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Diagnosis of disease from breath signatures comprised of volatile, mostly organic
compounds is a promising field of research and medical application that, after
more than 4 decades of active research, has yielded far fewer breatkthroughs
than its potential initially appeared to promise. The recent pandemic spurred
many teams, including ours at NASA, to investigate this approach for a particular
application: determining COVID-19 infection status. In this Perspective, we
examine the science and technology underlying one means of implementing
such diagnostics, the so-called electronic nose, in an implementation named
EnCOVID: Electronic nose for Coronavirus Organic Volatiles Infection Detection.
We demonstrate an approach to developing application-specific arrays of
sensors that balance chemical selectivity with reversibility in a manner well
suited to chemically complex mixtures like human breath; the method differs
markedly from how single, highly selective sensors are typically chosen. Using a
64-nanosensor array of carbon-nanotube-based chemiresistors, we used SIMCA
(soft independent modeling by class analogy) on results from 63 volunteers to
show that COVID-19 status, positive or negative, can be correctly classified,
relative to gold-standard RT-PCR, 92% of the time. While the data set is too small
to generate the critical independent training and testing sets, this classification
success is a promising basis upon which to design a larger, more definitive study.
We conclude that the portability and possibility of low-cost, high-volume
manufacture of an electronic nose-based system may be most valuable for
applications outside hospitals and clinics, including situations—like an
epidemic—and venues, from airports to sports venues to schools, where large
numbers of people have to be screened rapidly, in parallel.
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1 Background and constraints

The possibility to identify disease in the human body from breath odor, recognized since
ancient times (Hippocrates of Kos, 430 BCE), has been facilitated by the advent of modern
oral hygiene: halitosis can complicate respiratory system volatile chemical signatures with
unpleasant oral bacterial emissions (Van Den Velde et al., 2007). Detailed quantitative
analysis by gas chromatography-mass spectrometry (GC-MS) reveals breath to be
chemically complex, with hundreds of volatile organic compounds (VOCs) (Preti et al.,
1988; Boots et al., 2012) plus multiple inorganic gases. (Breath also includes non-volatile
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species, from simple salts to complex proteins, carried within aerosol
water droplets; in most breath-sampling systems, these are captured
by particulate filters or condensation. Though they provide a wealth
of information, the non-volatiles are not considered in this article.)
The physiological mechanisms by which VOCs equilibrate between
exhaled breath from the lungs and the rest of the body, principally
via the circulatory system, has been studied extensively (King et al.,
2013). Large differences in the human “volatile-om” or
“breathprint,” even among cohorts of individuals with similar
genotypes, phenotypes, and states of health, render unambiguous
breath-based disease diagnosis highly challenging (Haworth
et al., 2022).

Over the past 5 decades, a host of chemical sensors for gas-phase
analysis have been researched, developed and demonstrated using a
variety of transduction platforms. (Röck et al., 2008). Reversibility at
operational temperature—key for sensors to perform continuous or
repeated detection—necessitates comparatively weak
physicochemical interactions between sensor transduction
materials and analyte(s), compromising chemical specificity:
chemically sensitive materials, even with features targeting a
specific combination of molecular size, shape, polarity, hydrogen
bonding, dispersive forces, and other distinguishing characteristics,
will adsorb/absorb many if not most (semi)volatile species to some
extent. While the extent of such sorption, including its
concentration dependence, may differ markedly from compound
to compound, a high concentration of an interfering compound that
is poorly matched to the sensing material might yield the same
response magnitude as a low concentration of the bespoke molecular
target. Measuring multiple response characteristics beyond sorbed
analyte quantity–e.g., analyte sorption/desorption response times
(Post et al., 2022) or associated changes in sensing material
mechanical, electrical, magnetic, or optical properties–may
enhance chemical specificity without compromising reversibility
(Ricco et al., 1985). Another effective selectivity approach is to
include a chromatographic “front end” for chemical sensors,
providing access to characteristic retention times for analytes at
the cost of added calibration, complexity, system size, data
processing, and power demand (Bryant-Genevier et al., 2014).

