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Self-mixing interferometry (SMI) is an emerging optical sensing technique for
detecting and classifying microparticles in non-contact and label-free flowmetry
applications. High precision and reliability are essential for its integration into
medical diagnostics, such as blood analysis, and quality control in chemical
manufacturing processes. While theoretical models describe SMI-induced
signal modulations caused by particle passage, challenges persist due to signal
noise, variability, and interpretability under experimental conditions. This study
enhances SMI-based particle size classification by integrating machine learning
(ML) models to improve feature extraction and classification accuracy. Three ML
pipelines are evaluated, achieving 98% classification accuracy in distinguishing
particles of different sizes (2, 4, and 10 µm). The high classification accuracy
demonstrates the scalability of our approach, ensuring its applicability across
diverse particle analysis scenarios.

KEYWORDS

self-mixing interferometry, micro-particle size classification, machine learning, flow
citometry, signal processing

1 Introduction

Self-mixing interferometry (SMI), also known as optical feedback interferometry (OFI),
has gained significant attention due to its versatility and cost-effectiveness in sensing
applications (Perchoux et al., 2016; Donati and Norgia, 2014; Quotb et al., 2021; Taimre
et al., 2015). This laser-based technique relies on the interference between emitted laser light
and backscattered light from an external target, enabling the development of compact, low-
cost, and high-resolution optical sensors. One of the key research areas in SMI is its
application in a microfluidic context, particularly for single-particle analysis, with the goal
of establishing an SMI-based label-free flow cytometry system for medical sensing.

Since the initial demonstrations of detecting submicron and micron particles using SMI
sensing, substantial progress has been made in understanding the signal modulation
induced by single-particle interactions with the laser beam (Da Costa Moreira et al.,
2017; Herbert et al., 2018). These advances have enabled detection of particles as small as
100 nm (Zhao et al., 2023a) and led to the development of analytical models that enhance
our understanding of SMI signals. This progress has also paved the way for the first SMI-
based flow cytometers, capable of detecting polystyrene beads and even classifying cancer
cells (Zhao Y. et al., 2020; Zhao et al., 2019; Zhao et al., 2023a). While these studies
demonstrated SMI’s potential for microparticle identification, they have predominantly
focused on particle detection rather than classification, revealing persistent challenges in
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isolating signal bursts and defining particle signatures that are clear
and distinct enough to enable reliable classification.

To address these challenges, different signal processing
techniques have been explored, including bandpass filtering,
fringe counting based on the Hilbert transform, and frequency/
amplitude modulation analysis (Zhao et al., 2019; Herbert et al.,
2018). However, SMI signals are often noisy, especially for smaller
particles, where the signal-to-noise ratio is low. Additionally, the
modulation strength of backscattered light, which is critical for
particle identification, varies significantly depending on factors such
as particle size, speed, refractive index, and surface characteristics.
These challenges become more pronounced in complex
environments containing heterogeneous particle mixtures, where
signal features often overlap, making particle classification
more difficult.

Previous efforts have explored the relationship between the
temporal and frequency domains of SMI signals, utilizing
features such as Doppler frequency peaks (which correlate
with particle speed) and fringe amplitude and duration (which
relate to particle size). To improve particle passage detection and
feature extraction, advanced techniques such as wavelet
transforms and spectrogram analysis have been introduced
(Zhao et al., 2023b; Sierra-Alarcón et al., 2024). Despite these
advances, classical signal processing methods alone are often
insufficient to address the full range of classification challenges.
Machine learning techniques provide a promising alternative, as
they can extract complex patterns from noisy SMI signals
(Barland and Gustave, 2021; Novac et al., 2024; An and Liu,
2022; Chen et al., 2024), potentially improving SMI-based
particle identification and the classification accuracy. However,
the application of ML models to SMI single-particle analysis
remains in its initial stages due to the lack of comprehensive
datasets for single-particle transit modulation and diverse
particle types.

