented by Wu et al. (2013a) in

Taiwan is a prime example of that approach. They designed

a low-cost ground motion sensor known as P-alert, which uses

MEMS-based accelerometers where the processing of the

EEW algorithm takes place at a centralised server. The

P-alert system uses the STA/LTA ratio (Allen, 1978) to

detect the P-waves and continuously monitors the peak

ground acceleration (PGA) using MEMS-based

accelerometers. Following the detection of P-wave

characteristics for the first 3 s of P-waves, they are sent to

the central station via TCP/IP connections. During the alert

generation, an event is declared once eight P-alert stations are

triggered, and an alert will be disseminated to the public. A

traditional earthquake location algorithm with a half-space

linear increasing-velocity model is used to determine the

hypocentre location. Peak displacement (Pd) and peak

velocity attenuation (MPv) or peak displacement

attenuation (MPd), and hypocentre distance are used to

calculate magnitude. The system takes from 9 s to 28 s to

generate a warning and an average of less than <20 s compared

to the conventional high-end EEW in Taiwan, which

generates warnings in 20 s.

Also, the P-alert EEWS has been used to detect the

earthquake’s rupture directivity, building a real-time shake

map for ongoing earthquakes and damage localisation in

buildings after an earthquake (Jan et al., 2018; Yin et al.,

2016) The P-alert system’s performance was evaluated using

Taiwan’s 2018 Mw 6.4 Hualien earthquake (Hsu et al., 2018b).

Using the same P-alert sensor network, Yang et al. (2018)

implemented a regional EEWS called ShakeAlarm.

ShakeAlarm can provide a wider lead time than their

national-level regional EEWS operated by Central Weather

Bureau (CWB) by bypassing the location estimation by

employing the relationship between the shake contour area

and earthquake magnitude (Yang et al., 2018). Similarly, a

team of researchers from India implemented an EEWS at the

Himalayan Belt using (Franchi et al., 2019) P-alert sensors

(Mittal et al., 2019; Chamoli et al., 2021).

Several researchers from China have also implemented

EEWS in seismically active regions using low-cost MEMS-

based sensors. As an initial step, Peng et al. (2017)

constructed a sensor called GL-P2B using MEMS-based

accelerometers (Peng et al., 2017). They demonstrated that

TABLE 1 Number of approaches presented in the reviewed articles based on the proposed classification.

Regional approaches On-site

Source-based Ground motion-based

Number of approaches 18 1 9

TABLE 2 Summary of articles reviewed according to their warning type and EEW algorithm.

Regional EEWSs On-site EEWSs

Source-based methods Ground-motion
based methods

Experimental/
Initial stage

Istanbul Fischer et al. (2012) Japan Uga et al. (2012) Italy
D’Alessandro et al. (2018) USAMinson et al. (2015) and Nof
et al. (2019) Taiwan Yang et al. (2018) Costa-Rica Brooks
et al. (2021) Northern India Mittal et al. (2019) Canada
Taale et al. (2021) China Zou et al. (2019)

New Zealand Prasanna
et al. (2022)

Kyrgyzstan Bindi et al. (2012) BLESeis Won et al. (2020)
Taiwan Hsu and Nieh (2020) China Hu et al. (2021) Italy
Picozzi et al. (2015) and D’Alessandro et al. (2020) Northern
India Mittal et al. (2019)

Public alert
generation

Taiwan Chen et al. (2015) China Peng et al. (2021a) Quake
Catcher Network* Cochran et al. (2009) MyShake* Kong
et al. (2016a) and Kong et al. (2020b) Community Seismic
Network* Clayton et al. (2015) and Faulkner et al. (2011)
Earthquake Network* Finazzi (2020) and Bossu et al. (2021)
Google* Allen and Stogaitis (2022) South Korea Lee et al.
(2019a) and Wu et al. (2021)

Taiwan Wu et al. (2013a) China Peng et al. (2013)