To convert mediocre selectivity from a bug to a feature, sensor
arrays—in certain contexts called electronic noses—have been
researched and developed extensively (Röck et al., 2008; Janata,
2009; Patel, 2014; Stetter and Penrose, 2002; Li T. et al., 2023).
Because concentration-dependent responses are determined by the
physicochemical characteristics of both the molecular target(s) and
the sensing material, an array of such materials can provide a unique
fingerprint for a given chemical compound, or a defined mixture of
compounds (coffee, gasoline, wine, human breath, etc.) (Hierlemann
and Gutierrez-Osuna, 2008). Importantly, arrays need not include
large numbers of sensors: as few as two sensors can, in theory,
provide an unlimited number of response combinations. In practice,
however, two sensors are likely to be adequate only in certain
scenarios (Hoyt et al., 1998), and unlikely to uniquely identify
large numbers of compounds or mixtures of similar chemicals.

A broader variety of compounds and mixtures across wider
concentration ranges may be identifiable by including more sensor
elements, but only when each added element provides unique, or
“chemically orthogonal,” information to all the others. Adding
sensing elements that provide no unique chemical information is

undesirable as each new sensing material costs time and money to
develop and to manufacture, raising cost without improving
performance. Furthermore, for some mathematical methods of
analyzing multidimensional data, dispersing the same chemical
information over more response dimensions can be tantamount
to adding noise (Osbourn et al., 1998; Röck et al., 2008), leading to
less reliable identification or poorer quantitation. Yet some sensor
array platforms support tens or hundreds of transduction elements
at reasonable cost, size and power and, fortunately, these can be
effectively leveraged through “strategic redundancy”: by including
three or more copies of each unique sensing material—even tailoring
the numbers of redundant elements to signal:noise ratios per sensor
element type by including more copies of noisier sensors—the
median response per sensing material can provide a higher
fidelity, higher reliability response that is also robust to single-
sensor-element failure.

With an appropriate array of sensing materials, chemical sensors
excel at detecting VOC mixtures, including those in breath, yet they
provide no chemical bonding or molecularly specific information in
the manner that mass spectrometry or vibrational spectroscopy can.
Still, olfaction is not spectroscopy and, in analogy to olfaction
(Persaud and Dodd, 1982; Gardner and Bartlett, 1994; Pearce,
1997; Kwon et al., 2015; Cheng et al., 2021), arrays can provide
selectivity via multi-sensor response vectors based solely on the
VOCs of a given breath mixture having low, moderate, or high
affinity for each sensing material of the array. As explained above,
application-appropriate chemical diversity of array elements is key
(Ricco et al., 1998): by selecting/developing sensing materials with
preferential affinity for the most important analytical targets (and, in
some cases, choosing other elements with affinity for likely
interferents), the output accuracy—clinically, the sensitivity
(immunity to false negatives) and specificity (immunity to false
positives)—can be enhanced.

Effective design of a sensor array for an application involving
highly variable, chemically complex mixtures and variable
backgrounds is, then, a balancing act: chemical selectivity and
adequate sensitivity must be implemented without sacrificing
reversibility. This feat may be difficult or impossible to achieve
using “traditional” highly selective single-analyte sensors that
require high binding constants to respond to a single low-
concentration target in the presence of high-concentration
interferents, making them into single-use disposables. But the
desired balancing act can be accomplished using a well-chosen
set of “sparingly selective” sensors to produce definitive response
patterns that unambiguously identify a target analyte or mixture in a
manner akin to how creatures such as humans and dogs
interpret odors.

Despite the potential and promise of this approach, sensor
arrays have found limited success for breath diagnostics
(Haworth et al., 2022) High on the list of probable culprits is
biological diversity. For example, if the objective is to learn if a
person has COVID-19, and considering that the person has a unique
genotype, phenotype, and time-varying state of respiratory chemical
output, an effective strategy could be to sample and analyze the
person’s breath under a wide range of physiologically impactful
circumstances: tired vs well rested; thirsty or not; hungry or fed, with
a multitude of food choices; healthy or with one or more afflictions,
from a common cold to a stressful workday. These measurements
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would need to be made both when the person is shown by a “gold-
standard” test (here, RT-PCR) not to have COVID-19, and then
again when that same test returns a COVID-19 positive result.
Analysis of the person’s data in n dimensions (for n sensing
materials) would then provide the basis for future diagnoses from
that lone person’s breath. But such an intensely personalized,
intrusive, time-intensive “training” approach is impractical if not
ridiculous.