This study aims to enhance the reliability of SMI-based particle
classification by integrating ML models into the SMI signal
processing pipeline. Building on prior work focused on
understanding signal characteristics, the study transitions from
feature exploration to predictive classification. As shown in
Figure 1, the proposed workflow begins with accurate signal
acquisition from polystyrene particles of 2, 4, and 10 μm,
followed by preprocessing steps that include both online and
offline filtering. Three data representations were evaluated for
ML-based classification: (i) handcrafted features extracted from
the time-domain and frequency signal, (ii) spectrograms to
capture time-frequency correlations, commonly used in audio
and biomedical signal classification tasks (Ha et al., 2023; Zhao
K. et al., 2020; Gourisaria et al., 2024), and (iii) the temporal SMI
sensor signal waveform. To improve generalization and balance the
dataset, data augmentation techniques were applied. Finally,
different ML models were trained and compared to determine
their effectiveness in accurately classifying particle size.

The paper is organized as follows: Section 2.1 explains the
induced modulation due to single-particle transit. Section 2.2
describes the experimental setup for the SMI flow cytometer.
Section 2.3 outlines the data acquisition and classification
pipeline. Finally, Section 3 presents and discusses the
classification results obtained from the different approaches.

2 Materials and methods

2.1 Theory

The self-mixing interferometry phenomenon arises from the
interaction between the internal light wave propagating within the
laser cavity and the portion of light backscattered by an external target
that re-enters into the cavity, causing a modulation in the laser output
power. In the context of this study, we focus exclusively on the single-
particle case, where only one particle at a time crosses the laser beam,
thus scattering light back into the laser cavity (Zhao et al., 2016). Under
this condition, each photon is assumed to be scattered solely by that
individual particle during its round-trip propagation. The case involving
multiple scatterers has been addressed in various studies (Campagnolo,
2013; Atashkhooei et al., 2018). A general schematic of the effect
involved is presented in Figure 2.

Due to the Doppler effect, when a particle moves through the
laser beam with a constant velocity V, the output power signal
exhibits periodic modulation at the Doppler frequency shift fD

(Albrecht et al., 2003). The value of fD depends on the incidence
angle θ between the laser beam axis and the flow direction and the
laser wavelength λ, as given by Equation 1:

fD � 2V sin θ( )
λ

(1)

The initial modulation in the laser output power P(t) due to the
self-mixing effect is expressed in Equation 2, where P0 represents the
initial laser output power, m is the modulation index, indicating the
feedback strength, and ϕD denotes the phase variation due to the
Doppler frequency fD, carrying information about the uniquely
scattered particle.

P t( ) � P0 1 +m cos 2πfDt( )[ ] (2)

As a particle passes through the laser sensing volume, defined as
the spatial region where sufficient light is scattered back from the
particle to the laser and produces detectable modulation in the laser
output power within our acquisition system, it experiences a
Gaussian spatial intensity profile consistent with Gaussian beam
theory. The modulation amplitude reaches its peak when the
particle’s center crosses the central axis of the laser beam k at
t � t0, gradually decreasing as the particle exits the interrogation
zone (Zhao et al., 2023b). The final expression for the output power
modulation resulting from particle transit is:

PF t( ) � P0 1 +m cos 2πfDt( )[ ]e− t−t0( )2
2τ2 (3)

Here, τ represents the particle’s transit time inside the laser
beam, which can be estimated using the laser spot size Ls, the particle
diameter Pd, and its velocity V as presented in Equation 4:

τ � Ls + Pd

V sin θ( ) (4)

Figure 3A illustrates an example of the modulation induced in
the laser output power by the passage of two 4 µm diameter spheres,
each transiting through the laser sensing volume at different times.
Figure 3B shows a filtered SMI signal corresponding to a single
particle crossing the sensing volume, highlighting the Gaussian-
shaped envelope that characterizes the amplitude burst. Finally,
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Figure 3C presents the characteristic Doppler frequency peak
extracted from the filtered signal, which is directly related to the
particle’s velocity.

2.2 System overview

The schematic in Figure 4 illustrates the setup assembled for
single-particle detection using the SMI sensing scheme. The system
consists of two main subsystems: an optoelectronic system,
responsible for enhancing and acquiring the SMI signal, and a
microfluidic system, designed to control a consistent particle flow.

