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Deep learning is widely used in brain electrical signal studies, amongwhich the
brain–computer interface is an important direction. Deep learning can
effectively improve the performance of BCI machines, which is of great
medical and commercial value. This paper introduces an efficient deep
learning model for classifying brain electrical signals based on a Mamba
structure enhanced with split-based pyramidal convolution (PySPConv) and
Kolmogorov-Arnold network (KAN)-channel-spatial attention (KSA)
mechanisms. Incorporating KANs into the attention module of the
proposed KSA-Mamba-PySPConv model better approximates the sample
function while obtaining local network features. PySPConv, on the other
hand, swiftly and efficiently extracts multi-scale fusion features from input
data. This integration allows the model to reinforce feature extraction at each
layer in Mamba’s structure. The model achieves a 96.76% accuracy on the
eegmmidb dataset and demonstrates state-of-the-art performance across
metrics such as the F1 score, precision, and recall. KSA-Mamba-PySPConv
promises to be an effective tool in electroencephalogram classification in
brain–computer interface systems.
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1 Introduction

Electroencephalogram (EEG) has been a hotspot for medical, computer science, and
commercial research, and it is often used to diagnose brain diseases and to study human
mental activities. Brain–computer interfacing is a promising technology for scientists and
engineers, which converts human EEG signals into programs that machines can recognize.
Deep learning is an important tool in brain electricity studies and has been employed by
many scholars, as exemplified below.

The DeepConvnet model, employed by Schirrmeister et al., achieved a classification
accuracy of 76.7% on the PhysioNet EEGMotorMovement/Imagery Database (eegmmidb).
The model utilized multiple layers of conventional convolutional neural network (CNN)
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convolutions to construct deep learning networks, achieving 63.7%
and 83.2% accuracy on the BCI-2a and BCI-2b datasets,
respectively (Schirrmeister et al., 2017). The EEGnet model,
adopted by Lawhern et al., achieved an accuracy of 79.3% on
the eegmmidb dataset (Lawhern et al., 2018). This model utilized
depth-separable convolutions to construct multi-layer deep
neural networks, thereby facilitating the segregation of
channels and regions while reducing the parameter count. Jia
et al. developed a multi-branch multi-scale CNN (MMCNN) (Jia
et al., 2021) that decoded the original EEG signal without filtering
or other pre-processing techniques. It also successfully
characterized information in various frequency bands and thus
determined the optimal convolution scale. Roots et al. introduced
a multi-branch two-dimensional (2D) CNN that employed
distinct hyperparameter values for each branch, resulting in
accuracies of 84.1% and 83.8% when applied to the eegmmidb
dataset for performing and imagining motor actions, respectively
(Roots et al., 2020). Chowdhury et al. developed an EEGNet
Fusion V2 model that enhanced the extracted features via diverse
filters, which yielded a spectrum of features. Subsequently, these
features were integrated into the fusion layer to generate more
intricate features (Chowdhury et al., 2023). To identify spectral
features and improve the decoding of motor imagery
electroencephalogram (MI-EEG), Li et al. employed a novel
time-spectrum squeezed-excitation feature fusion network
with multi-stage wavelet convolutions in parallel for multi-
spectral convolution block capture (Li et al., 2021). Hou et al.
combined bidirectional long and short-term memory (BiLSTM),
attention mechanisms, and a graph convolutional neural network
(GCN) to enhance the decoding performance. This was achieved
by leveraging the feature topology estimated from the
comprehensive data set to accurately identify the human
body’s intention to move from the raw EEG signals (Hou
et al., 2022). Steady-state visual evoked potential (SSVEP)
represents one of the most frequently utilized control signals
in brain–computer interface systems. In an interdisciplinary
classification scenario, Chen et al. proposed an SSVEP
classification model based on the highly effective deep
learning Transformer structure, which fully exploited
harmonic information and established a methodology based
on filter bank technology (Chen et al., 2022). Luo et al.
employed a shallow mirror Transformer comprising a multi-
head self-attentive layer with a global receptive field to detect and
utilize discriminative segments across input EEG trials. They also
constructed mirror EEG signals and mirror network structures
based on integrated learning to improve classification accuracy
(Luo et al., 2023). Keutayeva and Abibullaev developed a hybrid
model that fused a CNN with a visual Transformer for decoding
motion image EEG signals. The CNN was employed to extract
local features, whereas the Transformer was utilized to perceive
global dependencies. The model demonstrated 80.44% and
74.73% accuracy on the BCI-2a and BCI-2b datasets,
respectively, which represented a significant improvement over
previous models (Keutayeva and Abibullaev, 2023).

