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Microdosimetry measures the stochastic fluctuations of energy imparted by
radiation at the micrometer level and can provide measurable quantities linked
to biological effectiveness. Reference instruments are Tissue-Equivalent
Proportional Counters, gas-filled detectors operated in single-event
proportional mode with a chemical composition similar to biological
materials. The Legnaro National Laboratories of INFN have extensive
experience in the design and construction of miniaturized microdosimetric
gas counters able to sustain the high fluence rates of hadron therapy beams
without significant pile-up effects. This work discusses the current state-of-the-
art detection technologies in microdosimetry for hadron therapy, with a focus on
miniaturized gas counters. It describes in particular the development of
engineered compact detectors optimized for use in clinics, featuring
enhanced stability and reproducibility of response, carried out within INFN
projects.
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1 Introduction

The use of hadrons for cancer treatment is increasing worldwide due to their more
favorable physical and biological properties over photon or electron beams. As of February
2025, more than 120 proton and 17 carbon-ion facilities are treating patients all over the
world, and more than 30 are being constructed (Particle Therapy Co-Operative Group,
2025). However, the radiobiological effectiveness of ion beams can change significantly as
they degrade in matter; in addition, carbon ions can undergo nuclear reactions which give
rise to a build-up of secondary fragments travelling beyond the range of the primary beam.
The clinical field at treatment depth comprises multiple components with varying biological
effectiveness. This brings about the need for fast and accurate in-phantom monitoring not
only of the physical dose, but also of additional physical quantities which are related to
radiobiological effectiveness (the so-called radiation quality, determined by the type and
energy spectrum of particles at the treatment depth). This is true not only for treatments
with charged hadrons such as protons or carbon ions, but also for emerging binary therapies
such as Boron Neutron Capture Therapy (BNCT).

Microdosimetry is a spectrometric technique which measures energy imparted by
ionizing radiation in sensitive volumes of micrometric dimensions. It can provide an
effective approach for radiation quality monitoring in hadron therapy: starting from
microdosimetric quantities it is possible to derive radiation quality descriptors of
clinical interest, such as the Linear Energy Transfer (LET) (Kellerer, 1972; Braby et al.,
2023) or a physics-based estimation of the Relative Biological Effectiveness (RBE). The latter
is based either on specific weighting functions, derived from iterative unfolding of
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radiobiological and microdosimetric measurements carried out in
the same radiation field (Loncol et al., 1994; Tilikidis et al., 1996;
Parisi et al., 2020), or on radiobiological models such as the
Microdosimetric Kinetic Model and its various modifications
(Hawkins, 2003; Bellinzona et al., 2021).

Microdosimetric measurements provide a fast characterization
of the radiation field, which could be performed as a routine
procedure. For this reason, its introduction into Quality
Assurance (QA) procedures for hadron therapy is gaining
increasing interest and has been recently recommended by the
International Commission of Radiation Units (Braby et al., 2023).
However, this requires the availability of validated instruments for
the measurement of microdosimetric quantities.

2 Detectors for microdosimetry

Reference detectors for microdosimetry are the Tissue-
Equivalent Proportional Counters (TEPCs), gas-filled counters
working in the proportionality regime where the chemical
composition of both the detector walls and the filling gas is
chosen to be as similar as possible to that of human tissue. This
ensures that both the mass stopping power and the secondary
particle spectrum in the detector materials are approximately the
same as those in tissue. The gas pressure inside the cavity is set by
applying a density scaling principle: its thickness in mass per area
must be the same as that of a micrometric tissue volume with density
1 g/cm3.

TEPCs generally have a spherical or cylindrical shape, with a
cathode shell made of conductive plastic (typically A150, which is
muscle-equivalent) and a central metallic anode wire. The filling gas
is usually a methane- or propane-based tissue-equivalent mixture. If
the voltage difference between cathode and anode is such that the
counter works in proportional mode, each particle crossing the
sensitive volume generates a signal pulse with an amplitude
proportional to the initial ionization yield. The latter is then
converted to energy imparted by means of a calibration factor,
assuming that theW-value (mean energy to create an ion pair) does
not depend on particle type and energy.

Commercial versions of TEPCs for microdosimetry were
available on the market, most notably the FWT-LET1/2 counter
manufactured by Far West Technology, Inc. This detector has a
spherical sensitive volume with a diameter of 1.27 cm. The FWT-
LET1/2 has been used in some clinical centers for a microdosimetric
characterization of the radiation field, both for ion therapy
(Coutrakon et al., 1997; Kase et al., 2006; Martino et al., 2010)
and BNCT applications (Endo et al., 2004; Hu et al., 2020).

