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Quantitative monitoring andmeasurement of handmotion in children are crucial
to support healthy development. Electrical impedance tomography-based tactile
sensors, also known as tomographic tactile sensors, provide a promising
approach for grasp classification. Our previous study in adults and children
demonstrated the feasibility of pinch classification using a cylindrical device
equipped with the tomographic tactile sensor. In this study, we developed a
new sensing device to classify the power grip and precision grip in children. In
order to address concerns that children might lick or swing the device, a
cylindrical sensing device was integrated sensor and measurement circuit,
incorporated a protective layer for enhanced safety. Seventeen children
participated in an experiment to evaluate the feasibility of the grasp
classification. The classification features were voltage vectors and
reconstructed images obtained from the sensor, and two machine learning
methods were used as the classifiers. The average classification accuracy
exceeded 85% for both feature types, surpassing the chance level of 50%.
These results demonstrate that the basic grasp patterns in children can be
accurately classified using a tomographic tactile sensor. This study provides
new insights into the future application of grasp motion classification in children.
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1 Introduction

Humans have uniquely developed manual dexterity and built an advanced civilization
using tools through motions, such as gripping a hammer and pinching nails. Napier divided
these grasps into two basic definitions: power grip and precision grip (Napier, 1956). The
power grip is defined as a motion that involves grasping an object with the palm and thumb
and corresponds to the motion of gripping a hammer. This grasping is observed in healthy
infants at 25 weeks post-pregnancy (Allen and Capute, 1986). On the other hand, precision
grip is defined as a motion in which an object is pinched between the thumb and other
fingers, corresponds to the motion of pinching nails. A study analyzing grasping patterns
through video coding in infants between 2 and 22 weeks of age reported that the pre-
precision grip was first performed at 2.74 months of age and the precision grip was first
performed at 5.97 months of age (Wallace and Whishaw, 2003).

These grasping motions are related to various aspects of the infant and child
development. For example, some studies have suggested that fine motor skills (FMS)
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associated with precision grip are related to early numerical skills,
early counting, and conceptual counting knowledge (Barrocas et al.,
2020; Fischer et al., 2018; Suggate et al., 2017). Another study
reported that children who were trained in FMS through
intervention improved not only their pegboard test scores but
also their mathematical performance compared to a control
group that read books (Asakawa et al., 2019). Moreover, some
studies have indicated a potential correlation between the FMS

and reading and writing abilities (Lê et al., 2023; Suggate et al.,
2023). These findings suggest that children’s hand dexterity is
related to the development of academic abilities such as
mathematical, reading, and writing skills.

In addition, information on children’s grasping skill
development is beneficial from a medical perspective. A delay in
the development of infant FMS has been suggested as a useful
indicator for early diagnosis of developmental disorders. Autism

TABLE 1 Conventional classification method of infants’ and children’s hand motions.

Reference Method Classification of
hand motion

Does not
interfere
with

grasping

Angle of
view

Degree of
freedom
of shape

Identification
of contact

area

Division by
Xue et al.
(2019)

Wallace and
Whishaw (2003)

Video coding Intra-rater and inter-
rater reliability were 90%
and 74%, respectively,
with four grasp patterns

No Limited High Partially possible 5) vision-based
capturing

Campolo et al.
(2008)

Hemispherical
sensing devices
using force sensors
and kinematic
sensor

Not reported No Not limited Unclear Not reported 2) attached force-
based capturing

Boschi and Frère
(2013)

Sensing devices
using limit switches,
micro switches

The agreement from the
physical therapists and
the system was 86.6% for
five different movements

No Not limited Low Partially possible 2) attached force-
based capturing

Del Maestro et al.
(2011)
Serio S et al.
(2013) (Serio
et al., 2013)

Sensing device using
air pressure sensor

Not reported No Not limited Low Impossible 2) attached force-
based capturing

Rocha et al.
(2016)

Cylindrical sensing
device digital
camera, a special
convex mirror, and
IMU sensor