In recent years, there has been a notable increase in the
popularity of Kolmogorov-Arnold networks (KANs) as an
alternative to the multi-layer perceptron (MLP) (Vaca-Rubio
et al., 2024). KANs utilize the Kolmogorov-Arnold representation

theorem, which enables the activation functions of a neural network
to be executed on edges. This facilitates the “learning” of the
activation functions and enhances the model performance. KANs
lack linear weights; each weight parameter is replaced by a univariate
function parameterized as a spline. Smaller KANs can be visualized
intuitively and achieve comparable or superior accuracies in data
fitting and partial differential equation (PDE) solutions compared to
larger MLPs.

The Mamba model addresses the limited efficiency of
Transformers in long sequence processing by combining linear
layers, gating, and selective structured state space models (Gu
et al., 2023); its core is a selectivity mechanism that efficiently
compresses and filters contextual information. The hardware
algorithm significantly improves computational speed by
scanning rather than convolving.

However, the mamba model is very limited to handle local
features, and the obtained features have a large redundancy.
Therefore, we can use some new methods to improve the local
feature extraction ability of mamba, using the attention module
to screen the reinforcement main features. In light of the studies
above, we propose a novel deep learning model integrating a
Mamba backbone splicing a split-based pyramidal convolution
(PySPConv) module and a KAN-channel-spatial attention (KSA)
mechanism. The model is designated as KSA-Mamba-PySPConv,
and its objective is to leverage the Mamba and KAN architectures
to enhance model classification capabilities and reduce
resource costs.

It includes the literature review, model methodology,
experimental design, discussion of experiments, and conclusion.
The primary contributions of this paper are as follows:

1) We propose the novel KSA mechanism, which incorporates
a KAN network into the attention mechanism. This
integration aims to enhance the module’s feature
extraction capabilities, leveraging the fitting
approximation capacity of KANs.

2) We employ the novel PySPConv scheme to replace the
standard convolutions in Mamba, aiming to address the
limitations of Mamba’s local feature extraction capability
while minimizing computational overhead.

3) We conduct experiments using the proposed KSA-Mamba-
PySPConv model and multiple existing models on eegmmidb
to compare their accuracy, F1 score, and recall.

2 Related work

2.1 KANs

MLPs use a multi-layer linear function plus a nonlinear
activation function to model and approximate the input-
output relationships of a sample, which consists of a large
trainable data matrix, as expressed by
f(x) ≈ ∑N(c)

i�1 aiσ(wi · x + bi).In this formuna, x is the input
data,wi is the weight of x, bi is the bias, σ is activation
function, ai is the ratio of Scale coefficient. MLPs consume a
lot of memory and computational resources in complex tasks and
are prone to overfitting. In recent studies, KANs have been shown
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to outperform MLPs in accuracy and interpretability, with
smaller KANs achieving accuracy comparable to or better than
larger MLPs in data fitting and PDE solving. Besides, KANs can
be represented intuitively as the summation of multiple spline
functions and, therefore, have stronger interpretability. The
functional relationship of KANs can be expressed by

f x( ) � ∑Q
q�1

Φq ∑P
p�1

ϕq,p xp( )⎛⎝ ⎞⎠.

Here, f(x) is the multivariate function to be represented; Φq

denotes a combinatorial function that can be learned and is
typically used at higher network levels; ϕq,p is the learnable
unitary function corresponding to an activation function on
the network edges, generally parameterized as a spline
function; xp is the pth component of the input vector; Q and
P are the number of combinatorial and unitary functions,
respectively.

KANs can normally achieve comparable or better
performance than wider MLPs with fewer parameters.
However, KANs have more parameters than MLPs for the
same depth and width. The training process of KANs is much
more complex than that of conventional neural networks, and its
training speed is 10 times slower than that of MLPs. In practice,
the resources consumed by KANs are huge and difficult to
implement in high-dimensional spaces. Therefore, leveraging
the advantages of KANs while compensating for their
shortcomings is a question worth studying.