2.2.1 Optoelectronic subsystem
The optical setup employs a 1,550 nm single-mode distributed

feedback (DFB) laser diode (ThorLabs-L1550P5DFB) equipped with
a package-integrated monitoring photodiode. To ensure sufficient
power and signal enhancement during particle passage, the laser
beam is focused using a doublet lens (AC254-030-C), achieving a
measured spot diameter of 80 μm at its waist with an initial power of
4.7 mW. The propagation axis of the laser is set at an angle of 80°
relative to the channel flow. The laser is mounted on a 3-axis linear

stage (ZaberTech T-LSM050A) to allow precise micrometer-scale
alignment. The SMI signal is acquired by monitoring variations in
the photodiode current using a custom-made transimpedance
amplifier and recorded at a sampling rate of 2 MHz using an
acquisition card (DAQ NI-6361).

2.2.2 Microfluidic subsystem
To achieve single-particle alignment and ensure a constant flow of

individual particles through the laser sensing volume, a custom-made
PDMSmicrofluidic chip was fabricated, specifically designed to perform
hydrodynamic focusing (HF) for particle alignment. The channel
structure was created using photolithography, and its dimensions
were verified using a profilometer, confirming a consistent height of
70 µm and a width of 80 µm. For particle isolation via HF, the flow rates
are set at 5 μL/min for the sheath flow and 10 μL/min for the sample
flow. The velocity profile inside the chip was estimated through
simulations in COMSOL to determine the range of particle speeds
within the chip. To verify the correct operation of the HF system, the
microfluidic chip is mounted on an inverted microscope, allowing real-
time monitoring of the channel and flow using a high-speed camera.

Inspired to simulate human blood cells for flow cytometry
experiments, synthetic 2, 4, and 10 µm monodisperse polystyrene

FIGURE 1
Overview of the ML pipeline developed for micro-particle size classification from SMI-sensor signals.

FIGURE 2
Schematic representation of an SMI sensor detecting the backscattered light from a single particle suspended in a fluid, moving at velocity V as it
traverses the laser beam’s sensing volume.
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particles are used, each with a coefficient of variation of 1.8% in its
diameter. For each particle size, a 4% concentration was prepared in
1mL of deionized water (DI) and introduced into the channels using
a microfluidic control system (Fluigent MFCS-EZ) equipped with
multiple flow rate sensors (Fluigent Flow Unit M+) with a precision
of ± 0.2 mL/min, allowing precise adjustment of the flow rate during
experiments.

2.3 Pipeline

2.3.1 Signal acquisition
To construct a robust database containing the induced

modulation caused by particle transit, all potential particle events
were recorded in real-time using a Python-based acquisition routine.
The collected signals were then analyzed to segment the time
intervals corresponding to each particle’s passage for further
analysis. Additionally, to increase the size of the dataset and
improve model generalization, multiple augmentation techniques
were applied.

The data acquisition system (DAQ) was configured with a
sampling frequency of 2 MHz, chosen to cover the expected
Doppler frequency peaks range while retaining higher-order
harmonics and transient components, and to provide a
comprehensive dataset for both algorithm development and later
decimation analysis. Each acquisition window captured 8.192 ms
(16,384 samples) to ensure full coverage of the slowest particle
transits while limiting unrelated signal content. A real-valued FFT of
the full segment with a rectangular window was applied to identify
the characteristic Doppler peaks. This configuration balanced
detection reliability, computational efficiency, and preservation of
amplitude information in low-SNR conditions (Rapuano and
Harris, 2008). To define a broad frequency range of interest, the
expected particle velocity was estimated through numerical
simulations. Based on Equation 1, a detection range from 5 kHz
to 100 kHz was established, broad enough to avoid missing Doppler
peaks outside the expected range while still allowing effective
filtering of irrelevant frequencies. A threshold level for peak

FIGURE 3
Experimental acquisition of the SMI signal during particle transit. (A) Raw SMI signal highlighting the passage of two particles at different times. (B)
Filtered SMI signal corresponding to a 4 µm polystyrene sphere. (C) Frequency spectrum (FFT) of the filtered signal.