A more reasonable clinical approach is to have a large cohort of
genetically and phenotypically diverse volunteers—tens, hundreds,
even thousands—stand in for all whose breath might be analyzed for
disease by such a system. Testing must include comparable numbers
of people confirmed to have the target affliction (at various stages of
progression) and “healthy controls” confirmed not to be ill; for all, a
wide range of genotypes and phenotypes should be included, as well
as various conditions or diseases (comorbidities) that could
interfere: respiratory afflictions of all types, diabetes, infections
with a range of (non-target) viruses and bacteria, etc. In assessing
the resulting data set, it can be productive to look for systematic
differences among related sub-cohorts and account for these where
practical. For example, if the breathprints of diabetics often include
higher levels of ketones, the accompanying questionnaire would
allow inclusion of diabetes status as a response parameter to
supplement the sensor signals. This information could be used to
only compare a diabetic’s breath with that of a cohort of other
diabetics, or it could be the basis for modifying the sensitivity
coefficients for sensor elements with high responses to ketones.
Patient data can be shared across studies without compromising
confidentiality.

In the next section, we summarize the approach and recent
results of a pre-clinical study classifying breath samples from
COVID-positive and -negative volunteers. The size of the study
was too small (63 individuals) for an unqualified declaration of
success, but the results are encouraging, and they suggest that
continued exploration of gas sensor arrays for breath-based
disease testing is well warranted.

2 Strategic approach

A direct and effective starting point is assessing the full set of
VOCs in the breath of those with a target illness as well as healthy
humans; ideally, such information is available, or can be obtained,
from GC-MS studies (e.g., Hakim et al., 2012). Generally, the VOCs
and inorganic gases for which the average or median difference
between healthy and ill is largest, relative to sensor noise and drift,
are likely to be (some of) the most helpful targets, though a few
compounds that are relatively constant can be quite helpful too.
Typical relevant compound classes include alcohols, aldehydes,
esters, organic acids, alkanes, alkenes, aromatics, and thiols; of
the inorganics, nitrogen oxides (esp. NO and NO2, which
equilibrate via O2 reaction under typical breath and sampling
conditions), CO, and H2S can be important. Managing humidity
in breath is often critical as well, because the concentration of water
vapor is much greater than any VOC. Fortunately, H2O interacts
weakly with many of the VOC-affinity sensor materials, and water
also is more neutral on the redox scale than NOx, CO, and
H2S—relevant for sensors that respond via analytes’ electron

donor/acceptor properties. A simple, practical approach to
managing water vapor is presented with the details of COVID-19
breath analysis below.

Limits of detection (LODs) must reach ppb levels to provide
reliable responses for most target VOCs and gases in breath.
Choosing at least one sensing material expected to interact well
with at least one of each of the dozen or so “most important” VOCs
(as defined above) is a good start, recognizing that even a material
targeting one particular compound or class (e.g., aldehydes) will
usually respond to similar classes (ketones, esters, ethers), though
with diminished sensitivity—if the material choice has been well
made. Understanding which material provides a desired preferential
response follows fundamental chemical principles: like dissolves
like. This can be embodied with a single metric such as Hildebrand
and Hansen solubility parameters (Barton, 1991; Hansen, 2007), but
more sophisticated models, for example the linear solvation energy
relationship (LSER) (Kamlet et al., 1983), can also be used.
Analytical frameworks based on cluster analysis, neural networks,
support vector machines, logistic regression, and a range of other
methods can be effective for modeling and predicting responses
(Scott et al., 2006; Tan and Xu, 2020); however, since the
fundamental chemical interactions and properties of the analytes
and sensing materials are not inputs to such models, they do not
offer initial guidance (before data have been acquired) as to which
materials should be best for which analytes.