2.2 Mamba and transformers

Transformers capture global features more efficiently than
CNNs, though with n2 computational complexity, n is the
length of sequence. In contrast, Mamba exhibits linear
complexity and can address the memory consumption issue of
Transformers when processing long sequences. Moreover,
Mamba adopts hardware-aware parallel algorithms to optimize
graphics processing unit (GPU) memory usage and improve the
design of the state space model (SSM) architecture, which
achieves higher efficiency. Mamba also performs selective
processing of input information, which means it can focus on
specific information in the input sequence. As a result, Mamba is
five times faster than Transformers in inference (predicting or
generating texts), and its performance can match that of a
Transformer twice its size in certain areas. However, Mamba
uses complex S6 and MLP components, making the model
complicated and less interpretable. Moreover, it is weak for
local feature extraction of sequences. Improving the local
feature extraction capability and simplifying the complexity of
Mamba are research areas worthy of investigation.

2.3 Pyramidal convolution and split-based
convolution

Pyramidal Convolution (PyConv) utilizes a pyramid structure
with different kernel sizes and depths to capture details on various

levels (Duta et al., 2021). The PyConv architecture has multiple
levels of kernels, gradually increasing kernel size from the bottom
(level 1) to the top (level n) while reducing depth. This approach
aims to capture diverse scale information at different layers. In
PyConv, the different kernel types complement each other to
enhance the network’s recognition capabilities. Smaller kernels
excel at focusing on fine details, capturing information about
small objects or specific regions; larger kernels gather a more
robust overview of larger objects or contextual information. The
PyConv architecture exhibits parameter and computational
resource requirements comparable to conventional
convolution while benefiting from its ability to leverage multi-
threaded parallel processing. This configuration makes PyConv
exceptionally efficient. PyConv’s 50-layer network outperformed
a baseline ResNet with 152 layers in recognition performance
while reducing the number of parameters by 2.39 times,
computational complexity by 2.52 times, and layer count by
over three times (Duta et al., 2021).

Split-based convolution (SPConv) splits the input feature map
into a representative part and an uncertain redundant part (Zhang
et al., 2020). The representative part is processed with
relatively heavy computation to extract intrinsic information,
while the uncertain redundant part uses lightweight operations to
handle tiny details. The SPConv architecture employs a k =
3 convolutional layer to extract essential information and a
lightweight k = 1 convolutional layer to supplement fine-grained
hidden details. The final step of the process involves merging the
extracted features from the two parts using a parameter-free
feature fusion module. Therefore, SPConv consistently
outperforms baselines in accuracy and inference time while
showing significant reductions in floating-point operations
per second (FLOPs) and parameter counts. Experiments on
Cifar10, ImageNet, and Microsoft Common Objects in Context
(MS-COCO) datasets demonstrated that networks using
SPConv achieved state-of-the-art (SOTA) performance in
accuracy and inference speed at the GPU level. The parameter
count for SPConv could also be reduced by 2.8 times while
maintaining superior performance and inference speed (Zhang
et al., 2020).

3 Methodology

3.1 KSA-seq attention

EEG involves multichannel one-dimensional (1D) data, for
which the features of individual channel waveforms and
the potential relationships between different channels must
be considered. KAN has a stronger fitting ability than MLP, and
it can obtain the waveform features of a single channel better.
On the other hand, the attention mechanism of the lateral axis
captures the feature relationships between different channels.
We fuse the attention mechanisms in both directions to obtain
a more comprehensive EEG feature relationship. We call this
attention mechanism KSA, and the algorithmic steps for
realizing the KSA attention mechanism are as follows in
Algorithm 1:
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Input:x: (B,C,L)

Output: y: (B,C,L)

1. r1: (B,C,1) ← AdaptiveAvgPool1d (B,C,L)

2. r2: (B,C,1) ← AdaptiveMaxPool1d (B,C,L)

3. r1’: (B,C,1) ← KAN_Expand (KAN_

Compress (r1′))
4. r2’: (B,C,1) ← KAN_Expand (KAN_

Compress (r2′))
4. m: (B,C,L) ← (r1’+r2′) *x

⊳ KAN-seq attention is done

1. m: (B,C,L)

2. n1: (B,1,L) ← Mean (m,dim = 1)

3. n2: (B,1,L) ← Max (m,dim = 1)

4. n: (B,2,C) ← Concat (n1,n2,dim = 1)

4. SpatialAtt: (B,1,C) ← conv1d

(B,2,C), kernel = 7

5. out: (B,C,L) ← SpatialAtt *m

⊳ SP1D-seq attention is done

Return out

Algorithm 1. KAN-seq attention.