FIGURE 4
SMI flow cytometer experimental setup assembled, highlighting
the main components of the system, including the microfluidic chip
designed for single-particle isolation through the hydrodynamic
focusing effect.
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detection was determined experimentally by analyzing the noise
level when only deionized (DI) water was flowing. Segments that
met the detection criteria were stored for further processing.

2.3.2 Offline validation
Following the approach described in Sierra-Alarcón et al. (2024),

an offline adaptive spectrogram algorithm was employed to extract
only the signal segments corresponding to particle transits. For each
detected event, the spectrogram parameters were adjusted based on
the estimated particle velocity and transit duration. A Gaussian fit
was then applied to verify whether the observed modulation
matched the expected signal shape defined in Equation 3.

To support this validation, the signal-to-noise ratio (SNR) was
evaluated using Equation 7, providing initial evidence that the signal
amplitude decreases as particle size decreases (Figure 5). The SNR
was estimated by comparing the average power of segments
containing particle-induced modulation, xp(t), with those
containing only noise signal, xnp(t).

The final dataset included 700 labeled samples for each particle
size (2, 4, and 10 µm), with each sample spanning 1.25 ms
(2,500 data points), capturing the complete transit event while
excluding irrelevant portions of the signal.

Psignal � 1
N

∑N
i�1

xp i( )2 (5)

Pnoise � 1
N

∑N
i�1

xnp i( )2 (6)

SNR dB( ) � 10 · log10
Psignal − Pnoise

Pnoise
( ) (7)

2.3.3 Data augmentation
A combination of the following data augmentation techniques was

randomly applied to represent possible variation in the real raw signals
while preserving the essential characteristics of the modulations.

• Additive Noise: Gaussian noise is added to the signal to reduce
the SNR in each sample. The noisy signal is given by
Equation 8:

xnoisy t( ) � x t( ) +N 0, σ2( ) (8)

where N (0, σ2) represents Gaussian noise with zero mean and
variance σ2.

• Quantization: This technique reduces the resolution of the
signal by constraining each sample to a fixed number of
possible values. For a given resolution R, each sample x(t)
is transformed as Equation 9:

xqt t( ) � �R · x t( )�
R

(9)

where �·� represents the floor operation. Here, R is a random integer
selected between 40 and 100, for quantizing the signal and reducing
its precision.

• Downsampling: In this method, the temporal resolution of the
signal is reduced by selecting a downsampling factor k
(randomly chosen between 2 and 9). For every k-th sample
xi, the next k samples are overwritten with xi, maintaining the
original length of the signal. Mathematically, this can be as
expressed in Equation 10:

xds i + j( ) � x i( ), ∀j ∈ 0, k − 1[ ] (10)

• Amplitude Inversion: The signal is inverted to simulate phase
changes (Equation 11), achieved by multiplying the amplitude
of the signal by −1:

xinverted t( ) � −x t( ) (11)

• Random Interpolation: A random subset of the signal is replaced
by interpolated values to simulate missing or corrupted data
following Equation 12. For a randomly chosen set of indices
{i1, i2, . . . , in}, the interpolated values are calculated as:

xit i( ) � inter i, x( ) (12)

FIGURE 5
Representation of signal-to-noise ratio for different particle
sizes. The red line represents the mean, the box indicates the standard
deviation, and the blue lines show themaximum andminimum values.

FIGURE 6
Data representations explored for the classification task. (A) Filtered SMI temporal signal modulation. (B) SMI signal spectrogram. (C) Handcrafted
temporal and frequency features.
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where inter denotes a linear interpolation function.

• Shifting: To simulate variations in timing, the signal is
circularly shifted by a factor Δ t, determined as a
percentage of the signal length using Equation 13:

xshift t( ) � x t + Δt( )modN( ) (13)
where N is the total number of data points.

2.4 Signal data preprocessing

To evaluate multiple approaches for the classification task and
after the different augmentation techniques, three different data
representations were explored: the use of the SMI temporal signal,
an optimized spectrogram, and the classification based on specific
features extracted from both the temporal and frequency spectrum
of the signal, as illustrated in Figure 6.