* EEWS that is operating in more than one country.
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their sensor could detect smaller earthquakes M < 1.5 and a high

signal-to-noise ratio (SNR) at distances greater than 50 km for

earthquakes of M > 3. To detect the earthquake, they used the

same detection algorithms adopted by Wu and Zhao (2006), Wu

et al. (2007) and tested their network by deploying approximately

170 stations in Sichuan, China (Peng et al., 2019; Peng et al.,

2017). Following that, another group of researchers implemented

a low-cost EEWS by building a new low-cost MEMS-based

ground motion sensor known as the SIT-S Model in addition

to the GL-P2B sensors in the Zhejiang province (Zou et al., 2019;

Finazzi, 2020). Afterwards, a hybrid EEWS was introduced in the

Sichuan region by integrating the GL-P2B sensors with P-alert

sensors and local broadband seismic stations. There are around

270 MEMS-based sensors (170 GL-P2B sensors and 100 P-alert

sensors) and 13 local broadband seismic stations where the

hybrid EEWS processing takes place at a centralised server

(Peng et al., 2020). Currently, around 1631 MEMS-based

stations contribute to the regional EEWS in the Sichuan Area

operated by the Sichuan Earthquake Administration (Peng et al.,

2021b). Processing of the EEW algorithm takes place at a

centralised server adopting the peak displacement (Pd) scaling

approach proposed by Kuyuk and Allen (2013) for estimating the

earthquake magnitude and calculating seismic intensities at

various target sites, a point source algorithm based on the

conventional ground motion prediction equation (GMPE) is

used (Kong et al., 2016a).

The United States also plays a significant role in contributing

to low-cost EEW. Areas near the San Andreas fault in California,

United States, are prone to frequent seismic events. Such a

context has motivated US researchers to investigate

implementing EEWSs in this region. Two primary regional

networks deliver alerts to the public in the United States using

dedicated MEMS-based sensors: Quake Catcher Network

(QCN). Clayton et al. (2015) from California constructed the

CSN by building their in-house sensor. In their system, event

detection is carried out at the centralised server (Google App

Engine). In contrast, the sensor systems themselves generate

measurements of characteristics like pick times, maximum

amplitude, apparent frequency, and signal-to-noise levels in

close to real-time (Clayton et al., 2015). The CSN’s primary

functions include monitoring the health and safety of structures,

producing zonation maps of populated regions, and giving maps

of maximum shaking soon after a significant earthquake to assist

first responders (Hong et al., 2021).

On the other hand, the QCN distributed/volunteer

computing initiative enables any internet-connected computer

with an internal or external MEMS accelerometer to function as a

strong-motion seismic station (Cochran et al., 2009). The QCN

offers a dense, wide-scale seismic network by utilising the

primary benefit of distributed computing, which is the ability

to use a large number of processors at a cheap infrastructure cost.

Data is analysed on an individual’s laptop or desktop during idle

computer cycles, and only a little amount of data is forwarded to

a central server for additional analysis. The QCN servers go

through the data, including detection time, signal amplitudes,

Internet protocol (IP) addresses, and other relevant information,

to ascertain which data corresponds to earthquakes. This system

can detect moderate to large earthquakes (magnitude > 5). Over

2,000 volunteers had signed up by 2014, mainly from California

and Mexico (Hong et al., 2021). Currently, sensors called “Joy-

Warrior” and “O-NAVI” are used as external MEMS

accelerometers in computers. Following that, another team

from the University of California Berkeley and the Humboldt

State University implemented a small experimental MEMS-based

EEWS called ElarmS to support the conventional high-end

EEWS (Nof et al., 2019). They proved that a MEMS-based

sensor array with a finite-fault model could estimate

earthquake magnitude and shaking intensity distribution faster

and more reliable compared to using Global Navigation Satellite

Systems (GNSS) (Nof et al., 2019).