The main challenge in the development of microdosimetric
counters for particle therapy is the high intensity of the radiation
field. Both in therapy with charged hadrons and in BNCT, the
incident flux is of the order of 107–1010 cm−2 s−1. The cross-sectional
area of detectors developed for these applications must therefore be
small enough to cope with such a high fluence rate without
significant pile-up effects. To achieve this goal, two strategies
have been developed: either to miniaturize TEPCs as much as
possible, down to cavity sizes less than 1 mm in diameter, or to
move to solid-state technology, with silicon- or diamond-based
devices of physical micrometric size. Given its large cross area,

measurements with the FWT-LET1/2 counter can be done using a
particle fluence rate orders of magnitude lower than the
therapeutic one.

2.1 Miniaturized gas detectors

The first miniaturized TEPC was developed by Kliauga (1990) at
Columbia University: its sensitive volume is a right cylinder with
diameter and height of only 0.5 mm. It was designed to work at
simulated site sizes from 250 nm down to 5 nm, but with severe
limitations on the region of proportionality at the smaller site sizes.
This miniaturized TEPC worked only in gas-flow modality and its
development was stopped in the mid-90s. It was mainly employed
for measurements in photon and neutron fields. The same group
developed also a wall-less version of the counter, with a larger
sensitive cavity 3.2 mm in size (Kliauga, 1994), which was tested in
research ion beams. None of these detectors were tested in
therapeutic particle beams.

Other miniaturized counters were later developed (Gerlach
et al., 2002; Tsuda et al., 2010; Tsuda et al., 2012; Burmeister
et al., 2001; Burmeister et al., 2002), generally with larger sizes
ranging from 1.5 to 3 mm. At GSI, (Gerlach et al., 2002) developed a
miniaturized counter for carbon-ion therapy, aiming to compare
LEM-model predictions with the microdosimetric RBE for clinical
beams. The sensitive volume had a diameter of 3 mm and a length of
30 mm and was embedded in a Perspex plate. A wall-less cylindrical
TEPC for carbon-ion beams was developed in Japan by Tsuda et al.
(2010), Tsuda et al. (2012), with dimensions of 3 mm both in height
and diameter, and tested in proton, helium and carbon-ion beams
at HIMAC.

Two pairs of mini-TEPCs were developed by Burmeister et al.
(2001), Burmeister et al. (2002) for BNCT applications, with
sensitive volume dimensions of 2.5 mm and 1.5 mm,
respectively. One detector in each pair had the tissue-equivalent
wall doped with 200 ppm of 10B to enhance sensitivity to thermal
neutrons, while the other had no boron doping. These detectors
were tested in neutron beams with different energies both at MIT
and at BNL.

Other approaches based on gas detectors were also tried to
reduce the geometrical size of the sensitive volume. An example is
the development of a multiple TEPC without a central anode which
uses Gas Electron Multiplier (GEM) technology for the
amplification stage (Farahmand et al., 2003). Devices of this type
have been developed by several groups and tested in photon,
neutron and carbon-ion fields (Farahmand et al., 2004; Byun
et al., 2009; Orchard et al., 2011; De Nardo and Farahmand,
2016; De Nardo et al., 2017; Darvish-Molla et al., 2018).
Individual sensitive volume dimensions are in the range 1–5 mm.

2.2 Solid-state devices

Solid-state microdosimeters are generally based on silicon or
diamond detectors. They exploit the electric field in the depletion
region of a p-n or p-i-n junction to detect charges generated by the
passage of ionizing radiation. Given the absence of an amplification
stage, the detection threshold is higher compared to gas detectors.
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Additionally, their response is direction-dependent, and correction
factors are required to compare with biological data, as they are not
tissue-equivalent.

The main advantage of solid-state devices over gas detectors is
the possibility of minimizing the geometrical dimensions of the
sensitive volume down to physical micrometric size. This allows for
pile-up free measurements up to fluence rates 100 to 1,000 times
higher. Telescope detectors can also be constructed by coupling the
microdosimeter (ΔE stage) to an additional thick E stage made of the
same material, allowing for the identification of incident particles
that stop in it. This provides a more accurate correction for non-
tissue-equivalence compared to using a single factor.

Silicon microdosimeters for particle therapy have been
developed by several groups (Agosteo et al., 2006; Agosteo et al.,
2008; Bradley et al., 1998; Rosenfeld, 2016; Tran et al., 2018;
Guardiola et al., 2020; Prieto-Pena et al., 2019). In the pixelated
versions, the detector is composed of an array of sensors arranged in
planar geometries, either with a rectangular or cylindrical shape,
coupled to a row-by-row or pixelated readout. The physical
thickness of individual sensors is typically between 2 and 10 μm,
corresponding to 4.6–23 µm when scaled at unit density, while their
lateral dimensions range between 10 and 30 µm.

