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In radar, the measurements (like the range and radial velocity) are determined from the time
delay and Doppler shift. Since the time delay and Doppler shift are estimated from the
phase of the received echo, the concerned estimation problem is nonlinear. Consequently,
the conventional estimator based on the fast Fourier transform (FFT) is prone to yield high
estimation errors. Recently, nonlinear estimators based on kernel least mean square
(KLMS) are introduced and found to outperform the conventional estimator. However,
estimators based on KLMS are susceptible to incorrect choice of various system
parameters. Thus, to mitigate the limitation of existing estimators, in this paper, two
efficient low-complexity nonlinear estimators, namely, the extended Kalman filter (EKF) and
the unscented Kalman filter (UKF), are proposed. The EKF is advantageous due to its
implementation simplicity; however, it suffers from the poor representation of the nonlinear
functions by the first-order linearization, whereas UKF outperforms the EKF and offers
better stability due to exact consideration of the system nonlinearity. Simulation results
reveal improved accuracy achieved by the proposed EKF- and UKF-based estimators.
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1 INTRODUCTION

Radar systems are generally used in applications like target identification and tracking, air traffic
control, and remote sensing (Richards, 2005). In radar systems, a signal burst is transmitted by the
transmitter, and the receiver receives a scattered form of this signal in return. This scattering is
quantified with time delay and Doppler shift in the received signal, which gives measures on the
range and radial velocity of the target. The range and radial velocity of the target are used as
measurements in radar applications (Richards et al., 2010). Thus, an appropriate estimation of time
delay and Doppler shift is required for accurate tracking of the target trajectory. Some of the major
developments in estimating these parameters are introduced in the literature by Abatzoglou and
Gheen (1998), Li and Wu (1998), and Yang et al. (2011). Abatzoglou and Gheen (1998) introduced
an approximate maximum likelihood estimator based on the fast Fourier transform (FFT) for
estimating the desired time delay and Doppler shift. In the study by Li and Wu (1998), a nonconvex
least square cost function was defined in terms of the desired parameters. Thereafter, the estimation
problem reduces to the minimization of the cost function. In a later development, Yang et al. (2011)
introduced a multiple signal classification technique commonly known as MUSIC and estimated the
desired time delay and Doppler shift by solving the problem of spectral estimation.

The existing approaches introduced in the literature by Abatzoglou and Gheen (1998), Li and Wu
(1998), and Yang et al. (2011) suffer from poor estimation accuracy, especially in low signal-to-noise ratio
(SNR) conditions (often the case with practical radar systems). In the literature, this phenomenon has been
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termed as the SNR thresholding effect (Abatzoglou and Gheen; Rife
and Boorstyn, 1974; Kay, 1993; Kay, 1998). The desired parameters to
be estimated are contained in the phase of received echo.

Consequently, the parameter estimation problem in a radar system
is nonlinear (Richards, 2005; Richards et al., 2010). Therefore, as a
recent solution for efficient estimation of time delay andDoppler shift,
a kernel least mean square (KLMS)–based nonlinear estimator has
been introduced by Singh et al. (2017) and Singh et al. (2019). The
KLMS-based estimator uses representer theorem (Liu et al., 2011) to
recursively estimate the nonlinearity (between the unknown
parameters and returning signal) in a reproducing kernel Hilbert’s
space (RKHS) (Liu et al., 2011, 2008). The estimated parameters are
adaptively updated using the least mean square algorithm (Liu et al.,
2011) in RKHS. However, a major drawback in the KLMS-based
algorithm is that they require precise knowledge of various system
parameters, like the kernel width, step size, and dictionary thresholds.
Suitable values of these parameters are obtained by running their
values in a fixed range. Moreover, these parameter values are model
specific (Liu et al., 2008; Mitra and Bhatia, 2014;Mitra and Bhatia,
2017); hence, a priori fixed set of parameter values are not appropriate
for targets with varying system dynamics (e.g., varying range and
radial velocity) which is most common in practical problems.
Consequently, the KLMS-based estimators offer poor estimation
accuracy. Another drawback is that, being a stochastic gradient-
based algorithm, the KLMS-based estimators require a large
number of iterations to converge to a minimum error (between
the desired and estimated parameters) solution (Liu et al., 2011).