In addition to the above efforts, researchers in several other

countries attempted to implement low-cost EEWSs. A group of

researchers from Italy implemented an experimental MEMS-

based low-cost EEWS using Adel ASX1000 type accelerometers

to detect small local magnitude earthquakes between 2.0 < ML <
3.0 in two seismically active areas of Italy: the inner part of the

Umbria Valley and the southern-easy Alpne Front (Cascone

et al., 2021). They used 15 ASX1000 prototype sensors and a

centralised server where communication between the server and

the sensors occurred via LAN connection (Kong et al., 2020a). In

addition, several approaches were attempted by researchers in

Italy toward low-cost EEWS (D’Alessandro et al., 2018;

D’Alessandro et al., 2014). Also, Taale et al. (2021) from

Canada explored the feasibility of implementing an

experimental regional EEWS using the MEMS-based

accelerometers embedded in the smart meters (SM). They

have tested SM’s capability in detecting an earthquake by

doing different tests such as statics tests, noise floor tests,

dynamic tests, etc. and declared that SM infrastructure as an

EEWS is technically feasible (Taale et al., 2021). Table A1

provides a table summarising the EEWSs implemented using

dedicated MEMS-based sensors.

3.2.1.1.2 Systems implemented using smartphones.

Off-the-shelf sensors like those found in smartphones are also

offered as scalable opportunistic sensor nodes as an alternative to

in-house-built low-cost MEMS-based sensors (Brooks et al.,

2021). The nearly universal availability of MEMS-based class

C accelerometers in cell phones makes phone-based sensing

possible. These motion sensors can be configured to function

as seismometers, identifying the shaking caused by earthquakes.

Several countries have tried implementing low-cost EEWS using

smartphones. Almost all the smartphone-based EEWSs are

regional networks, and the processing of the earthquake

detection algorithm takes place partially or entirely at a

centralised location. Wang et al. (2018) found that for an
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EEW generation, it is necessary to have at least four stationary

smartphones to mitigate the effect of unwanted accelerations.

According to the EEW literature, Japan has implemented a

low-cost EEWS using smartphones (Uga et al., 2012). This

system is one of the earliest EEWS in the literature that uses

smartphones as ground motion sensors. This EEWS has been

integrated as a support system to Japan’s conventional JMA

EEWS. Like Japan’s approach, Zambrano et al. (2015) and

Zambrano et al. (2014) developed an EEWS using

smartphones, demonstrating robust results compared to

Japan’s approach. They constructed their EEW network using

three different layers: smartphones, intermediate servers, and a

control centre, where different tasks are assigned to these layers.

They have also analysed different wave propagation techniques

according to the geographical areas. At the time of the

implementation, their method detected an earthquake 12 s

before the peak acceleration, which was a notable achievement

compared to other smartphone implementations.

Similar to Japan, a team of researchers from the

United States (Minson et al., 2015) implemented an EEWS

with consumer smartphones via crowdsourcing. In their

approach, in addition to MEMS-based accelerometer data,

they incorporated data from GNSS (Global Navigation

Satellite Systems) and GPS (Global Positioning System) to

overcome the saturation issue for predicting large earthquakes

(Mw > 7) (Hsu et al., 2018a). They tested their EEWS using

simulated data from the Mw 7.0 Hayward fault earthquake in

California and actual data from the Mw 9.1 Tohoku-Oki

earthquake, and the results were promising. Similar to their

approach, researchers from the University of California

implemented a smartphone-based EEWS called “MyShake”

(Allen et al., 2020; Kong et al., 2015) where they proved that

a robust EEWS could be implemented using a smartphone-based

network with artificial intelligence to detect an earthquake from

human activities. The network delivers alerts to the phones if the

estimated magnitude of an earthquake is 4.5 or greater or

Modified Mercalli Intensity (MMI) III or greater zone

(Strauss et al., 2020). MyShake can detect an earthquake and

its characteristics within ~5–7 s after the origin time, and the

alert can be disseminated to smartphones within ~1–5 s (Kong

et al., 2019a; Allen et al., 2020).