A preliminary hand
posture evaluation was
reported, though visually
performed, suggesting
the possibility of future
application

No The image
quality
degrades at the
vertex part of
the convex
mirror when
converted to
panoramic
format

Unclear Possible 2) attached force-
based capturing &
5) vision-based
capturing

Schröer et al.
(2021)

Optical motion
capture

Recording of hand
motion (reaching)

Possible
interference

Not limited Unclear Impossible 4) optical markers-
based capturing

Owada et al.
(2022)

Data glove Classified eight grasps
with an accuracy of
98.75% in a study of
adults (Pratap et al.,
2024)

Possible
interference

Not limited High Partially possible 1) data glove-based
capturing

Udayagiri et al.
(2024)

Optical force sensors Classified four actions of
adults with an accuracy
of approximately 100%

No Not limited High Not reported 2) attached force-
based capturing

Battraw et al.
(2024)

Surface
electromyography

Nine participants with
unilateral congenital
below-elbow deficiency
were classified into
11 hand movements,
with a maximum
accuracy of 95.37%
using KNN.

Possible
interference

Not limited Unclear Impossible 3) surface
electromyography-
based capturing

Our study Tomographic tactile
sensor based on
resistive coupling

The maximum average
accuracies classed by
power grip or precision
grip was 88.5%

No Not limited High Possible 2) attached force-
based capturing
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spectrum disorder (ASD), which is characterized by poor
communication, strong interest, preoccupation, and obsessive
behavior, is usually diagnosed at 3 years of age. However, some
prospective studies have reported that infants at high risk for ASD,
who were later diagnosed with the condition exhibited
developmental delays in fine motor skills compared to typically
developing infants (Choi et al., 2018; Landa and Garrett-Mayer,
2006). It has also been reported that children of ages five to ten with
attention deficit hyperactivity disorder (ADHD), which is
characterized by inattention, hyperactivity, and impulsiveness,
have significantly delayed motor development in all domains of
the Motor Development Scale, including the FMS, compared to
typically developing children (Neto et al., 2015).

In this context, quantitative techniques for monitoring and
measuring hand motion in infants and children are important,
because they are believed to contribute to healthy development.
According to a review by Xue et al., human hand motion analysis
can be classified into five methods: 1) data glove-based capturing; 2)
attached force-based capturing; 3) surface electromyography-based
capturing; 4) optical markers-based capturing; and 5) vision-based
capturing (Xue et al., 2019). Based on the review, conventional
devices for children listed in Table 1. Although these methods have
unique advantages, they have unavoidable limitations. For example,
the methods of 1) data glove-based capturing, 3) surface
electromyography-based capturing, and 4) optical marker-based
capturing require sensors to be attached. This could lead to a
decrease in the children’s attention and interfere with their
grasp. In addition, the method of 5) vision-based capturing has
some limitations, such as a limited angle of view and privacy. Owing
to these limitations, 2) attached force-based capturing is considered
a powerful method. However, the conventional method limited the
degree of freedom of shape and identification of contact area. To
overcome these limitations, we focused on a tomographic tactile
sensor based on resistive coupling, which is a sensing technology with
extended flexibility, shape versatility, and designability compared
with electrical impedance tomography (EIT)-based tactile sensors
(Yoshimoto et al., 2024; 2020). This technology is based on the
principles of EIT-based tactile sensors (Kato et al., 2007; Nagakubo
et al., 2007; Silvera-Tawil et al., 2015).

Park et al. reported the superior discriminability of touch
modalities using a tomographic tactile sensor (Park et al., 2021).
Additionally, we developed a small peg-based device and
demonstrated that six types of pinching in adults could be
classified with an accuracy exceeding 80% (Asahi et al., 2024b).
In children, we have reported a classification study on the same six
types of pinching. The results showed an accuracy of approximately
60%, which was lower than that of adults, revealing limitations and
challenges in classifying children’s handmotion (Asahi et al., 2024a).