The algorithm describes the implementation of the attention
mechanism and the main input and output data. KAN_Compress
represents using the KAN-MLP architecture to compress channels,
which is achieved by setting the number of output channels Cout of
the KAN network to be 1/r of the number of input channels Cin
(where r is the scaling ratio). KAN_Expand represents using the
KAN-MLP architecture to expand channels, which is accomplished
by configuring the number of output channels Cout to expand to r
times the number of input channels Cin. We obtain channel-axis

FIGURE 1
Structure of mixconv1d.

FIGURE 2
Structure of PySPConv.
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attention by performing channel transformation with KAN-seq
attention. Then, we use the 1D spatial attention algorithm to
calculate the spatial sequence features, which can obtain the
y-axis attention. By combining the operations of both sections,
we obtain multi-dimensional attention for the input sequence
data. We call this module KSA-seq attention.

3.2 PySPConv

Mamba is a novel selective structured SSM that can efficiently
deal with long sequential data while maintaining linear time
complexity. In Mamba modules, a conventional CNN is used to
extract local features. However, CNN-extracted features are limited
by the size of kernels and the number of layers, which means that
CNN suffers from a lack of flexibility and restricted abilities.
Therefore, a more capable local feature extractor needs to be
used to obtain better local features.

We design amixed convolutional model that uses different-sized
CNN kernels to extract features of varying receptive fields. We
utilize k = 3, k = 5, and k = 7 convolution operations to obtain
features under different receptive fields. These features are then
combined to form the final output. This module addresses the
limitation of narrow receptive fields in conventional CNNs and
enhances the quality of extracted features by incorporating multiple
convolution sizes. We name this module “mixconv1d.” Its structure
is represented in Figure 1, which consists of convolutions with k = 3,
k = 5, and k = 7, as well as a feature concatenation
compression module.

To obtain multi-scale features, we leverage the pyramid
convolutional technique and modify it to enhance its
performance and speed while minimizing computational
complexity. Specifically, we replace the conventional convolution
in the pyramid structure with a lightweight and efficient separable
convolution. Here, we employ SPConv, which splits the features
into representative and redundant parts, using k = N and k =
1 convolutions, respectively. This approach captures the main
features in the representative part and details features in the
redundant part as supplementary information. This design
makes the convolutions efficient and lightweight. Replacing
the conventional convolutions in a pyramid convolution with
SPConv, which uses different kernel sizes, can reduce
computational burdens and enable efficient feature extraction
at different scales. This novel convolution module is called
PySPConv, whose architecture is shown in Figure 2. It is
composed of one-dimensional SPConv convolutions with a
kernel size of Kn and a feature concatenation module. We
can independently configure the kernel sizes and the number
of feature layers, which makes this convolutional module highly
flexible to fit our needs.

In subsequent experiments, we will compare the performance of
the two convolutional modules. We will test and evaluate various
metrics to confirm the advantages of PySPConv in computational
load and performance.

3.3 Mamba-PySPConv with KSA attention

We include this new PySPConv module in the Mamba structure
and employ the KSA attention mechanism between each layer of
Mamba blocks, which enables the model to filter out the important
features in the input and improves the expressive power of the
model. We also add the residual structure between different layers of
Mamba so that the features obtained from shallow Mamba blocks
can be fused into deeper Mamba blocks, which improves the model
convergence, enriches the extracted features, and fully utilizes the
features obtained from each block layer. This final model is called
KSA-Mamba-PySPConv, and its block structure is shown
in Figure 3.

4 Experiments and results

To evaluate the performance of the aforementioned models, we
train and evaluate them on the eegmmidb dataset.

FIGURE 3
Structure of the KSA-Mamba-PySPConv block.
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4.1 Experiments

Dataset introduction. The eegmmidb dataset contains over
1,500 1-min and 2-min EEG recordings from 109 volunteers,
which were obtained from subjects completing a series of motor/
imagery tasks. Motor imagery or movement tasks were recorded as
EEG signals from 64 channels positioned upon the subject’s
scalp. Each channel was annotated with three codes: T0, T1, and
T2. T0 designates the rest period; T1 signifies the movement of the
left hand in selected tasks; T2 denotes the movement of the right
hand for certain tasks. Of the 109 participants, six individuals lacked
sufficient data recordings and were excluded from the training
experiment. All trials involved sustained and continuous
movements of 4–4.1 s for execution and imagery tasks. To
ensure consistent dataset representation, 4-s trial segments were
extracted and clipped, removing any static states or extraneous non-
experimental segments. The sampling rate was 160 Hz, and after
each trial segment’s clipping, 640 samples were obtained.