Similar to MyShake, researchers from Italy implemented an

EEWS called the EQN (Earthquake Network) using an android

application installed on smartphones from the community. Like

the other mobile phone-based approaches, this system uses a

centralised server to process the EEW algorithm to detect an

earthquake and its source parameters (Finazzi, 2020; Finazzi,

2016; Finazzi and Fasso, 2017). A statistical approach has been

used to define the threshold based on the number of active

smartphones using a fixed and dynamic sub-network-based

detection algorithm to detect an earthquake with minimal false

alerts (1 false alert per year). Also, during this approach, two

ways for detecting earthquake epicentre were introduced, which

are suitable for smartphone-based EEWSs (Finazzi, 2020;

Finazzi, 2016; Finazzi and Fasso, 2017). Currently, they have

selected only phones stationed for charging as sensors. An

earthquake is detected when concurrent triggers within

30 kms of each other surpass a dynamic threshold

determined by the number of active smartphones and the

intended false alarm probability, which is currently set at

one per year per country (Bossu et al., 2021; Yang et al.,

2021; Peng et al., 2017).

Following that, researchers from South Korea have also

implemented a low-cost EEWS known as CrowdQuake that

uses around eight thousand smartphones (Samsung Galaxy

S7) securely embedded into enclosures and deployed at

different locations (Kwon et al., 2020; Wu et al., 2021).

They have used a deep convolutional-recurrent neural

network (CRNN) model to detect earthquakes using a

centralised server (Kwon et al., 2020). They demonstrated

that their EEWS could detect earthquakes with MMI >
3 using two examples of detected earthquakes (Huang

et al., 2020). Similarly, a team of researchers from Costa

Rica built a smartphone-based EEWS using a mobile app

(Brooks et al., 2021). They fixed the mobile phones using

enclosures in different areas in the country where station

spacing is ~30 km and increases to 30–50 km away from the

Middle America Trench. Also, due to the noisy nature of

smartphone accelerometers, they use a quadrilateral mesh

configuration of adjoining stations to trigger an alert (Becker

et al., 2020a).

In 2020, Google launched the Android Earthquake Alerts

system by forming a public-private partnership with the USGS

(United States Geological Survey) using the already

constructed MyShake EEW model (Allen and Stogaitis,

2022). Initially, it delivered ShakeAlert (Kohler et al., 2018)

messages to all Android phones in California. Then in 2021,

Google’s EEWS was constructed using the already existing

MyShake EEW model and started delivering alerts to

New Zealand and Greece using the android phones in

those regions (Allen and Stogaitis, 2022; Kong et al.,

2016b). Following that, Turkey, the Philippines, and some

central Asia countries were added to Google’s android EEWS

(Allen and Stogaitis, 2022). Since Google’s android

Earthquake Alerts system is relatively new, there is not

enough published literature to evaluate its performance.

The following figure (Figure 3) illustrates the timeline of

smartphone-based EEWSs according to the literature.

3.2.1.2 Ground motion or wavefield-based Earthquake

Early Warning Systems

There is no information on any systems that use

smartphones as their ground motion sensors for ground

motion or wave field-based algorithms. Thus, only

implementations that use MEMS-based sensors are

discussed here.
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3.2.1.2.1 Systems implemented using dedicated

microelectromechanical systems-based sensors.

The usage of ground motion or wavefield algorithms in low-cost

MEMS-based sensors is difficult to find in the literature. To the

authors’ knowledge, there is only one implementation from

researchers at Massey University, New Zealand, which

discusses a ground motion-based detection algorithm in a

low-cost environment (Prasanna et al., 2022). In particular,

they implemented an EEWS using Raspberry Shake 4D, a

MEMS-based low-cost ground motion sensor manufactured

by Raspberry Shake. Unlike other EEWSs, the researchers

processed their EEW algorithm at the node level rather than

centrally. They employed PLUM as their EEW algorithm—a

robust and well-known ground motion-driven method in EEWS

(Kodera et al., 2018). Their results claim that node-level

processing can outperform traditional centralised processing

in terms of system latency, redundancy, and

implementation cost.

3.2.2 On-site-based earthquake early warning
systems implemented globally

There is minimal information in the literature on any systems

that use smartphones as their ground motion sensors for on-site

approaches except the one implemented by Hsu and Nieh (2020).