Children’s hands differ from those of adults in terms of size, grip
strength, and dexterity (Bear-Lehman et al., 2002). Consequently, results
obtained from adult participants may not be directly applicable to
children. Moreover, protective measures for the device and an extension
of its swing range are necessary, as childrenmay lick or swing the device.
Considering these factors, as a first step toward developing a hand
motion analysis system for children, we focused on the fundamental
classification of power grip and precision grip defined by Napier (1956),
along with the implementation of protective measures and an extended
swing range. Thus, demonstrating the ability to classify power and

precision grips in this study represents an essential step toward more
comprehensive and generalized grasp classifications. Our findings may
contribute to the development of educational toys and diagnostic
systems for assessing developmental disabilities.

2 Materials and methods

2.1 Sensing device overview

2.1.1 Development of sensing devices
Regarding the development of sensing device, we first decided the

design requirements of the device. The previous devices had
measurement circuits outside the device. This limits their swing
range and portability. To overcome these limitations, we developed a
new cylindrical sensing device. It could contain the measurement circuit
(Figure 1). The device height and diameter were 85 mm and 40 mm,
respectively. The sensor consists of five layers: protective, driving,
insulating, detection, and electrode layers (Figure 2a). The protective
layer was added because the children torn through the drive layer during
the preliminary experiments. The protective layer consisted of a 1-mm-
thick yellow felt cloth. The driving layer consisted of a conductive
silicone sheet (EC-20BH, Shin-Etsu Chemical Co. Ltd.). This layer was
connected to a 3.3 V DC voltage source. The DC voltage source used a
3.3 V pin microcontroller (ESP32-DevKitC, Espressif Systems). The
insulating layer was a glass fiber sheet (13-7127, KLASS). The detection
layer was composed of a conductive sheet (ZC-85, ENGINEER) with a
surface resistance of 10 kΩ/sq. When the driving layer contacts with the
detection layer, the electrical circuit is closed. As a result, current flows to
the electrodes through the detection layer (Figure 2b). The electrode and
detection layer were bonded using a conductive epoxy (CW2400,
CircuitWorks). The electrode layer was an original flexible printed
circuit board with 16 electrodes and a diameter of 2 mm. One of
these electrodes was used as the ground condition and the other was
used as themeasurement electrode. This operation was repeated until all
electrodes were used in all conditions. Thus, 256 voltage data points
(16 grounding conditions × 16 electrodes) are obtained. Themultiplexer
(MUX) used was CD74HC4067 (Texas Instruments). The
measurement period was 0.25 s per frame.

2.1.2 Reconstruction
A tomographic tactile sensor requires a solver to reconstruct

pressure distribution from the measured voltage vector. This solver
addresses an ill-posed problem because the output dimension
(reconstructed image) is larger than the input dimension (measured
voltage vector). Therefore, we used the linear reconstruction method of
Tikhonov regularization with two-dimensional finite element method
(FEM) model, based on our previous studies (Asahi et al., 2024b;
Yoshimoto et al., 2020). The hyperparameter of the Tikhonov
regularization was set to 5000. These reconstruction processes were
performed using MATLAB 2023b (MathWorks Inc.).