Experimental setup. We utilize the Magnetoencephalography
and Electroencephalography (MNE) library to read raw general data
format (GDF) files from the eegmmidb database. A 60 Hz bandpass
filter is applied to remove power line interferences. A low-pass filter

with a cutoff frequency of 0.5 Hz is then used to suppress low-
frequency noise. Finally, a bandpass filter ranging from 1 to 60 Hz is
employed to attenuate high-frequency artifacts. The “T1” labels are
converted into “0” labels, and the “T2” labels are converted into “1”
labels. To maintain consistency in the dataset, the 640 continuous 4-
s action data samples are divided into four non-overlapping
windows of 160 samples each, which maintains the labeling of
the original experiment. Datasets are divided into the motor task
data, imagery task data, and data for both tasks. The data obtained is
stored in a matrix format. We divide the processed EEG data matrix
into a training set,test set and a validation set at a ratio of 7:2:1. The
Adam optimizer is used to train the model, with an initial learning
rate of 0.0001. Every 20 epochs during the training process, the
learning rate is adjusted by 0.1 times its original value. The input
sequence length of this Mamba model is 160, the state dimension is
256, and it has three layers. To shorten the training time, we use
GPU servers and set a batch size of 24 for our training process. The
configuration of the GPU server used in the experiment is as follows:
the CPU model is AMD EPYC 9654, the graphics card is an RTX
4090 with 24 GB of video memory, and the system is equipped with
128 GB of RAM. It is also possible to conduct training on a laptop
with more than 8 GB of video memory, although the process may be

FIGURE 4
Original Mamba results.
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slower. We perform five sets of comparative experiments using
different models to validate the model performance, namely, the
original mamba model experiment, Mamba-mixconv1d model
experiment, KSA-Mamba-PySPConv model experiment, executed
motor task dataset experiment, and imagery motor task dataset
experiment.

4.2 Results

Original mamba results. Figure 4 presents the experimental
results of the original Mamba model on the brain-EEG motor
imagery recognition task. The model employs a standard 1D
convolution to extract local features, with a kernel size of 5. We
compare the classification performance of the original Mamba
model with EEGNet Fusion V2. The original Mamba model
achieves significantly improved recognition performance,
achieving an accuracy of 89.4%, and its precision, F1 score, and
recall values all approach those of EEGNet Fusion V2, being higher
than 85%. Furthermore, the original Mamba model requires fewer
parameters compared to EEGNet Fusion V2. Increasing the size of
the CNN kernel in the Mamba module yields improved model

performance, demonstrating that the Mamba structure is more
effective in handling sequence data classification tasks compared
to multi-layer deep neural networks (DNNs).

Mamba-MixConv1d results. To enhance the Mamba model’s
ability to extract local features, we replace the original 1D
convolution with a MixConv1d convolutional module. Figure 5
presents the experimental results of the Mamba-MixConv1d model
on the EEG motor imagery recognition task. We compare the
classification performance of the Mamba-MixConv1d model
with the original Mamba model. The Mamba-MixConv1d
model achieves an accuracy of 95.6%, which is 6% higher
than that of the original Mamba model. This improved
model exhibits a precision and F1 score approaching 95%,
and its recall is near 94%, showing that Mamba-MixConv1d
significantly outperforms the original Mamba model.
Experimental results conclusively demonstrate that the
MixConv1d module possesses strong local feature extraction
capabilities and solves the problem of insufficient local feature
extraction in the original Mamba model. However, adding more
convolutional branches and larger kernel sizes and performing
additional fusion calculations result in substantial
computational costs and memory consumption.