Most sensors respond relative to a baseline that is often obtained
by analysis of the environment in which the target(s) are to be
measured in their absence. For breath, clean ambient air is suitable
to generate a sensor blank or baseline. In potential screening
applications like airports and sports venues, however, ambient air
could include a significant background, much of it generated by
humans, with further, unpredictable additions from cleaning
chemicals, food preparation, and the like. The particular
challenge is that mammalian respiratory systems not only add
VOCs to exhaled air, they often also (partially) remove VOCs
from inhaled ambient air. A sophisticated sensor system might
therefore create its background or blank by scrubbing organics
from ambient air in a manner analogous to the respiratory
system. However, to the best of our knowledge, such systems
have yet to be designed and demonstrated. Relatively clean air
can be generated, nonetheless, from ambient air using scrubbing
technology (e.g., activated carbon plus particle-capture filters). A
silver lining to the pandemic cloud is that many public facilities now
filter and exchange air much more thoroughly than pre-2020,
making ambient air generally far cleaner than before.

3 Case study: COVID-19 breath assay
using a chemiresistor array

The EnCOVID (Electronic nose for Coronavirus Organic
Volatiles Infection Detection) (Li J. et al., 2023) is based on a
predecessor system developed and refined over more than a
decade at NASA’s Ames Research Center (ARC) (Li et al., 2003;
2005; 2006). Figure 1A synopsizes application of this system to the
analysis of human breath for the presence of a mix of VOC markers
signaling COVID-19 infection. Each volunteer, screened via RT-
PCR, filled a single-use 1-L “breath bag” (Figure 1C). Sealed bags
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were removed to the laboratory before attaching and operating the
E-nose analytical system, which is reported in detail elsewhere (Li J.
et al., 2023).

The process by which the EnCOVID system was configured for
its target application is illustrative. First, a set of key target breath
VOCs was identified; initially, a dozen were selected, along with the
inorganic gas “NOx,” following published studies (Shan et al., 2020;
Ruszkiewicz et al., 2020; Chen et al., 2021; Ibrahim et al., 2021;
Degaudenzi et al., 2021; Snitz et al., 2021; Giovannini et al., 2021;
Rodríguez-Aguilar et al., 2021; Wintjens et al., 2021). The organics
included an alkane, a diene, an aromatic alkene, three alcohols, three
esters, two aldehydes, and a ketone; their concentrations (by
volume) in human breath were reported as ranges, varying from
as low as 0.3 ppb (isoprene) to as high as 2 ppm (ethyl butanoate).
That ester and two other VOCs were reported to increase in breath
concentration of COVID-19-infected individuals relative to the
uninfected; four VOCs were reported to decrease; the direction of
change was not reported for the other compounds. Considering this
context, from our array of over 200 available sensors, we selected
64 materials for which experience and fundamental chemical
principles suggested differential responses to the target VOCs
and NOx would be likely.

The sensing platform is an array of chemiresistors (Figure 1B), a
transduction platform that has been utilized over decades in gas/
vapor sensors by many researchers and developers, but
nonetheless continues to advance due to creative, effective
and targeted use of many, sometimes novel, types of
materials. For the NASA array system, each interdigitated
gold electrode was coated with a thin film comprised of a
member of one of four classes of carbon nanotube (CNT)-
based conductive material: chemically modified CNTs (e.g.,
fluorinated, sulfonated, etc.); molecular composites of CNTs
and other electronic or redox conductors (e.g., polyaniline,
ferrocene, noble metals); nanoparticle (NP)-modified CNTs
(using, e.g., SnO2, Ag, and other NPs); and polymer-CNT
blends [e.g., poly(epichlorohydrin), poly(isobutylene),
hyperbranched fluoroalcohol polycarbosilanes]. This range of
CNT-modifying materials all but ensures the existence of a
material subset—ideally, a dozen sensors or more—for which
the sensing elements are chemically orthogonal to one another
in the context of the sensing challenge. The materials, deposited
from organic solvent onto the interdigitated electrodes as
micrometer-thick films, provide rapid (seconds) responses to
the ad/absorption and desorption of VOCs and inorganic gases.