This paper introduces two novel nonlinear estimation
techniques to counter drawbacks of estimators in the literature
and improve the estimation of time delay and Doppler shift. The
proposed estimation techniques are based on two popular nonlinear
estimators: the extendedKalman filter (EKF) (Bar-Shalom et al., 2004)
and the unscented Kalman filter (UKF) (Julier et al., 2000; Julier and
Uhlmann, 1997; Julier and Uhlman, 2004). To the best of the authors’
knowledge, the EKF and UKF have been tested for target tracking
using radar-based measurements (Cortina et al., 1991; Farina et al.,
2002; Kulikov andKulikova, 2015). The other version of Kalman filter,
modified convolution kernel function (MCKF) (Gu et al., 2019), has
been used for parameter estimation of returning signal (model as
linear frequencymodulated (LFM) signal) in the specific application of
synthetic aperture radar. However, the EKF and UKF have not been
explored for estimating the time delay and Doppler shift for target
tracking. The EKF implements a basic Kalman filter (Bar-Shalom
et al., 2004) and offers a simple implementation. However, it
approximates the nonlinear system as a linear model obtained by
the first-order linearization. Subsequently, it suffers from poor

FIGURE 1 | Block diagram of the radar system model, depicting the transmission of signal and processing of scattered signal to estimate the target’s unknown
parameters: time delay and Doppler shift.

FIGURE 2 | Baseband LFM at low frequency.

FIGURE 3 | Broadband LFM at carrier frequency.

FIGURE 4 | Received LFM signal (time-delayed and Doppler-shifted
version of baseband LFM).
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accuracy and stability, especially in a complex environment such as
low SNR and heavy-tailed clutter. Poor accuracy in estimating the
target’s states causes ambiguity in target identification. Unlike EKF,
UKF considers the system models in their original nonlinear form,
which is beneficial in accurate estimation of a target’s parameters in a
complex environment. Accuracy of the proposed estimation techniques
based on EKF and UKF is compared with the existing KLMS-based
estimator (called KLMS-Modified NC) and conventional estimator
based on FFT. Simulation results reveal a lower normalized mean
square error (NMSE) and variance for the proposed estimators.

The main purpose for which radars are commonly used is
detection and tracking. Usually, in a radar system, the tracking is
followed by the detection and estimation of parameters such as range,
radial velocity, and angle. The estimated range, radial velocity, and
angle are used asmeasurements for the tracker. In the proposed work,
we are estimating the target range (time delay) and radial velocity
(Doppler shift) at the signal level before detection. Therefore, the
estimated parameters can be supplied directly to the tracker for
tracking; in the literature, this technique is notably known as track
before detection (TBD) (Buzzi et al., 2008; Kwon et al., 2019).
Consequently, as TBD finds application in stressful environments
(heavily perturbed by clutter) like marine, vehicles in traffic, and
ground with complex terrains, with the assumption of known angle
information, our proposed estimation approach provides improved
measurements for tracker in such applications.

The rest of the paper is organized as follows: Section 2
describes the signal model for received radar return for the
transmitted LFM signal. The proposed EKF- and UKF-based
estimators are described in Section 3. Simulation results along with
analytical expressions for CRLB on the variance in estimating time
delay and Doppler shift are discussed in Section 4. Finally, Section 5
concludes the contribution of this work.

Notations. Scalar variables (constants) are denoted by lower
(upper) case letters. Vectors (matrices) are denoted by boldface
lower (upper) case letters. Superscripts (·)T , (·)H , and (·)* denote
matrix transpose, matrix complex conjugate transpose, and scalar
complex conjugate operation, respectively. E[·] denotes statistical
expectation. C and R denote a set of complex and real numbers,
respectively. R(·) and I(·) denote the real and imaginary part of
the complex number, respectively.