2.4.1 SMI temporal signal enhancement
To reduce signal dimensionality and suppress embedded noise,

all samples were processed using a band-pass filter based on the
previously defined frequency ranges. A decimation step was then
applied, reducing the sampling rate by a factor of 4, to 500 kHz. This
reduction aimed to decrease data size without significantly altering
the signal characteristics. Additionally, the filtered signals were
scaled by a factor of 10, selected after testing different values (1,
5, 10, 20) for its ability to accelerate convergence by increasing
gradient magnitudes, without affecting classification accuracy or
altering the relative shape of the signals (LeCun et al., 2012). This
formatted signal was then used for the next data representation
approaches.

2.4.2 Spectrogram-based features
Time-domain spectral analysis is essential for capturing the

dynamic behavior of non-stationary signals by revealing how
their frequency content evolves over time. Spectrograms were

FIGURE 7
T-SNE visualization of feature representations for the three different particle sizes. (A) Handcrafted features. (B) Spectrogram-based features.

FIGURE 8
Confusion matrix showing the classification performance across different ML models: the spectrogram-based model, the feature-engineered
model, and the SMI temporal signal-based model.
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employed due to their effectiveness in detecting transient events and
frequency variations. The spectrogram is computed using the Short-
Time Fourier Transform (STFT), as defined in Equation 14

S t, f( ) � ∫∞

−∞
x τ( )w τ − t( )e−j2πfτdτ (14)

where x(τ) represents the signal, w(τ − t) is the Hamming window
centered at time t, and f is the frequency. The computation of
S(f, t) involves three key parameters: Nperseg, which defines the
length of the window function w[n − τ];Noverlap, which specifies the
overlap between consecutive windows (typically set to half ofNperseg

to ensure effective detection of transient events); and Frange, which
determines the frequency range under consideration. The selection
of spectrogram parameters was guided by the Doppler frequency
range of detected peaks in real particle samples, refining the analysis
to focus specifically on the Doppler frequency component and its
decay over time (5–40 kHz). This was done while considering the
passage duration of the smallest, fastest particles in the dataset. The
frequency resolution is given by Equation 15:

Δf � fs

Nperseg
(15)

where fs � 500 kHz is the sampling rate. To achieve a target
frequency resolution of 1 kHz, the required window length is
Nperseg � 500 samples. This corresponds to a temporal resolution
of approximately 1 ms.

This configuration ensures that short-duration events, such as
those caused by 2 μm particles lasting approximately 1.6 ms, remain
visible while preserving spectral integrity.

The choice of spectrograms over alternative representations,
such as Mel-Frequency Cepstral Coefficients (MFCCs), was based
on their ability to preserve raw time-frequency relationships (Zhao
K. et al., 2020; Gourisaria et al., 2024). While MFCCs are effective for
auditory perception tasks, they involve dimensionality reduction
and feature decorrelation, which can lead to information loss and
increased noise sensitivity in non-speech signals. In contrast,
spectrograms provide a richer representation, facilitating the
extraction of meaningful patterns while maintaining correlated
spectral features.

TABLE 1 Detailed classification results for each particle type based on different data representations, including the model’s precision (P%), recall (R%), and
F1-score (F1%).

Spectrogram-based model

Size P (%) R (%) F1 (%)

2 µm 0.97 0.97 0.97

4 µm 0.97 0.97 0.97

10 µm 0.94 0.95 0.95

Featured-based model

Size P (%) R (%) F1 (%)

2 µm 0.97 0.95 0.96

4 µm 0.99 0.97 0.99

10 µm 0.94 0.98 0.96

Temporal signal-based model

Size P (%) R (%) F1 (%)

2 µm 0.99 0.99 0.99

4 µm 0.99 0.98 0.99

10 µm 0.98 0.98 0.98

TABLE 2Computational efficiencymetrics for different data representations and precisions acrossMLmodels, including storage size, inference latency, and
RAM usage.