FIGURE 1
(A) EnCOVID system (black tube) operational approach, with zoomed-in views of four 16-chemiresistor arrays and carbon nanotubes. (B)Closeup of
one interdigitated electrode supporting CNT-based thin-film sensors; 16 such IDEs on a ceramic substrate with edge connector; arrangement of four
substrates in the sensor head. (C) Functional block diagram of latest EnCOVID system, incorporating pump, valve, filter, and UV LED within the sensor
housing, and other components as shown. Graphics adapted from Li J. et al., 2023.
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All materials were screened for reversibility to ensure the
sensors would be reusable for many samples.

Chemiresistors confer advantages of low power, compact size,
inexpensive microfabrication, and support for a wide variety of
sensing materials—which need not be conductive, provided their
transduction process affects an integral material whose conductivity
does change as a result. As Figure 1A shows, the compact nature of
the sensor elements and their planar layout facilitates integration of
tens of them into a flashlight-sized system. This device not only

includes 64 chemiresistors and a combination temperature (T)-and-
relative-humidity (RH) sensor, it also houses circuitry to monitor
sensing element resistance, rechargeable batteries, a Bluetooth
interface, and an ultraviolet (UV) light-emitting diode (LED) to
help desorb analytes from the sensing elements if necessary. In the
system’s most recent implementation, Figure 1C, which is a few cm
longer than shown in Figure 1A, an internal 3-way valve and air
pump are also included within the housing. The valve selects
between the breath-sampling connection and a separate

FIGURE 2
(A) Response, expressed as fractional change in sensor resistance (ΔR/R0, left axis) of half a dozen of themost responsive CNT-based chemiresistors
to various nitric oxide concentrations (right axis); sensor materials include bisulfato-, amino-, fluoro-, poly(ethylene glyco)-, octadecylamino (ODA)-, and
polyaminobenzene sulfonic acid (PABS)-modified single-walled carbon nanotubes (SWNTs). (B) Responses from 16 sensors (eight of which provide
responses exceeding three times noise) to six VOCmixtures; the 16 sensor materials are identified in Li J. et al., 2023. The “Base Mixture,” comprised
of 10 ppm ethanol, 200 ppb styrene, 150 ppb n-propanol, 140 ppb 1,1-dipropoxypropane, 130 ppb isoprene, 130 ppb propyl acetate, and 10 ppb methyl
methacrylate, remained constant throughout, while concentrations of butyraldehyde, ethyl butanoate, and acetone varied as shown in the figure. (C)
Nine-factor SIMCA analysis of EnCOVID system response to COVID-19-positive (red) and -negative (blue) breath samples from 63 volunteers; green line
separating the two classes was defined after removing five points (greyed in the figure) whose classification was ambiguous when using a simple linear
class separator. Graphics adapted from Li J. et al., 2023.
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connection to background ambient (or “zero”) air, created from
ambient air using an N99 spirometry filter (Li J. et al., 2023). The
pump draws zero air across the sensor array and, when the valve
changes state, provides 30 s of breath sample, followed by return
to zero air.

Temptation to use such a device to directly sample breath blown
at or into it must be tempered by the challenge presented: a reliable
zero baseline vastly improves identification and quantitation of
VOCs in samples, as does a repeatable, constant gas flow rate
across all sensors for both the zero air and the breath sample.
Further, with an infectious disease like COVID-19, disinfecting the
sensor device after each use is challenging. These factors motivated
implementation of a 1-L, single-use Tedlar “breath bag” to collect
and store each volunteer’s breath sample. A particle filter at the
mouthpiece blocks aerosols, bacteria, and viruses.

Using the combined filter-and-breath-bag approach provides
pathogen control, allows near-real-time or delayed (up to several
hours) analysis, even as it enables very reproducible flow rates and
exposure times. It also provides an unanticipated benefit: relative
humidity (RH) management. Storage of breath samples in Tedlar
bags for 20min to 24 h was found to provide consistent RH in a band
from the upper 50%’s to the low 70%’s—a range of ~15 RH
percentage points—at ambient temperature. Storage in the bag
equilibrates its surfaces with breath-sample RH, bringing it close
to ambient RH (which, in our laboratories, usually ranges from
40% to 75%).