With respect to silicon, diamond-based devices have improved
tissue-equivalence and higher radiation hardness, and they are
generally operated without voltage bias. Similar to silicon-based
devices, these detectors have a physical thickness between 1 and
10 µm (corresponding to 3.5–35 μm at unit density). Despite being a
less widespread technology compared to silicon, several detector
designs have been reported, showing consistent response in both
proton and carbon-ion beams (Rollet et al., 2012; Verona et al., 2018;
Verona et al., 2020; Davis et al., 2017; Zahradnik et al., 2018).

3 The LNL mini-TEPCs

The Legnaro National Laboratories of INFN have extensive
experience in developing miniaturized microdosimeters for
hadron therapy. Since 1990, several devices were developed for
research purposes, with varying cavity diameter, electrode design
and external size. The first prototypes had a cylindrical cavity with a
diameter and height of 1 mm and an A150 cathode with a thickness
of 6 mm, for an overall external size of 15 mm (Cesari et al., 2001).
One prototype was built with field tubes and another without, to
quantify the impact of field distortions at the margins of the sensitive
volume. The response of the two detectors was found to be almost
the same (De Nardo et al., 2004a).

A second generation of prototypes was built with the aim of
minimizing the counter external size. The smallest ones have a
sensitive volume diameter of only 0.9 mm and an external diameter
of 2.7 mm. The A150 cathode wall was 0.35 mm thick and
surrounded by a Rexolite insulator. These detectors have been
used to perform microdosimetric measurements at several clinical
facilities, both in proton (De Nardo et al., 2004b; De Nardo et al.,
2004c) and carbon-ion beams (Colautti et al., 2018a; Colautti et al.,
2018b). The most recent version was designed with enlarged gas
ducts to be operated without gas flow: when filled with pure propane,
it was shown to provide a stable response for at least 1 year (Conte
et al., 2019). The use of this gas instead of a tissue-equivalent mixture

does not alter significantly the shape of microdosimetric spectra, if a
proper scaling factor is applied (Chiriotti et al., 2015).

3.1 New mini-TEPCs for hadron therapy

The main drawbacks of these detectors were the difficult
construction and assembly procedure, and the complex
operation. A third generation of mini-TEPCs was therefore
developed, initially in the framework of the CIMICE experiment,
a Young Researchers’ Grant of the INFN Fifth Scientific
Commission, and later in the Technology Transfer project
4MiCA. The design goal was to develop a compact, robust and
easy-to-use detector, which could be used as a radiation quality
monitor in routine clinical practice.

The main change introduced in the new version was the addition
of guard tubes around the anode, kept at the same voltage. This third
electrode resulted in a more stable response to ionizing radiation,
because the removal of insulating materials around the anode
minimizes the build-up of space charge at the edges of the
sensitive volume, causing gas gain instabilities. Other relevant
design changes included the use of a thicker anode wire and an
increase in external size to provide structural robustness and
simplify construction and assembly.

After successful tests of the first prototype (Bianchi et al., 2023),
the engineering of the mini-TEPC design was carried out in the

FIGURE 1
photo of the engineered setup, showing the sensitive sensor
(top), the vacuum and gas-filling connector (bottom left) and the case
for the integrated front-end electronics (bottom right). Dimensions of
the components are shown.
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4MiCA project. The aim was to simplify and standardize machining
and assembly operations, to reduce overall construction time and
cost, allow for easy replacement of failing components and ensure
reproducibility of response between different detectors. A custom
low-noise preamplifier optimized for high counting rate was also
developed at Politecnico di Milano and integrated into the detector
case together with a high-voltage filter. A photo of the engineered
setup is shown in Figure 1.

A detailed description of the final detector design can be found
in (Bianchi et al., 2024; Selva et al., 2025). Briefly, the sensitive
volume is a right cylinder with both diameter and height of 1 mm.
The anode is a gold-plated tungsten wire 25 µm in diameter. The
cathode is an A150 hollow cylinder with a length of 2 mm and a
thickness of 0.9 mm, surrounded by a Rexolite insulator and an
aluminum shell of 0.25 mm thickness. The total external diameter of
the counter is 16 mm. Figure 2 shows a scheme of the core part of
the detector.

A first series of five identical new mini-TEPCs was constructed
and tested in photon, neutron and proton radiation fields. These
detectors showed a reproducible response within the overall
measurement uncertainty and a pile-up free output up to
70 kHz. The new custom-made front-end electronics allows the
collection of lineal energy events down to a threshold of 0.1 keV/μm.
A detailed characterization of their performance is reported in
(Bianchi et al., 2024).