Thus, we have mainly discussed implementations that use

MEMS-based sensors.

3.2.2.1 Systems implemented using dedicated

microelectromechanical systems-based sensors

On-site techniques, as described in Section 4.1, are primarily

used to detect earthquakes and provide alerts at the sensor level.

Even though it can detect an earthquake as soon as the seismic

waves initially reach the sensor, there is a high probability of false

alerts since the detection and generation of an alert depend only

on one sensor. However, several countries have implemented the

on-site approach as one of their EEWS due to its important

benefit of minimal detection time, which can be useful in alerting

the areas near the epicentre and rupturing fault during an

earthquake (Chen et al., 2015). Even though the basic idea of

the on-site approach is to generate an alert by using just a ground

motion threshold, a few sophisticated approaches went beyond

that scope by predicting the destructing S-wave’s intensity using

the detected P-waves—these will be discussed below.

Initial efforts to build a sophisticated on-site EEWS were

conducted by Wu et al. (2013b) from Taiwan. They constructed

an on-site EEWS using P-alert seismic sensors, the same sensor

used for the regional EEWS. The P-alert sensor has a display

showing the severity of the shaking and a sound warning

mechanism with a touch screen. The earthquake’s severity is

determined using the first 3-s window of the P-wave, and an

integrated alarm system is used to generate the alert. The time

taken to detect the earthquake using the on-site approach is

around 8 s. The P-alert system can provide 2–8 s warning time

for sites in the Central Weather Bureau regional warning

system’s blind zone. Following that, by adopting the same

detection mechanism and algorithms by Wu et al. (2013b)

and Zambrano et al. (2017), researchers from China

implemented an on-site approach in the Zhaotong region by

building their own low-cost sensor with three different alarms

such as sound, text and screen flickering. Their approach took

around 3.2 s to generate the warning; however, the system

registered many false alarms that cannot be neglected (Peng

et al., 2013). Likewise, another research team from China has

implemented an on-site approach by building their own sensor

called REMOS SIT (Ding et al., 2017).

Further, Hu et al. (2021) proposed another advanced low-

cost seismic station for an on-site EEWS by embedding eight

MEMS-based accelerometers into one system known as parallel

acquisition. They proved that parallel acquisition would reduce

the Root Mean Square value of the MEMS-based sensor’s noise

compared to using a single sensor. Also, they implemented their

network in the Sichuan region, China using 45 proposed seismic

stations and demonstrated that the proposed on-site EEWS could

detect earthquakes accurately (Hu et al., 2021). Likewise, a multi-

FIGURE 3
Timeline of smartphone-based EEWSs according to their year of publication.
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parameter wireless sensing system called MPwise was introduced

by Boxberger et al. (2017) to detect an earthquake which can be

used as an on-site or regional EEWS. However, they tested their

EEWS using the on-site approach in Kyrgystan with the

SeisComP seismic software for earthquake-related processing

in terms of detecting earthquake source parameters. Unlike

other approaches, this device is embedded with multi-sensor

capability, which can be connected with different sensors for

various applications (Boxberger et al., 2017).

In addition to the above approaches, using SOESWIN

sensors, Bindi et al. (2015) constructed an on-site EEWS for

one of the highest earthquake hazard regions in Kyrgyzstan

(Bindi et al., 2012) which works as a support system for their

regional warning network. Similarly, a group of South Korean

researchers built a standalone earthquake detection and alerting

device for residences that can send notifications to nearby

devices. In their approach, they tried to disseminate the

earthquake intensity by calculating the PGA (peak ground

acceleration) values from the ground motion data (Lee et al.,

2019a; Lee et al., 2019b). Further, there are also different on-site

approaches that have been implemented byWon et al. (2020) and

D’Alessandro et al. (2020) in detecting earthquakes.

4 Discussion

Complications towards developing high-end conventional

EEWSs have motivated researchers to pursue other feasible

options in implementing an EEWS, and low-cost MEMS-

based EEWSs have come to the fore as one of the solutions.