2 SIGNAL MODEL FORMULATION

In this section, we derive the radar return signal model, which
describes the relationship between the radar return and the

desired unknown parameters, namely, the time delay and the
Doppler shift. We choose the most commonly used radar system
called the monostatic LFM radar (Levanon and Mozeson, 2004;
Richards et al., 2010) with an assumption that the platform
holding a radar system is static. Block diagram of the considered
monostatic radar is presented in Figure 1. As shown in Figure 1, the
radar transmitter generates a burst of LFM pulses at a baseband
frequency (a sample baseband LFM signal is shown in Figure 2),
where LFM pulses are separated by a fixed duration called pulse
repetition interval (PRI). For transmission, the pulse burst is
modulated with high-frequency carrier signal, resulting in a
broadband LFM signal (a sample broadband LFM signal is
presented in Figure 3). The on-board receiver captures a scattered
formof transmitted signal returning from the target. Subsequently, the
received signal is degenerated to a scattered form of the originally
transmitted signal. Scattering is introduced due to two factors: i) time
delay due to to-and-from propagation of signal between the antenna
and the target and ii) Doppler shift introduced due to target’s radial
velocity. A sample scattered signal is shown in Figure 41.

The LFM baseband signal is denoted by sLFM(t), i.e.,

s LFM(t) � { a exp(jπct2); 0≤ t ≤To

0; To < t ≤TPRI,

where a is the amplitude, γ is the frequency sweep rate, To is the pulse
duration, and TPRI is the PRI. Note that the frequency of s LFM(t) is
time-varying with instantaneous frequency being fi(t)2� γt.

Themth pulse in the burst ofM LFM pulses can be represented
as the time-shifted form of s LFM(t), i.e.,

sm(t) � sLFM(t −mTPRI) for 0≤ t ≤To, (1)

where m ∈ [0, 1, . . . ,M − 1], with M being the total number of
pulses in the pulse burst.

As discussed earlier, sm(t) is modulated with high-frequency
carrier signal. The modulated signal can be represented as

s(t) � {sm(t)}exp(j2πfct), (2)

where fc is the frequency of the carrier signal.
The returning signal rm(t) is a time-delayed variant of s(t). If

τm is the time delay in the mth pulse, then

τm � τo − 2
c
{vmTPRI}, (3)

where τo is the time delay in the first pulse, v is the target radial
velocity, and c is the velocity of light.Without loss of generality, for the
time on target, i.e., forM pulses, v is assumed to be constant; thereby,
constant Doppler shift is assumed. The time difference 2

c {vmTPRI} is
the time shift in the return signal due to the change in position of the
target over mTPRI. Subsequently, rm(t) is

rm(t) � {sm(t − τm)}exp(j2πfc(t − τm)) + wm(t), (4)

TABLE 1 | LFM radar values of Scenario I (Abatzoglou and Gheen, 1998) and
Scenario II (Zhang et al., 2017) were used for simulation.

Quantity Values
for Scenario I

Values
for Scenario II

Number of pulses (M) 10 20
Number of frequency intervals (L) 500 500
Frequency increment (Δf ) 10 MHz 10 MHz
Pulse duration (To) 5 μs 200 μs
Pulse repetition interval (T PRI) 1 ms 0.4 ms
Center frequency (fc) 10 GHz 9 GHz

1In this work, the target is assumed to be a perfect reflector; hence, the effect of
amplitude attenuation is not considered in the scattered signal.
2The subscript i in fi(t) denotes that f(t) is the instantaneous frequency. Here, i is
only used for nominating fi(t) as an instantaneous frequency.
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where wm(t) is the additive thermal noise process.
The returning signal, rm(t), in the baseband can be written as

rm(t) � {sm(t − τm)}exp( − j2πfcτm) + wm(t). (5)

Substituting sm(t) from Eq. 1, we get

rm(t) � sLFM(t −mTPRI − τm)exp(− j2πfcτm) + wm(t). (6)

The matched filter output is given by

rm(t) � ∫τm+To

τm

sLFM(t −mTPRI − τm)s*LFM(t −mTPRI − τ)
× exp( − j2πfcτm)dt + wm(t). (7)

Next, taking the Fourier transform yields

Rm (f ) � exp( − j2πfcτm) ∫∫τm+To

τm

sLFM(t −mTPRI − τm)s*LFM(t −mTPRI − τ)exp(−j2πf τ)dtdτ
+ wm(f ).