2.2 Experiment methods

2.2.1 Participant information
In this study, participants were required to meet two criteria: (1)

the ability to perform both power grip and precision grip, and (2) an
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age at which they could sufficiently understand verbal instructions.
Regarding (1) the ability to perform power grip and precision grip,
as mentioned in the introduction, primitive grasping has been
reported to emerge between 2 and 22 weeks, while precision grip
develops at 5.97 months. Regarding (2) the ability to sufficiently
understand verbal instructions, B. Buckley have reported that three-
year-old children are capable of communicating using language.
Additionally, four-year-old children can focus on and follow verbal
instructions even without explicit cues, such as being called by name
(Buckley, 2003). Based on these considerations, this study targeted
four-year-old children as participants. The participants of this study
were 17 children (4.43 ± 0.30 years old, 8 boys, 9 girls). In order to
ensure that the participants had adequate communication skills and
no developmental disorders, we administered the KINDER
INFANT DEVELOPMENT SCALE questionnaire type C prior to
the experiment (Hassanein, 1982). None of the participants had any
serious disease or disorder. In the analysis, 11 children (5 boys and
6 girls) were included, excluding those who stopped the
measurement halfway through because they could not listen to
the experimenter’s instructions or did not want to participate
(4 participants), those whose actual dominant hand seemed to
differ from that reported by their parents (1 participant), and
those who grasped without placing their palm on the object
during the power grip (1 participant). Evaluation of the modified
Japanese version of the FLANDERS handedness questionnaire

(Okubo et al., 2014) indicated 10 right-handed children and one
left-handed child.

This study was approved by the Ethics Committees of Shibaura
Institute of Technology and Keio University. The experiment was
conducted only when informed consent was obtained from the
parents of the participating children.

2.2.2 Measurement method
The participants practiced freely grasping the device, without

external assistance. Voltage measurements were also performed
during the hardware and software testing. The participants were
then instructed to perform either a power grip or precision grip, with
the order being counterbalanced. Each grip was measured ten times.
However, if the hand was released during the measurement process
or if the grasp force was not applied (i.e., the object was grasped only
by the frictional force of the fingers), the grasp was excluded from
the analysis, and an additional measurement was performed. Ten
times per grasp were measured, that is, 100 measurement frames
(10 measurements × 10 times) were obtained for each
grasping category.

2.2.3 Classification method
The measured voltage vectors and reconstructed images were

used as features to classify the power grip and precision grip. For
classification using the measured voltage vectors, 256 data points

FIGURE 1
Cylindrical sensing device. (a) Height: 85 mm (b) Diameter: 40 mm. (c) Device containing the measurement circuit.

FIGURE 2
(a) Layer of tomographic tactile sensors based on resistive coupling. The protective layer was a yellow felt cloth. This layer was used only in
experiment I. A conductive silicone sheet connected to a DC voltage source (3.3 V) was used was as the driving layer. The insulating layer was a glass fiber
sheet. The detection layer was a conductive sheet. The electrode layer was a flexible printed circuit board. (b) Schematic illustration of contact between
driving layer and detection layer and current flow.
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were used (16 electrodes × 16 measurements). For classification
using the reconstructed images, the FEM values normalized from 0%
to 100% were used. The size of FEM model was 43 × 66 × 1.

In this study, we considered more practical applications, such as
educational toys or diagnostic systems for developmental disabilities.
For such applications, we conducted a comparative analysis using the
k-Nearest Neighbors (KNN) algorithm (Bansal et al., 2022), which is
computationally efficient and easy to implement, and the Convolutional
Neural Network (CNN), which has been reported to achieve high
classification accuracy (Park et al., 2021). In KNN, we used the
MATLAB function (fitcknn) with a k value of 1. The network
architecture of the CNN consisted of 17 layers, as listed in Table 2.
The input layer was configured to input each feature with dimensions of
16 × 16 × 1 for classification using the measured voltage vectors, and
43 × 66 × 1 for classification using the reconstructed images.
Subsequently, a three-step convolution was performed. The
convolution layers were organized with filter sizes of 3 × 3 × 32, 3 ×
3 × 64, and 3 × 3 × 128, in that order. In each convolution layer, the
ReLU was applied as the activation function after batch normalization.
In steps one and two, a 2 × 2 max pooling layer is utilized, resulting in
downsampling with a stride of two. In step three, a fully connected layer
was used to classify the data into two classes. The Softmax function was
applied to the output layer, resulting in a final classification into two
classes: power grip and precision grip. Stochastic gradient descent was
employed for training with an initial learning rate of 0.001. In addition,
the learning rate was configured to be reduced by 95% after ten epochs.
The maximum number of epochs was set to 36, and the data were
randomized at the beginning of each epoch.