Low-cost EEWSs have become a solution for earthquake-prone

countries which are not economically able to afford high-end

EEWS. Also, low-cost EEWSs serve as a support system for

countries with high-end conventional EEWSs. As discussed

previously, low-cost EEWSs can be divided into two types:

on-site approaches and regional approaches. Regional-based

low-cost EEWSs are more robust and accurate in

disseminating alerts, and on-site approaches generate rapid

alerts. Still, it uses a single station to detect an earthquake

which can compromise the reliability and accuracy of

generating alerts (Allen and Melgar, 2019). However, this SLR

process identified several limitations and challenges related to

these low-cost regional EEWSs. This section discusses the future

research opportunities for regional EEWSs arising from the

limitations and challenges identified during the SLR process.

4.1 Limitations

According to the literature review, the first limitation identified

is that most regional EEWSs process their earthquake-related data

centrally. A central data processing site offers several benefits,

including improved control for locating, gathering, and processing

data both during and shortly after a disaster (Aizu, 2011).

Centralised data processing does, however, bring up several

technological constraints and bottlenecks. One of the critical

FIGURE 4
Discussion flowchart that summarises the limitations, challenges, and future research identified during this study.

Frontiers in Sensors frontiersin.org10

Chandrakumar et al. 10.3389/fsens.2022.1020202

https://www.frontiersin.org/journals/sensors
https://www.frontiersin.org
https://doi.org/10.3389/fsens.2022.1020202


restrictions is the potential for data collecting to be disrupted at a

central site because of effects on telecommunications

infrastructures after a significant earthquake (Kobayashi, 2014).

After an earthquake, facilities for data processing, intermediate

data gathering, and data transportation may be significantly

disrupted or destroyed (Prasanna et al., 2022). Giving time-

sensitive warnings to end users may be difficult if the central

processing capability is unavailable due to a loss of connectivity.

Further, the SLRprocess indicated that almost all low-cost EEWSs

are limited to a single type of groundmotion sensor. For example, the

EEWS developed by Wu et al. (2013b) uses only the P-alert sensors

(Taiwan), and Peng et al. (2020) from China uses its in-house-built

sensors for EEWS. Even though the MPwise device implemented by

Boxberger et al. (2017) can support multiple MEMS-based sensors,

they did not discuss the implementation of their systemusingmultiple

MEMS-based sensors. EEWSs without multi-sensor capability can be

identified as one of the major limitations in almost all the low-cost

MEMS-based EEWSs worldwide.

Another limitation is that most regional EEWSs globally are

constructed using point source or finite fault source-based

algorithms. Even though source-based algorithms generate

reliable warnings, a significantly longer processing time is

required for estimating earthquake source characteristics, making

them less beneficial for the areas near the epicentre and effective only

for areas far from the epicentre (Wu et al., 2013a). Areas affected

during a large earthquake can be geographically large. On the other

hand, significant earthquake damage will almost always occur at

shorter epicentral distances and near the rupturing fault. Thus, it is

crucial for any EEWS to generate an initial alert to the areas near the

epicentre within a few seconds. To overcome this limitation, several

countries have implemented on-site approaches that are fast but not

reliable in generating alerts (Kwon et al., 2020).

4.2 Challenges

Network security is identified as a significant challenge for

community-engaged EEWSs. Community engagement is

becoming one of the emerging factors in constructing a low-cost

EEWS where the public contributes to the network by installing or

maintaining a sensor (Prasanna et al., 2022; Minson et al., 2015;

Kong et al., 2016b). For example, installing P-alert sensors at houses

or installing an EEW application on their smartphone sends data to

the data processing centre. Although community participation is a

promising alternative, network security becomes an issue that needs

to be addressed and researched (Prasanna et al., 2022). Because

sensors are spread over several geographic regions and are

connected to various home-based private networks, security is

essential to prevent unintentional or purposeful attacks. One

specific component of system security is connected to spoof

earthquake triggers, such as how simple it is to spoof earthquake

triggers and how resistant the system is to spoof earthquake triggers

from individual phones, ad hoc or coordinated groups of phones in a

certain location and time period (Kong et al., 2019a; Kong et al.,

2019b).