3.1 COVID-19 breath assay: Results
and analysis

Initial test results for six CNT-based sensors are shown in
Figure 2A for exposure to nitric oxide diluted in N2 to breath-
relevant concentrations (20 ppb–1.5 ppm). Similar testing with the
other 58 sensors confirmed significant sensitivity to NO, as well as
reversibility, for many of the materials. Similar experiments with the
12 VOCs confirmed adequate sensitivity, dynamic range, and
reversibility. A sequence of nine-VOC mixtures was tested with
the sensors. The quantified responses of a 16-sensor subset is shown
in Figure 2B for the mixtures defined in the figure. Altered responses
occur even if just two of the nine VOCs in the mixture change
concentration. The results typified by Figures 2A,B guided us in
selecting the set of 64 sensors to use for human breath tests from
more than 200 available sensing nanomaterials in our labs, the vast
majority of them made from commercially available raw materials
mixed or modified to produce the sensing materials detailed
elsewhere (Li J. et al., 2023).

Collection of breath data from healthy and COVID-19-infected
volunteers using the EnCOVID system in cooperation with Stanford
University Medicine (Li J. et al., 2023) resulted in a 64-dimensional
response vector per sample that belonged to one of the two classes
established by RT-PCR testing: COVID-19-positive or -negative.
The number of mathematical methods suitable for analyzing such
array responses are too many and varied to summarize here, but
have been reviewed (Scott et al., 2006; Röck et al., 2008; Hierlemann
et al., 1996; Raman et al., 2011). We evaluated SIMCA (soft
independent modeling by class analogy), a supervised
classification statistical method, based largely on principal-

component analysis, as well as support-vector machine (SVM)
and logistic regression approaches. Both SVM and SIMCA were
found to be well suited to this challenge. These methods, like most
others, provide better results if the S:G (“signal-to-garbage”) ratio is
improved by a combination of signal processing and curation before
analysis. Here, the term “garbage” includes both short-term noise
(on the timescale of the measurement) and long-term drift, both of
which can be minimized via conventional signal processing and
averaging methods. A second, very important category of “garbage”
is invalid responses, particularly those whose validity the operator
has reason to question: e.g., the connecting tubing was found kinked
after a run; the unit stopped functioning near the end of a run due to
discharged batteries; a volunteer appeared to be hyperventilating just
before filling the breath bag; and so on. The need to discard such
data sets may appear obvious, but it is surprising how often this
important screen-for-data-validity step is omitted. In a fully
developed system, multiple sensors and tailored algorithms
should “keep watch” on both hardware and response data to
automatically reject such runs, but in preliminary testing, this
falls to the operators, who must be made aware of this
responsibility. Before analysis, EnCOVID data sets confirmed to
be valid were then detrended and normalized to further improve the
S:G ratio.

Figure 2C summarizes COVID-19 breath analysis results from
63 volunteers (by PCR, 32 of them COVID-19 positive, 31 of them
COVID-19 negative) using nine-factor SIMCA analysis,
demonstrating that 2D separation of the two classes is feasible
(Figure 2C). Removing five “uncomfortably close” responses
(greyed points) results in consistent classification for the
remaining 58 of the 63 responses with a simple linear boundary
between the two classes (green line), a promising 92% of the samples.

Qualitative analysis of the responses of the 64 CNT-based
sensors revealed a 20-sensor subset doing a disproportionate
share of the classification work: they were sensitive to at least
several of the dozen VOCs over a broad range of ppb-level
concentrations. Of those 20, ~12 showed exceptional sensitivity
to very low concentrations, detecting 2–5 ppb reliably. At the same
time, an overlapping subset of nine materials provided atypically
large responses to a few specific VOCs, bolstering array selectivity
(Li J. et al., 2023). Overall, 21 of the 64 sensing materials were
“exceptional performers” in one or more of the ways listed,
suggesting that a smaller array size could be quite effective.