Cross-validation was performed to validate the classification
accuracy of these two types of features and classification methods.

Verification was performed for each participant, with one grasp
(10 frames) as the test data and the remaining grasps (190 frames) as
the training data, and was repeated until all grasps were the test data.

For the evaluation of classification results, the following
accuracy was calculated for each participant as Equation 1:

Accuracy � TPow + TPre

TPow + TPre + FPow + FPre
(1)

where, initial character T or F indicates whether the class predicted
by the classifier matches the true class or not. The characters Pow
and Pre indicate power grip and precision grip, respectively. Thus,
TPow is the matching case of the power grip as predicted class by the
classifier and the power grip as true class. Subsequently, to evaluate
the classification performance in different grasps, a confusion matrix
was calculated for each grasp. Precision (Prec), recall, and F-measure
were then calculated for each grasp as follow Equations 2–4:

Prec Pow or Pre � TPow or Pre

TPow or Pre + FPow or Pre
(2)

Recall Pow or Pre � TPow or Pre

TPow or Pre + FPre or Pow
(3)

F −measure Pow or Pre � 2 × Prec × Recall
Prec + Recall

(4)

These index values ranged from 0 to 1. In addition, t-Distributed
Stochastic Neighbor Embedding (t-SNE) has been used to confirm the
distribution of features and clustering trends (Van Der Maaten and
Hinton, 2008). The classification features were compressed into a two-
dimension map by t-SNE. The distances between points in the t-SNE
plot reflect similarity relationships in the original high-dimensional
space. Additionally, clearly separated clusters indicate natural groupings
based on differences in classification features.

3 Results

We classified the basic grip classifications—power grip and
precision grip—in children (Figure 3a). The average accuracy
values are shown in Figure 4a. When classified using the
measured voltage vector (Figure 3b), the average classification
accuracy using KNN was 86.8%. The highest and lowest
accuracies for the participants were 95.5% and 79.0%,
respectively. The average accuracy obtained using the CNN was
88.5%, and the highest and lowest accuracies were 95.0% and 75.5%,
respectively. When classifying using the reconstructed image as a
feature (Figure 3c), the average accuracy was 85.7% using KNN. The
highest and lowest accuracies are 94.5% and 72.5%, respectively. In
the classification using CNN with the reconstructed image as the
feature, the average accuracy was 87.9%. The highest and lowest
accuracies are 99.0% and 77.0%, respectively. All average
classification accuracies exceeded the chance level (50%).

The confusion matrixes shows that the classification results were
better for the precision grip than for the power grip for all classification
methods (Figure 4b). As shown in Table 3, Prec was higher for power
grip across all classifiers. However, Recall was higher for the precision
grip in all cases. Similarly, the F-measure was also higher for the
precision grip across all classifiers. Figure 5 presents the t-SNE plot
of the participant who achieved the highest accuracy. The results

TABLE 2 CNN classification network architecture.

No Layer Description

1 Input 2D Each classification has different inputs

2 Convolutional 2D 32 3 × 3 convolutions with stride 1

3 Batch Normalization Batch Normalization

4 ReLU ReLU

5 Max Pooling 2D 2 × 2 Max Pooling

6 Convolutional 2D 64 3 × 3 convolutions with stride 1

7 Batch Normalization Batch Normalization

8 ReLU ReLU

9 Max Pooling 2D 2 × 2 Max Pooling

10 Convolutional 2D 128 3 × 3 convolutions with stride 1

11 Batch Normalization Batch Normalization

12 ReLU ReLU

13 Fully Connected 256 fully connected

14 ReLU ReLU

15 Fully Connected 2 fully connected

16 Softmax Softmax

17 Classification Output layer
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indicated that clustering was achieved based on feature labels. However,
some instances of the power grip appear to be located within the
precision grip cluster.