3.2 Mini-TEPCs for BNCT

Miniaturized TEPCs for BNCT applications were also developed
at the Legnaro National Laboratories of INFN. The first prototype
device consisted of a twin miniaturized counter where two identical
detectors were inserted into the same vacuum-tight sleeve (Moro
et al., 2007; Moro et al., 2009). Only one of the two cathodes was
loaded with 50 ppm of 10B, to discriminate the BNC dose component
from the photon and neutron ones (Selva et al., 2022). The design of
the twin TEPC is based on the second generation of LNL prototypes:

also in this case, the external diameter is 2.7 mm, while the gas cavity
has a diameter of 0.9 mm and is surrounded by a 0.35-mm-thick
A150 wall. An upgraded version of this detector was also developed,
with larger cavity dimensions (3 mm in diameter and height) and
external size (Colautti et al., 2014). These counters were tested in
high-intensity thermal neutron fields produced by nuclear reactors.

Similar to detectors developed for hadron therapy applications,
these devices were very complex to build and assemble, and they
worked only in gas-flow mode. To address these drawbacks, a new
mini-TEPC with boron-doped cathode walls was developed in the
framework of the Next-Generation EU project ANTHEM, based on
the engineered design developed in the 4 MiCA project. To perform
dose-components discrimination, this detector can be paired with
another identical non-doped one, operated in the same conditions.
The two measurements can be taken either simultaneously or
sequentially. The latter choice avoids the need for duplicated HV
power supply and read-out electronics.

The first pair of new mini-TEPCs for BNCT was recently
characterized in a reactor-based thermal neutron field, at an
intensity comparable to that of clinical treatments (109 cm−2 s−1)
(Selva et al., 2025), showing consistent response without significant
pile-up effects. Measurements are planned at several clinical BNCT
centers both in-air and in-phantom.

4 Discussion and conclusion

The new engineered mini-TEPCs developed at LNL have several
advantages over previous prototypes, making them attractive for use
in clinical settings. The sensitive volume size of 1 mm is comparable
to the dimensions of voxels used in treatment planning and allows
measurements at fluence rates up to 107 cm−2 s−1 without severe pile-
up distortions. The custom low-noise preamplifier has a dynamic
range of more than four orders of magnitude, allowing to measure
events in the entire lineal energy range of interest for both hadron
therapy and BNCT. Since the anode and guard tubes are set to zero
bias through the preamplifier, a high-voltage power supply with only
one negative channel is needed, with very low power requirements
(less than 100 mW).

The production time and overall cost have been significantly
reduced thanks to serialized construction of components, improving
also reproducibility of response between different sensors. The
simplified assembly also allows for the replacement of individual
detector components in case of failure (Bianchi et al., 2024). The
detector case including front-end electronics can fit in a box with
dimensions of 25 × 21 × 5 cm3 (see Figure 1), for an overall
encumbrance comparable to silicon-based microdosimeters. The
total weight of less than 1 kg and the sealed detector design allow
easy transportation to clinical centers.

From a clinical perspective, the tissue-equivalent composition
of TEPCs is an advantage over solid-state devices especially in
mixed radiation fields: non-equivalent materials would require
specific conversion factors for each particle type and energy, even
though a unique average factor is generally applied with silicon or
diamond microdosimeters. Mixed fields are always present in
particle therapy, particularly beyond the Bragg peak or in out-
of-field regions, where fragments generated by nuclear reactions
can change significantly the radiation quality. This is also the case

FIGURE 2
schematic drawing of the core part of the engineered mini-
TEPCs. The sensitive volume is shown in red, the A150 cathode in
black, gas ducts in pink and guard electrodes in dark gray. The anode
wire is represented by the central line crossing horizontally the
sensitive volume.
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in BNCT, where the tissue-equivalence of the neutron converter is
of critical importance for a correct assessment of all dose
components.

Given their favorable features (low detection threshold, high
dynamic range, tissue-equivalent response and high portability),
LNL mini-TEPCs could be promising detectors for introducing
microdosimetry in routine QA procedures in hadron therapy,
following the recent recommendation of the International
Commission of Radiation Units (Braby et al., 2023). Their main
drawback is their relatively large cross-sectional area, which limits
their performance at fluence rates higher than 107 cm−2 s−1. They can
measure at clinical intensities in both carbon-ion and BNCT fields,
but this is still not possible in proton beams where single-event
measurements can be performed only at reduced intensity.
However, other approaches can be implemented in clinical
conditions, such as measuring the mean values of the
distributions in a multi-event approach, similar to standard
dosimetry, and applying the variance-covariance technique
(Grindborg et al., 1995).
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