Following that, the sensor density of MEMS-based sensors in an

EEWS is picked out as another significant challenge. Even though

implementing a regional EEWS ensures a robust system compared

to an on-site-based EEWS, a significant amount of time such

systems in detecting earthquakes needs to be addressed. Regional

low-cost EEWSs generate an alert for ground shaking by analysing

the ground motion data from more than one sensor. Generally,

regional EEWS disseminate an alert if and only if at least more than

one station is triggered, which is also called multi-station triggering

(Wu and Mittal, 2021; Prasanna et al., 2022; Brooks et al., 2021;

Bossu et al., 2021; Cochran et al., 2019). This feature ensures a

minimal number of false alerts generated by an EEWS.However, the

multi-station triggering mechanism will cost a significant amount of

time since it needs to wait for the data from multiple sensors.

Therefore, to reduce the detection time of a low-cost regional EEWS,

the sensor density should be significantly increased compared to

conventional high-end EEWSs, where the high-end sensors are less

prone to false alerts (Prasanna et al., 2022).

In addition to the challenges discussed above, detecting ground

motions in smartphones while they are in motion is recognised as

another challenge for smartphone-based EEWSs. When it comes to

smartphone-based EEWSs, most EEWSs either work with

smartphones that are fixed and charging (Brooks et al., 2021;

Allen and Stogaitis, 2022). This reduces the number of active

sensors in the network. The number of sensors in the network

tends to vary according to the time of the day (peak hours and

non-peak hours), limiting the sensing capability of the EEWS. Even

though few initiatives were carried out on machine learning

techniques to detect an earthquake and other daily activities when

smartphones are in mobility, they are still not integrated into most

smartphone-based EEWSs.

4.3 Future research

According to the identified limitations and challenges, the

following are the future research areas proposed by this study.

4.3.1 Usage of decentralised or node-level
processing

The ability to use sensors to decrease the amount of central

processing and raise the level of processing at the node level has been

made possible by advancements in sensor technology (edge

computing) (Fischer et al., 2012; Prasanna et al., 2022). This will

make it possible to process ground motion data and create warnings

that may be shared across the sensor nodes and other connected

devices at the node level (Prasanna et al., 2022). Node-level processing

has also been recognised as a new paradigm for real-time IoT tasks. It

has become popular to handle issueswith response time, requirement,

saving bandwidth, costs, and data security and privacy (Zhao et al.,

2021; Khan, 2020). Furthermore, it makes systems more resilient by
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allowing end users to be warned at the local and regional levels, even

when infrastructure failures affect parts of the system. To extract

maximum benefits associated with sensor nodes’ capabilities and

capacities, only a few attempts have been made to implement EEWSs

with decentralised processing (Fischer et al., 2012; Prasanna et al.,

2022). However, EEWSs that process earthquake-related data at the

node level are still in their infancy, creating more room for further

investigations and exploration.

4.3.2 Earthquake early warning systems with
multi-sensor capability

The SLR process demonstrates the need for additional research

to evaluate EEWSs that can integrate multiple MEMS-type

sensors. These systems can be a promising approach toward

having a denser sensor distribution in an EEWS. They can also

generate benefits by having a large community-engaged EEW

network where people can plug and play with their available

ground motion sensor rather than limiting it only to a single

type of sensor. However, EEWSs with multi-sensor capability need

to be explored further. Therefore, there is a need for future research

to investigate the possibilities of constructing a low-cost EEWS that

can support different types of MEMS-based ground motion

detection sensors.

4.3.3 Adaptation of groundmotion or wavefield-
based earthquake early warning algorithms

Ground motion or wavefield-based algorithms have shown

promising results in overcoming the issues related to the source-

based regional EEWSs (Hoshiba, 2021). Therefore, adopting ground

motion-based algorithms into a regional-based EEWS can generate

more robust and reliable alerts in a short period,making them a better

alternative to on-site-based approaches for the earthquake-prone

areas near the epicentre while keeping the source-based algorithms

to generate warnings for the areas far from the epicentre. However,

low-cost MEMS-based EEWSs constructed using ground motion

algorithms have not been a subject of significant research. Even

though the EEWS implemented by Prasanna et al. (2022) adopted

the PLUM-based ground motion approach, there is a significant

opportunity for further research and improvement.