4 Discussion

The purpose of this study is to demonstrate the feasibility of
classifying power grip and precision grip in children using a

tomographic tactile sensor based on resistive coupling, as a first
step towards the development of a hand motion analysis system for
children. In order to avoid accidents and damage due to unexpected
behavior of children, the sensor device and measurement circuit
were integrated into a single unit and a felt fabric layer was added. As
a result, there was no damage to the device during the experiment.
Using this device, the results of power and precision grip
classification showed an average classification accuracy of over
85%, higher than the chance level of 50%.

FIGURE 3
Representative images. The upper section corresponds to the power grip, and the lower section corresponds to the precision grip. (a) Images
captured for each grasp. (b) Measured voltage vector. (c) Reconstructed 2D image.

FIGURE 4
(a)Mean and standard deviation of classification accuracy. The average classification accuracies of the measured voltage vector (VV) with KNN and
CNN classifications were 86.8% and 88.5%, respectively. The average classification accuracies of the reconstructed images (RI) with KNN and CNN
classifications were 85.7% and 87.9%, respectively. (b) Cross-validation of each classification. The closer the color of the diagonal cell is to black, the
higher the classification accuracy.
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4.1 Sensing device and measurements
on children

Children’s behavior is differed from adults, they may lick or throw
the device. In fact, during a preliminary experiment, one child scratched
the driving layer with their fingernails, causing damage. To address such
risks, the device must be designed to minimize potential breakage
factors. As one protective measure, we introduced a felt fabric with
cushioning properties as a protective layer. This layer serves to prevent
licking and damage to the driving layer. Such felt fabric is suitable as a
protective material for children due to its safe composition, durability,
availability in various colors, and flexibility. Regarding the safety of the
device itself, the felt fabric and PLAmaterial used in this study are non-
toxic and hypoallergenic, ensuring no safety concerns.

Additionally, to prevent damage from being thrown ormishandled,
the device needed to cover a broader swing range. To achieve this, the
sensor and measurement circuit were integrated into a sensing device.
Furthermore, a 2-meter cable was used for communication between the
PC and the measurement circuit. As a result of these design
improvements, no participants damaged the device during the
experiment. Furthermore, wireless measurement is an effective
approach to improving operational range and portability. In this
study, the computer and sensing device were connected via a cable.

However, as reported by Yoshimoto et al., wireless measurement is
feasible, and its implementation is expected to eliminate limitations in
the measurement environment (Yoshimoto et al., 2020).

Finally, regarding the experimental protocol, grasping motions
were instructed verbally in this experiment. However, some
participants treated the device as a cup, mimicking toasting or
pretending to drink from it. This suggests that a role-play-based
protocol may be more suitable for future studies.

4.2 Classification method

Reconstructed images and measured voltage vectors were used
as classification features, and both CNN- and KNN-based methods
achieved an average accuracy exceeding 85%, which is higher than
the 50% chance level. These findings indicate that classification
using a tomographic tactile sensor can achieve a high classification
performance and reproducibility. The difference in classification
accuracy among all classifications was 2.8%. Thus, it demonstrated a
comparable classification accuracy across all methods.

Analysis of the confusion matrix revealed that the precision grip
was classified more accurately than the power grip. Although the Prec
for the power grip was higher than that for the precision grip across all
methods, the recall and F-measure for the precision grip were higher
(Table 3). These results suggest that while all classification methods
correctly identified the precision grip, the power grip was frequently
misclassified as the precision grip. Moreover, as illustrated in the t-SNE
plots (Figure 5), some plots in the power grip were mixed in the
precision grip cluster. This indicates that the classification error did not
depend on the classifier but rather on the potential
classification features.

One potential factor differentiating the power grip from the
precision grip is the contact area. Visual assessments indicated that
the contact area of the power grip was larger than that of the precision
grip (Figure 3c). In the power grip, opposition is generated by the
thumb, other fingers, and the palm; however, in the precision grip,
opposition was generated by the thumb and other fingers (Figure 3a).
This difference is considered to be the cause of the difference in the

TABLE 3 Classification index.