� exp(− j2πfcτm) ∫∫τm+To

τm

sLFM(t −mTPRI − τm)s*LFM(t −mTPRI − τ)
× exp(− j2πf (mTPRI + τ − t))exp(− j2πf (t −mTPRI))dtdτ + wm(f ).
� exp(− j2πfcτm) ∫τm+To

τm

sLFM(t −mTPRI − τm)exp(− j2πf (t −mTPRI

− τm)dtexp(−j2πf τm) × ∫ s*LFM(t −mTPRI − τ)exp( − j2πf (mTPRI + τ − t)) × dτ

+ wm(f ).
Thus, Rm(f ) can be written as

Rm(f ) � ∣∣∣∣S LFM(f )∣∣∣∣2exp( − j2πfcτm)exp(−j2πf τm) + wm(f ).
Here, S LFM(f ) is the Fourier transform of s LFM(t).

Sampling in the frequency domain at l � [0, 1, . . . , L − 1] with
an interval of Δf and dividing by

∣∣∣∣S LFM(lΔf )|2 yield

r(m, l) � exp(− j2πfcτm)exp( − j2πlΔf τm) + w(m, l), (8)

where w(m, l) is the discrete sample of the thermal noise process.
Substituting τm from Eq. 3, we get

r(m, l) � exp(j2πmfdTPRI)exp
(− j2πlΔf τo)exp(j2πfdml(TPRIΔf

fc
)) + w(m, l), (9)

where fd � 2vfc/c is the unknown Doppler shift due to the target’s
radial velocity.

From Eq. 9, it is explicit that the returning signal, r(m, l), is
exponentially nonlinearly related to the desired time delay, τo, and
Doppler shift, fd . The adaptive estimators to estimate τo and fd based
on KLMS-Modified NC exploiting nonlinearity were proposed by
Singh et al. (2017) and Singh et al. (2019). However, the performance
of the KLMS-Modified NC-based estimator is susceptible to
inappropriate values of various system parameters. Moreover,
being an adaptive algorithm, KLMS-Modified NC requires a large
number of iterations to reach the theoretical optimum solution,
leading to a large running time. In this paper, to mitigate the
shortcomings of the existing state-of-the-art algorithms, we
introduce two advanced estimation techniques based on EKF and
UKF for estimating τo and fd from the returning signal r(m, l).

3 ESTIMATION OF TIME DELAY AND
DOPPLER SHIFT

In this section, the proposed EKF- and UKF-based estimators for τo
and fd are described in detail. In noisy environments (as the
considered radar system), Bayesian framework-based estimators are
applied for several decades (refer to Bar-Shalom et al., 2004; Anderson

FIGURE 5 |NMSE plots of time delay estimation using estimators based
on KLMS-Modified NC, UKF, and EKF for Scenario I.

FIGURE 6 | NMSE plots of Doppler shift estimation using estimators
based on KLMS-Modified NC, UKF, and EKF for Scenario I.

TABLE 2 | Initial value of quantities used in simulations for Algorithm 1 and Algorithm 2.