Criteria Spectrogram Features Temporal

FP64 Int8 FP64 Int8 FP64 Int8

Storage [MB] 0.44 0.03 0.45 0.04 25.7 2.16

Latency [ms] 18.4 0.01 17.5 0.01 23.4 0.18

Peak RAM [kB] 120 1.0 120 1.0 130 1.0
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2.4.3 Specific features
To extract valuable information from both the temporal and

frequency domains and to improve differentiation where particle
modulation is embedded in noise, the following features were defined:

• Signal Amplitude: The amplitude of the temporal signal
correlates with particle size, as larger particles induce
higher voltage variations. To ensure robustness against
noise-induced peaks, the amplitude is extracted using the
envelope of the absolute signal. The envelope is computed
using the Hilbert transform (Zhao et al., 2019), providing a
smooth upper bound that mitigates the impact of noise peaks.

• Passage Time: quantifies the duration for which a particle
remains within the laser beam’s sensing volume. This feature is
extracted by analyzing the parabolic modulation of the signal,
modeled using a Gaussian fit applied to the envelope (Sierra-
Alarcón et al., 2024). The passage interval is defined as the
period during which the Gaussian fit remains above 10% of its
peak amplitude, accounting for the SNR in smaller particles
such as those with a 2 µm diameter.

• Average Signal Power: Reflecting the overall signal intensity,
this feature may correlate with particle size since larger
particles induce stronger modulations (Equation 16). It is
computed following the same approach as the SNR:

Savg � 1
N

∑N
i�1

xp i( )2 − 1
N

∑N
i�1

xnp i( )2 (16)

where N is the total of data points in a sample.

• Frequency Spectrum Power: This feature quantifies the total
signal energy distributed over the time-frequency domain,
estimated from the STFT. It reflects the overall energy content
of the signal across all time and frequency bins according to
Equation 17.

Fspec � ∑
t

∑
f

|STFT t, f( )|2 (17)

• Peak Spectral Amplitude: This feature captures the highest
spectral amplitude observed in the STFT magnitude,
corresponding to the strongest frequency component. It
provides insight into the most dominant spectral peak and
can be useful for identifying particles that produce sharp
localized energy bursts following Equation 18.

Fpeak � max
t,f

|STFT t, f( )|{ } (18)

• Doppler Frequency: Extracted by identifying the highest peak
in the frequency spectrum after applying the Fourier
Transform (Equation 19).

fDoppler � argmax
f

X f( ){ } (19)

2.4.4 T-SNE analysis for feature space visualization
To qualitatively assess the discriminative capacity of the

extracted features, a t-SNE (t-distributed Stochastic Neighbor
Embedding) projection was applied to both the handcrafted and

spectrogram-based feature sets. This dimensionality reduction
technique maps high-dimensional data into a two-dimensional
space while preserving local structure, allowing for visual
inspection of class separability and the clustering behavior of the
features (Maaten and Hinton, 2008). Figure 7 presents the resulting
t-SNE plots, where each point corresponds to a sample, and colors
indicate particle size classes. The resulting spatial distribution
suggests that the extracted features contain sufficient information
to support particle size classification.

2.5 ML classifier models

Machine learning models, specifically deep learning
architectures, were evaluated using different input
representations, with hyperparameters optimized via grid search
based on their impact on model performance (Yang and Shami,
2020). The dataset was randomly shuffled prior to data
augmentation, with 30% allocated for testing using real particle
signals and the remaining 70% used for training and validation. This
training portion was subsequently augmented and split into 80% for
training and 20% for validation. Model performance was evaluated
in terms of classification accuracy and computational efficiency, as
detailed in the Appendix.

2.5.1 Spectrogram-based model
This model processes spectrograms resized to dimensions

63 × 65 × 1, which are then passed through a fully connected
neural network. The architecture includes a Flatten layer,
followed by two dense layers, each using ReLU activation, batch
normalization, and L2 regularization with a coefficient λ �
2.5 × 10−4 to improve generalization (Yang and Shami, 2020;
Agrawal, 2021). Dropout is applied after each dense layer to
prevent overfitting. The output layer consists of three neurons
with softmax activation, corresponding to the three particle size
classes. Training was conducted using a batch size of 32 and the
Adam optimizer with a learning rate decay initialized at 6 × 10−4,
using categorical cross-entropy as the loss function. Early stopping
was implemented to further reduce overfitting by monitoring
validation loss.