FIGURE 5
Mamba-MixConv1d results.
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KSA-Mamba-PySPConv results. To reduce the computational
load of the convolutional module, we replace MixConv1d with
PySPConv. In addition, to improve the expressive power and
feature quality of the Mamba structure output, we add the KSA
attention module to enhance the channel and spatial features,
capturing relationships between different parts of brain activity
and detecting more complex data patterns. In Figure 6, we
present the experimental results for the KSA-Mamba-PySPConv
model on the EEG motor imagery recognition task. We compare its
classification performance with that of the Mamba-MixConv1d
model. The KSA-Mamba-PySPConv model achieves an accuracy
rate of 96.76%, which is 1.76% higher than that of the Mamba-
MixConv1d model. The precision, F1 score, and recall of the KSA-
Mamba-PySPConv model are all above 96.5%, exceeding those of
the Mamba-MixConv1d model by approximately 1%–2%.
Experimental results demonstrate that KSA-Mamba-PySPConv
possesses stronger local feature extraction capability and exhibits
better overall performance than Mamba-MixConv1d. The statistical
comparison of the parameters of the two convolutional modules
finds that PySPConv has 21.1% fewer parameters compared to
MixConv1d when configured with the same kernel size.
PySPConv carries fewer redundant features and boasts higher

feature extraction efficiency and faster computation speed.
Moreover, PySPConv allows for autonomous adjustment and
configuration of the depth and kernel size of the convolutional
layers while enabling the addition of more convolutional branches.
Using the SPConv method significantly reduces the computational
burden associated with adding branches and adjusting depths
in PySPConv.

Executed motor task dataset experiment results. We test the
performance of the KSA-Mamba-PySPConv model using the
executed motor task dataset, and the results are shown in
Figure 7. We compare the results to those from EEGNet Fusion
V2. For the executed motor task, the KSA-Mamba-PySPConv model
achieves an accuracy of 96.28%, 6.68% higher than that of EEGNet
Fusion V2 (Chowdhury et al., 2023). The precision, F1 score, and
recall of KSA-Mamba-PySPConv are all higher than those of
EEGNet Fusion V2 by approximately 6.5%. This demonstrates
that the KSA-Mamba-PySPConv model outperforms EEGNet
Fusion V2 in executed motor movement tasks on eegmmidb.

Imagery motor task dataset experiment results. We also test the
performance of the KSA-Mamba-PySPConv model using the
imagery motor task dataset, and the results are shown in
Figure 8. In this domain, the KSA-Mamba-PySPConv model

FIGURE 6
KSA-Mamba-PySPConv results.
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achieves an accuracy of 96.33%, 6.73% higher than that of EEGNet
Fusion V2. The precision, F1 score, and recall of KSA-Mamba-
PySPConv are all higher than those of EEGNet Fusion V2 by
approximately 6.5%. This demonstrates that the KSA-Mamba-
PySPConv model outperforms EEGNet Fusion V2 in imagery
motor tasks on eegmmidb.

5 Discussion

This section discusses the performance differences between
various models and their respective advantages and
disadvantages. First, the experimental results for executed
and imagery motor movement tasks are organized and
compared for the models detailed in this study, as
summarized in Table 1.

The original Mamba model demonstrates good performance in
classifying heart rates, validating the model’s effectiveness at
handling 1D data. The use of MixConv1D in Mamba
significantly improves classification accuracy, proving that
MixConv1D enhances convolutional features through local

feature extraction and boosts overall model performance. When
using PySPconv and KSA attention modules in conjunction with
Mamba, compared to using MixConv1D alone, we observe
improved classification accuracy. Furthermore, the parameters of
PySPconv are 21.1% fewer than those of MixConv1D, which can be
obtained by torchstat, highlighting the efficiency and lightweight
nature of this module.

The results of some advanced deep learning models and our
method for executed motor movement tasks are compared
in Table 2.

As can be seen in Table 2, our new model exceeds previous
researchmodels in the performance metrics of the classification task.
The KSA module helps the model better capture the nonlinear
relationships in the data. PySPConv allows the model to process data
sparsely, thereby reducing the number of parameters and
computational complexity.

The results for imagery motor movement tasks are shown in
Table 3. It can be seen that the proposed KSA-Mamba-
PySPConv model also demonstrates excellent classification
performance in imagery motor movement tasks, reaching the
SOTA level.