4 Conclusions: Room to improve and
path forward

Making use of fewer unique sensing materials might not just be
adequate, but better: given hardware to support 64 sensors (or
another large number) without undue size and power
requirements, a set of (say) 21 unique sensors could be
implemented in triplicate. Such redundancy not only costs 3×
less than developing 64 unique sensing materials for reproducible
manufacture, it is robust to single-element failure: the median value
of each triplicate set finds their most-agreed-upon response, which,
on average, is closer to the true value than the response of a lone
sensor, and single outliers are rejected. With larger arrays offering
greater redundancy, outliers can be rejected first, and then the valid
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values per sensor type averaged to maximize accuracy. Importantly,
this approach disperses the available chemical information across
fewer dimensions than using a larger number of different but
chemically redundant sensors, while also enabling materials that
may contribute only noise to be eliminated. Our future work will
focus on this approach.

The second ripe-for-improvement aspect of such analysis is
common to many diagnostics that utilize biomarkers whose levels
are determined both by a variety of human conditions and ailments,
and by their naturally occurring analytical range within the healthy
populace, owing to genotypical and phenotypical differences. A
starting point is to gather information for personal factors likely
to impact the respiratory system: co-morbidities such as diabetes,
chronic obstructive pulmonary disease (COPD), asthma, and
obesity; lifestyle factors like smoking, drinking alcohol, and diet;
and basic human differences that often influence one’s normal range
of a given biomarker, like age and gender. To understand how such
factors, individually and in combination, impact where a “green
line” is drawn to separate ill from healthy (as in Figure 2C), will
require clinical testing of at least 10 times, if not 100 times, the 63-
person sample reported here (Li J. et al., 2023).

The need for larger clinical studies is, arguably, a key factor
obstructing widespread adoption of gas-sensor-array technology for
medical diagnostics. Measuring the breath volatilome associated
with a physiologically complex ailment such as cancer or viral
infection, including pinpointing the type of cancer or specific
virus, even the specific viral strain—and, often, estimating the
severity of the ailment as well—and doing this in a manner
relevant to a supermajority of the humans on Earth, is daunting.
“Precision medicine” is not just a matter of tailoring treatments to
individuals; it must also customize the diagnostic process that
precedes therapy. To do this properly, hundreds to thousands of
volunteers may have to contribute their breath and summarize key
relevant aspects of their phenotype and genotype via a
questionnaire. Sensor data must be carefully validated for each
sample, followed by corrections for signal noise and drift, to
obviate the “garbage-in/garbage-out” possibility that can obscure
effective diagnostic potential.

A second, subtler factor limiting diagnostic adoption of gas
sensor arrays may be failure to choose the right tool for the job.
Breath-borne concentrations of gases such as hydrogen, nitric oxide,
and various ketones are routinely measured as they are
diagnostically informative in analogy to bloodstream levels of
potassium, C-reactive protein, or creatinine, i.e. they must be
considered in concert and in context with many other
biochemical and physiological indicators. Measuring single VOCs
or inorganic gases, however, requires neither the hardware cost and
complexity of GC-MS, nor the signal-processing-and-analysis
complexity of an electronic nose.

A system like EnCOVID is most promising when the diagnostic
target is a complex mixture in which no single chemical compound
is of particular interest, but the overall combination or pattern of
VOCs matters most, and where this pattern differs meaningfully
between those who are infected or ill and those who are not. Some
types of cancer and certain classes of infections, arguably, are
examples of this situation. For them, the case study described
here is only one of many examples of the potential of breath-
based diagnostics (Kim et al., 2012; King et al., 2013; Haworth et al.,

2022; Dixit et al., 2021; Scheepers et al., 2022) that await validation
via appropriately sized clinical studies with appropriate
management of data and results. An assessment of the
suitability of breath analysis for the management of Long
COVID is a recent relevant example (Díaz de León-Martínez
et al., 2024). The portability and potential for low-cost, high-
volume manufacture of an electronic nose-based system may
also prove to be of greater value when applications move out of
hospitals and clinics to include situations—like an
epidemic—and venues like airports, shopping malls, sports
venues, office buildings, and schools, where large numbers of
people may have to be screened rapidly, and in parallel.
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