Quantity EKF for Scenario I EKF for Scenario II UKF for Scenario I UKF for Scenario II

x̂k|k−1 [ 10−6.71 1 ] [ 10−5.25 1 ] [ 10−6.71 1 ] [ 10−5.35 1 ]
P̂k|k−1 [ 10−14 0

0 1
] [ 10−13.5 0

0 0.00025
] [ 10−14 0

0 1
] [ 10−14 0

0 0.00025
]
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and Moore, 2012; and Brown and Hwang, 1992 for a detailed
discussion). The Bayesian framework is based on the state-space
formulation (discussed in Section 3.1) (Bar-Shalom et al., 2004) of the
system model, and it is implemented in two steps: prediction and
update. Two popular simplifications of the Bayesian framework are
Gaussian filtering (Bar-Shalom et al., 2004) and particle filtering
(Arulampalam et al., 2002). The Gaussian filters are preferred over
particle filters due to sufficiently high estimation accuracy at an
appreciably low computational cost. The proposed EKF and UKF
for τo and fd estimation are two popular Gaussian filters. We, first,
formulate the state-space model for the LFM radar system and briefly
discuss the Bayesian framework. After that, we elaborate the proposed
EKF- and UKF-based estimation of τo and fd .

3.1 State-Space Model for Radar Systems
The state-space model consists of state and measurement models,
where the state model characterizes the state dynamics while the
measurement model represents the mathematical relation
between the state and measurement. Note that the state is
defined with the unknown desired parameters (τo and fd in

this case), while the measurement consists of the observed
quantities (the returning signal r(m, l)). Subsequently, the state
and the measurement variables are formulated as x � [τo fd]T and
y � [R(r(m, l))I (r(m, l))]T , respectively. In Eq. 9, the state-
space model is formulated with a constant increase in the time
delay over the sampling interval due to the constant radial
velocity assumption. Any error due to this assumption is
considered as the process noise. Similarly, the constant radial
velocity assumption gives constant Doppler shift over time and
the practical variation is again considered as the process noise.
Subsequently, the state model is formulated as

xk+1 � f (xk) + ηk � xk + Δx + ηk, (10)

where k ∈ {1, 2,/,K}, K � ML is the total number of discretized

samples of returning signal, and Δx � [To
K , 0] is a constant shift in

x between successive samples of returning signal. ηk is additive
process noise, compensating for modeling errors.

Following Eq. 9, the measurement model (yk+1) is
formulated as

yk+1 � h(xk+1) + vk+1 � [R(exp(j2πmxk+1(2)TPRI)exp( − j2πlΔf xk+1(1))

exp(j2πxk+1(2)ml(T PRIΔf
fc

)))

I(exp(j2πmxk+1(2)TPRI)exp
(− j2πlΔf xk+1(1))exp(j2πxk+1(2)ml(TPRIΔf

fc
)))⎤⎥⎥⎦ + vk+1,

(11)

where vk represents measurement noise. It should be
mentioned that the measurement noise compensates for the
error in capturing and/or processing of returning signals. In the
Gaussian filtering, ηk and vk are assumed to be zero-mean Gaussian
with covariances Qk and Rk, respectively. Also, we adopt the
standard modeling strategy from the filtering literature and
consider the noises (process and measurement) to have additive
effects.

3.2 Bayesian Framework for Filtering
The Bayesian filtering is performed in two steps.

3.2.1 Prediction
This step constructs the probability distribution function (pdf) of
states one step forward in time (in reference to the available
measurements) using the Chapman–Kolmogorov equation (Bar-
Shalom et al., 2004; Anderson and Moore, 2012), i.e.,

FIGURE 7 |NMSE plots of time delay estimation using estimators based
on KLMS-Modified NC, UKF, and EKF for Scenario II.

FIGURE 8 | NMSE plots of Doppler shift estimation using estimators
based on KLMS-Modified NC, UKF, and EKF for Scenario II.

TABLE 3 | Computational complexity of estimators based on FFT, KLMS-
Modified NC, UKF, and EKF.

Estimators Computational complexity

FFT O(MLlog2ML)
KLMS-Modified NC O(ML)
UKF O(n3)
EKF O(n3)
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P(xk∣∣∣∣y1:k−1) � ∫ P(xk|xk−1)P(xk−1∣∣∣∣y1:k−1)dxk−1, (12)

where P(·) represents the pdf. P(xk
∣∣∣∣y1:k−1) is commonly known as

prior pdf.