FIGURE 7
Experiment results on the executed motor task dataset.
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6 Conclusion

In this paper, we propose a novel architecture called KSA-
Mamba-PySPConv for the EEG imagery/motor movement
classification tasks. The proposed scheme includes a KSA
attention mechanism and a PySPConv module to enhance the
features extracted from a single module layer. The KSA attention
mechanism achieves enhanced and filtered channel and spatial
features by integrating the KAN network with attention
mechanisms. PySPConv utilizes different convolutional kernels to
extract pyramid-like multi-scale features and employs split

operation and parameter-free feature fusion algorithms to achieve
lightweight and efficient convolutions. These configurations enable
KSA-Mamba-PySPConv to outperform conventional EEG classification
models and achieve SOTA performance. The model exhibits excellent
performance across different tasks on eegmmidb, proving its strong
generalization capabilities. When deploying this model in a practical
BCI system, we may need to consider the model’s size and the
consumption of computational resources. Therefore, techniques such as
quantization and pruning might be employed for the deployment of the
model. In the future, we will explore pruning algorithms and optimization
methods to enhance the speed of this model.

FIGURE 8
Experiment results on the imagery motor task dataset.

TABLE 1 Results for executed and imagery motor movement tasks.

Model Accuracy % Precision % Recall % F1 score % Params flops

Left Right Left Right Left Right

Original Mamba 89.37 87.4 91.5 91.4 87.4 89.4 89.4 716.802k 2.369G

Mamba-MixConv1d 95.66 96.3 94.9 95.1 96.3 95.7 95.6 1513M 5.434G

KSA-Mamba-PySPConv 96.76 96.6 96.9 96.9 96.6 96.7 96.8 1193k 4.206G

Frontiers in Sensors frontiersin.org10

Li 10.3389/fsens.2025.1548729

https://www.frontiersin.org/journals/sensors
https://www.frontiersin.org
https://doi.org/10.3389/fsens.2025.1548729


Data availability statement

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and
accession number(s) can be found in the article/
supplementary material.

Author contributions

ZL: Conceptualization, Data curation, Formal Analysis, Funding
acquisition, Investigation, Methodology, Project administration,
Resources, Software, Supervision, Validation, Visualization,
Writing – original draft, Writing – review and editing.

Funding

The author(s) declare that no financial support was received for
the research and/or publication of this article.

Conflict of interest

The author declares that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the
creation of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the authors and
do not necessarily represent those of their affiliated organizations, or those
of the publisher, the editors and the reviewers. Any product that may be
evaluated in this article, or claim thatmay bemade by itsmanufacturer, is
not guaranteed or endorsed by the publisher.

TABLE 3 Results for imagery motor movement tasks.

Model Accuracy % Precision % Recall % F1 score %

Left Right Left Right Left Right

DeepConvNet (Schirrmeister et al., 2017) 76.2 76.5 75.9 76.0 76.4 76.3 76.1

ShallowConvNet (Schirrmeister et al., 2017) 78.2 78.2 78.3 78.7 77.8 78.5 78.0

MMCNN (Jia et al., 2021) 81.6 81.7 81.5 81.9 81.2 81.8 81.3

EEGNet (Lawhern et al., 2018) 68.4 68.3 68.4 69.2 67.5 68.8 67.9

EEGNet
Fusion (Roots et al., 2020)

83.8 85.0 83.3 82.9 84.8 83.9 84.0

EEGNet
Fusion V2 (Chowdhury et al., 2023)

87.8 88.1 87.5 87.5 88.1 87.8 87.8

KSA-Mamba-PySPConv 96.33 96.7 95.96 96.08 96.59 96.39 96.27

TABLE 2 Results for executed motor movement tasks.

Model Accuracy % Precision % Recall % F1 score % Params Flops

Left Right Left Right Left Right

DeepConvNet (Schirrmeister et al., 2017) 76.6 76.2 77.1 77.3 76.0 76.7 76.5 97.302K 203.453M

ShallowConvNet (Schirrmeister et al., 2017) 79.3 79.2 79.3 79.2 79.3 79.2 79.3 80B 580K

MMCNN (Jia et al., 2021) 81.4 82.2 80.6 80.5 82.3 81.3 81.4 - -

EEGNet (Lawhern et al., 2018) 66.6 69.1 64.8 59.9 73.3 64.2 68.8 1.114K 132.251M

EEGNet Fusion (Roots et al., 2020) 84.1 84.2 84.5 83.8 83.9 84.0 84.2 17.682K 1.597G

EEGNet Fusion V2 (Chowdhury et al., 2023) 89.6 89.9 89.4 89.4 89.8 89.7 89.6 9.636M 16.546G

KSA-Mamba-PySPConv 96.28 94.59 98.09 98.16 94.39 96.34 96.21 1.193M 4.206G
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