In addition to the above key research areas, network security

of community-engaged EEWSs, and detecting ground motions

using smartphones that are in motion are two areas that need

further research.

Figure 4 illustrates the discussion flow, highlighting the

limitations and challenges of regional low-cost EEWSs that

attributes to the future research areas identified during this

study.

5 Conclusion

EEWSs already exist worldwide, and more countries are

exploring the feasibility of designing and deploying EEWS for

earthquake resilience. EEWSs are shifting from conventional

high-end EEWSs towards a new concept of low-cost MEMS-

based EEWSs that integrates and engages with the community.

The development made in modern-day’s IoT creates a path to

implement an EEWS using low-cost MEMS-based ground

motion detection sensors. Also, it has enabled the

implementation of more sophisticated and robust low-cost

MEMS-based EEWSs to generate reliable and accurate alerts.

This paper addresses the future research areas in the low-

cost MEMS-based EEWSs by reviewing the literature and

presenting an SLR on the low-cost EEWSs by generating

three main systematic review questions. The findings from

this review answered the following research questions:

1. How to classify low-cost MEMS-based EEWSs?

The reviewed articles revealed that networks can be classified

into two categories according to the warning type and adopted

EEW algorithm. Warning types can be on-site and regional,

whereas the regional EEW algorithms can be classified as source-

based and ground motion-based.

1. What are the existing low-cost EEWSs implemented around

the world?

Low-cost EEWSs were classified according to research

question 1 and analysed in terms of the type of low-cost

sensor used, whether smartphones or Dedicated ground

motion sensors.

2. What are the limitations and challenges in implementing a

low-cost EEWS?

It was identified that: 1) most of the low-cost EEWSs were

centralised, 2) EEWSs support only a single type of low-cost

ground motion detection sensor, and 3) most of the regional

EEWSs adopted the source-based algorithms which consume a

significant amount of time in detecting and estimating earthquake

parameters. Also, the main challenges in implementing a low-cost

EEWS were identified as: 1) security measure which needs to be

analysed further in terms of constructing a community-engaged

EEWS, and 2) detecting human activities related motions from the

earthquake’s ground motion in smartphone-based EEWSs.

After answering these questions, opportunities,

directions and research areas for further investigation

were identified. Exploring the feasibility of node-level

processing, introducing multi-sensor support capability,

and adopting ground motion-based EEW algorithms for

regional EEWSs are areas for future research.

Investigation into these identified research areas and

opportunities for low-cost EEWSs will be beneficial for

building robust, low-cost MEMS-based EEWS,

significantly benefiting regions of high seismicity.
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Appendix

TABLE A1 An overview of the dedicated MEMS-based EEWSs according to their sensor unit or research unit, published year, type of processing and
application.

Research unit or
sensor
unit

Articles
published year

Type of processing Application

SOSEWIN 1, SOSEWIN 2 2009 and 2012 • Decentralised processing (Node-
level processing)

• EEW

P-alert 2013, 2016, 2018, 2021 • Centralised processing • EEW
• Detecting earthquake’s rupture directivity.
• building a real-time shake map for ongoing earthquakes and damage

localisation in buildings after an earthquake.

GL-P2B and SIT-S 2017, 2019, 2021 • Centralised processing • EEW

Community seismic
network (CSN)

2015 • Centralised processing • EEW
• Monitoring the health and safety of structures
• Producing zonationmaps of populous regions and giving maps of maximum

shaking soon after a significant earthquake.

Quake catcher
network (QCN)

2009 • Centralised processing • EEW

ElarmS 2019 • Centralised processing • EEW

Adel ASX1000 2021 • Centralised processing • EEW
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