3.2.2 Update
This step reconstructs the pdf P(xk

∣∣∣∣y1:k−1) on the receipt of a new
measurement yk using the Bayes rule (Bar-Shalom et al., 2004;
Anderson and Moore, 2012), i.e.,

P(xk∣∣∣∣y1:k) � P(xk∣∣∣∣y1:k−1, yk) � 1
ck
P(yk∣∣∣∣xk)P(xk∣∣∣∣y1:k−1), (13)

where P(yk
∣∣∣∣xk) is the measurement likelihood which is obtained

from Eq. 11 and ck is a normalization constant, i.e.,

ck � P(yk∣∣∣∣y1:k−1) � ∫ P(yk∣∣∣∣xk)P(xk∣∣∣∣y1:k−1)dxk. (14)

The objective of Bayesian filtering is to construct P(xk|y1:k),
which is popularly known as posterior pdf.

Hereafter, we denote P(xk|y1:k−1) ∼ P(xk|k−1) and
P(xk|y1:k) ∼ P(xk|k), which are standard notations used in
estimation and filtering literature (Brown et al., 1992; Bar-
Shalom et al., 2004; Anderson and Moore, 2012).

3.3 EKF-Based Estimation of τo and fd
From the state-space model of the considered radar systems
(Eqs. 10, 11), the estimation of τo and fd from returning
signal, r(m, l), is simplified as an estimation problem of xk
from known measurement yk. The EKF is an analytical
simplification of the above-discussed Bayesian framework.

It assumes the conditional pdfs in the Bayesian framework
(Eqs. 12–14) as Gaussian, i.e.,

P(xk|k−1) ∼ N (xk|k−1; x̂k|k−1,Pk|k−1), (15)

P(xk|k) ∼ N (xk|k; x̂k|k,Pk|k), (16)

where N denotes real Gaussian distribution, x̂k|k−1 and Pk|k−1 are
mean and covariance of xk|k−1, and x̂k|k and Pk|k are mean and
covariance of xk|k. Subsequently, the problem is further simplified
to determine x̂k|k−1 and Pk|k−1 in prediction step and x̂k|k and Pk|k
in update step. The computational aspect of the two steps is
discussed herewith.

3.3.1 Prediction
In this step, the prior pdf parameters, i.e., x̂k|k−1 and Pk|k−1, are
obtained by using the Jacobian (Fk) of f (xk) (Bar-Shalom et al.,
2004; Anderson and Moore, 2012), given as

Fk � zf (x)
zx

∣∣∣∣x � x̂k−1|k−1 � [ 1 0
0 1

].
Refer to the work of Bar-Shalom et al. (2004), Anderson

and Moore (2012), and Brown and Hwang (1992) for a
detailed discussion on the computational aspects of Xk|k−1
and Pk|k−1.

3.3.2 Update
In the update step, firstly, the predicted measurement (ŷk|k−1) and
the error covariance (Pyy

k|k−1) are obtained. The computation of
these parameters is based on Jacobian (Hk) of h(·) (Brown and
Hwang, 1992; Bar-Shalom et al., 2004; Anderson and Moore,
2012), given as

FIGURE 9 | Variance in the estimation of time delay using estimation
techniques based on UKF, EKF, KLMS-Modified NC, and FFT for Scenario I.

FIGURE 10 | Variance in the estimation of Doppler shift using estimation
techniques based on UKF, EKF, KLMS-Modified NC, and FFT for Scenario I.
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Hk � zh(x)
zx

∣∣∣∣x � x̂k|k−1

�
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
zcos(θ1)
zxk(1)

zcos(θ1)
zxk(2)

zsin(θ1)
zxk(1)

zsin(θ1)
zxk(2)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−sin(θ1) zθ1

zxk(1) − sin(θ1) zθ1
zxk(2)

cos(θ1) zθ1
zxk(1) cos(θ1)

zθ1
zxk(2)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−sin(θ1)(−2πlΔf ) − sin(θ1)(2πmTPRI + 2πml((TPRIΔf )

fc
))

cos(θ1)(−2πlΔf )cos(θ1)(2πmTPRI + 2πml((TPRIΔf )
fc

))
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

(17)

where

θ1 � −2πlΔf x̂k|k−1(1) + 2πmx̂k|k−1(2)TPRI

+ 2πmlx̂k|k−1(2)((T PRIΔf )
fc

).