Accuracy [%] VV KNN VV CNN RI KNN RI CNN

86.8 88.5 85.7 87.9

Prec power 0.889 0.892 0.871 0.896

precision 0.849 0.877 0.843 0.864

Recall power 0.841 0.875 0.837 0.858

precision 0.895 0.894 0.876 0.900

F-measure power 0.864 0.883 0.854 0.876

precision 0.871 0.886 0.859 0.881

FIGURE 5
T-SNE plots with measured voltage vectors and reconstructed images for participants who achieved the highest classification accuracy. The
perplexity was set to 50, and the learning rate was set to 750. The input classification features were normalized. (a) t-SNE plot using themeasured voltage
vector (b) t-SNE plot obtained using the reconstructed images.
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contact area. Another distinguishing factor is the number of virtual
fingers (VF), which indicates the number of primary force vectors
generated during grasping. The precision grip is characterized by
VF2 due to its pinching action. In contrast, the power grip can be
characterized by either VF2 or VF3, as it involves both the fingers and
the palm (Figure 6). These differences in contact area and VF may
contribute to the misclassification of the power grip relative to the
precision grip. It is also possible that the power grip in t-SNE is the cause
of some mixing with the precision grip cluster (Figure 5).

A previous study examining the agreement between experienced
physical therapists and devices for analyzing the locations of
gripping (the power grip) and functional pinching (the precision
grip) reported an agreement of 86.6% (Boschi and Frère, 2013).
Although direct comparisons could not be made owing to the
differences in the experimental conditions, the results of this
study demonstrated comparable accuracy.

4.3 Limitations and future prospects

There are two mainly limitation in this study. First is that the device
size was fixed at a height of 85 mm and a diameter of 40 mm.
Customizing the device to accommodate individual hand sizes could
enhance its ease of grasping, and improve classification accuracy. Second
is the grasp types used for classification. In this study, the basic categories
of the power grip and precision grip were classified. For practical
applications, a more detailed classification of graspingmay be necessary.

Based on the results of this study, there are three prospects for future
research: The first is to develop a sensing device with a system that
provides humorous feedback stimuli. Feedback systems encourage
children to take action (Boschi and Frère, 2013). The feedback
system that uses the grasp classification system developed in this
study may contribute to rehabilitation and intervention. The second
is to identify the specific fingers contacting the sensor. This identification
system might be a useful alternative to the video coding. The video
coding typically requires a lot of time and effort. Previous studies have
reported that it took 3 hours to code a 10-min video (Wallace and
Whishaw, 2003). Replacing video coding with sensor-based analysis
could reduce the analysis time. To achieve this, a large amount of data on
the children must be collected. We believe that making the device toy-
shaped will help keep children’s attention and enable the measurement

of a large amount of data. Lastly, we propose the potential application of
this system as a diagnostic support tool for developmental disorders.
Previous studies have reported that children at high risk for ASD often
exhibit delayed development of fine motor skills compared to typically
developing children. Accordingly, if the present system can be employed
to assess finemotor skills in both typically developing children and high-
risk ASD children, it may contribute to early diagnostic support for
ASD. To examine this feasibility, future research should aim to measure
and compare grasping behaviors between these two groups.

5 Conclusion

In this study, we demonstrated the feasibility of classifying
power grip and precision grip in children using a tomographic
tactile sensor based on resistive coupling. To address concerns that
children might lick or swing the device, we developed a medium-
sized cylindrical sensing device with an integrated sensor and
measurement circuit, incorporating a protective layer for
enhanced safety. These design considerations ensured that no
damage occurred to the device during the experiment.

Using the device, machine learning-based classification of
children’s grasps demonstrated that power grip and precision
grip could be classified with an accuracy exceeding 85%, above
the chance level of 50%. These grip types are among the major
categories in the GRASP taxonomy, which defines 33 distinct grasp
classifications. Therefore, the findings of this study represent a
foundational step toward classifying a broader range of grasp
types and establishing a comprehensive grasp classification system.
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