All model hyperparameters were optimized via grid search.
This included the STFT parameter nperseg � 2n, with n ∈ [7, 9],
dropout rates pdropout ∈ [0.1, 0.2], and dense layer sizes dense1,
dense2 � 2n, with n ∈ [3, 8]. The optimal configuration, which
also reflects the most effective spectrogram resolution, was found
to be dense1 = 64, dense2 = 8, pdropout � 0.1, and nperseg � 128.
This configuration achieved a test accuracy of 97.7% and a
validation accuracy of 98.6%.

2.5.2 Feature-based model
Following a similar topology to the spectrogram-based model,

this version replaces the spectrogram inputs with engineered
statistical and frequency-domain features, which are normalized
using Z-score scaling. The training methodology remains
unchanged, with the L2 regularization coefficient adjusted to
λ � 1 × 10−4. Hyperparameter tuning explored dense layer sizes
defined as dense1, dense2 � 2n, with n ∈ [5, 6, 7, 8, 9], and
dropout rates pdropout ∈ [0.1, 0.2].
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The best configuration was achieved with dense1 � 128,
dense2 � 256, and pdropout � 0.1. This feature-based model
achieved a test accuracy of 97.0% and a validation accuracy of 97.8%.

2.5.3 SMI temporal signal-based model
The 1D Convolutional Neural Network (CNN) model was

developed for temporal signal classification, following the band-
pass filtering and decimation steps and employing a hierarchical
feature extraction strategy. The architecture is composed of three
convolutional layers with an increasing number of filters 2n with
n ∈ [6 − 8] and a kernel size of 5. Each layer uses ReLU activation to
capture temporal patterns within the waveform. Batch
normalization is applied after each convolutional layer to stabilize
the training process, followed by MaxPooling1D (pool size = 2) to
reduce dimensionality while preserving relevant temporal features.
To prevent overfitting, a dropout rate of pdropout � 0.2 is applied
after each pooling layer.

The extracted features were then flattened and passed through a
fully connected dense layer with 256 neurons and L2 regularization
(λ � 1 × 10−4), before reaching the softmax output layer with three
neurons corresponding to the particle size classes. The model is
trained using the Adam optimizer with a learning rate of 6 × 10−4,
employing categorical cross-entropy loss. All hyperparameters were
tuned via grid search. This CNN model achieved a test accuracy of
98.9% and a validation accuracy of 98.3%.

3 Results and discussion

Figure 8 presents the classification performance achieved across
the different ML models, showing a high level of accuracy in
correctly predicting each particle category. To complement the
accuracy results and provide a more complete evaluation, Table 1
details the precision (P), recall (R), and F1-score (F1) for each
particle size and model.

The results confirm that the proposed signal analysis pipeline
enables a reliable and consistent particle classification system, as all
data representations achieved accuracy values close to 98% and
maintained precision, recall, and F1-scores above 94% across all
classes. The temporal signal-based model achieved the most
balanced performance, with all three metrics in the
0.98–0.99 range, indicating consistent detection with minimal
false positives and false negatives. The spectrogram-based and
feature-engineered models also yielded strong results, although
slightly lower recall for 2 µm particles (0.95) suggest occasional
misclassification for the smaller particles sizes.

These findings align with the dimensionality reduction analysis,
where particle sizes were well separated in the 2D feature space,
indicating that the classification task is not overly complex.
Additionally, the relatively simple architectures used in the
spectrogram-based and feature-engineered models, consisting of
only two dense layers, reinforce that the chosen data
representations provided sufficient discriminative information for
accurate classification. Even for the most challenging case (2 µm
particles), the system maintained a 97% of accuracy, indicating
strong classification performance.

On the other hand, the temporal SMI signal-based model
demonstrated effective classification without significantly

increasing model complexity. Despite having only three
convolutional layers and a single dense layer, this model achieved
comparable performance, demonstrating that even a small deep
learning model can successfully classify particles. This is particularly
relevant for real-time implementation, as the raw signal model
eliminates the need for explicit feature extraction steps,
showcasing the powerful feature learning and generalization
capabilities of SMI signals.

To further analyze the computational performance of the
models, quantization techniques were applied by reducing data
precision from floating-point (FP64) to integer 8-bit (Int8). The
results indicate that classification accuracy remained unaffected,
confirming that the quantization process did not degrade model
performance, likely due to the model’s small size, allowing
quantization to reduce storage size, RAM usage, and inference
latency without significant loss of accuracy.

Table 2 presents the storage, inference latency, and peak RAM
usage of each model before and after quantization. Notably, the raw
signal model, despite handling unprocessed data, required only
2.16 MB of storage and achieved a theoretical inference time of
1.8 ms. The spectrogram-based and feature-engineered models
exhibited lower storage and RAM consumption but with slightly
higher inference latency. These computational metrics were
validated using TensorFlow Lite profiling, confirming that the
models are suitable for deployment on low-power and resource-
constrained devices. However, further evaluation on embedded
hardware remains necessary to validate real-world performance.
These findings demonstrate that high-performance classification is
achievable without requiring large-scale models.

The present evaluation employed monodisperse polystyrene
particles, providing a controlled and repeatable test case for
assessing the system’s baseline performance. Future work will
focus on extending the analysis to heterogeneous mixtures
containing particles of different sizes, shapes, and materials,
including biological cells. This will allow for a more
comprehensive assessment of the model’s robustness in complex,
application-relevant scenarios, while expanding the dataset of SMI
signals and validating performance under conditions representative
of practical flow cytometry tasks.

Additionally, enhancements in both the optical and microfluidic
components of the system are anticipated. Optimizing the received
laser feedback, exploring alternative light sources such as VCSELs
with more uniform light distribution, and refining hydrodynamic
focusing, potentially by incorporating 3D hydrodynamic effects to
ensure more consistent particle alignment and velocity, will be key to
further improving the system’s performance.

4 Conclusion

This study proposed a machine learning pipeline for classifying
particles in self-mixing interferometry signals, enhancing the
accuracy of real-time particle analysis. The approach integrated
data acquisition, filtering, data augmentation, and three data
representations: spectrogram-based, feature-engineered, and
temporal signal-based models. The results demonstrated that
both fully connected neural networks and 1D convolutional
networks achieved high classification accuracy, reaching up to
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98% for particle size classification. These findings validate the
effectiveness of the proposed pipeline in distinguishing particle
sizes across varying signal-to-noise ratios. Moreover, the model
architectures were computationally efficient, with low inference
times, making them suitable for deployment on low-power
embedded systems. This research highlights the potential of
machine learning in improving the robustness and reliability of
SMI-based particle classification and contributes to the
advancement of real-time, label-free SMI particle analysis, with
direct applications in medical sensing and flow cytometry. Future
work will focus on handling more complex particle mixtures,
integrating models into embedded systems such as
microcontrollers or FPGAs, and further optimizing real-time
classification applications.
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Appendix: classification metrics

Classification Accuracy Metrics

• Accuracy: The proportion of correctly classified instances
relative to the total number of samples.

• Confusion Matrix: A detailed comparison of predicted
classifications versus actual labels, highlighting
classifications and misclassifications.

• Precision (P): The fraction of correctly classified particles out
of all predicted positive instances, minimizing false positives.

• Recall (R): The model’s ability to identify all actual particle
instances, reducing false negatives.

• F1-score (F1): The harmonic mean of precision and recall,
providing a balanced evaluation of classification
performance.

Computational Efficiency Metrics

• Storage Size: The total memory required to store the trained
model, impacting its deployment on embedded platforms.

• Inference Latency: The theoretical time required for the model
to make a prediction, determining its suitability for real-time
applications.

• RAM Consumption: The peak dynamic memory usage during
inference, critical deployment on low-memory devices.
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