Finally, on the receipt of a new measurement yk, the posterior
estimate and covariance, x̂k|k and Pk|k, are obtained using
Kalman gain (Kk). Refer to the work of Brown and Hwang
(1992), Bar-Shalom et al. (2004), and Anderson and Moore
(2012) for a detailed discussion on the computation of these
parameters.

The posterior estimate x̂k|k � [τ̂ok f̂ dk]T provides the desired
estimate of time delay and Doppler shift. The steps involved in
EKF-based estimation of time delay and Doppler shift are
summarized in Algorithm 1.

Algorithm 1 Estimation of time delay and Doppler shift
using EKF

1: Input: f : xk−1 → xk, h : xk → yk, Qk, and Rk

2: Output: x̂k|k
3: Initialization: x̂0|0, P0|0
4: while k≤K do
5: Compute Jacobian of f (x): Fk � zf (x)

zx

∣∣∣∣x � x̂k−1|k−1
6: Compute the prediction parameters

x̂k|k−1 � f (x̂k−1|k−1)
Pk|k−1 � FkPk−1|k−1FTk +Qk

7: Compute the Jacobian of h(x) as Hk � zh(x)
zx

∣∣∣∣x � x̂k|k−1
8: Compute the update parameters

ŷk|k−1 � h(x̂k|k−1)
Pyy
k|k−1 � HkPk−1|k−1HT

k + Rk

Kk � Pk|k−1HT
k (Pyy

k|k−1)(−1)
x̂k|k � x̂k|k−1 + Kk(yk − ŷk|k−1)
P̂k|k � P̂k|k−1 − KkP

yy
k|k−1K

T
k

9: Return x̂k|k
10: end while
x̂k|k−1, Pk|k−1, ŷk|k−1, P

yy
k|k−1, Kk, x̂k|k, and P̂k|k are obtained as in

the work of Brown and Hwang (1992), Bar-Shalom et al.
(2004), and Anderson and Moore (2012).

3.4 UKF-Based Estimation of τo and fd
The UKF (Julier et al., 2000; Julier and Uhlmann, 1997, 2004) uses
a derivative-free implementation for estimating xk from known
measurement yk, unlike the EKF. The desired estimate and
covariance in the prediction and update steps are obtained
from the first and second moments. Assuming the conditional
pdfs as Gaussian, the moment computation involves an integral

FIGURE 11 | Variance in the estimation of time delay using estimation
techniques based on UKF, EKF, KLMS-Modified NC, and FFT for Scenario II.

FIGURE 12 | Variance in the estimation of Doppler shift using estimation
techniques based on UKF, EKF, KLMS-Modified NC, and FFT for Scenario II.
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of the form “∫∞
−∞ nonlinear function × Gaussian pdf ”

(Arasaratnam and Haykin, 2009; Singh et al., 2018). The
integrals of this form are generally intractable (Arasaratnam
and Haykin, 2009; Singh et al., 2018); therefore, an analytical
solution does not exist. With the help of sigma points (ξ) and
associated weights (W), the UKF numerically approximates the
intractable integrals using unscented transformation (Julier et al.,
2000; Julier and Uhlmann, 1997). The computation of ξ andW is
based on the instantaneous value of x̂ and P. Refer to the work of
Julier and Uhlmann (1997) and Julier and Uhlmann (2004) for a
detailed discussion on their computational aspects.

The computational aspects of prediction and update steps for
the UKF are as follows.

3.4.1 Prediction
The predicted estimate and covariance, x̂k|k−1 and Pk|k−1, are
obtained by propagating ξ and W through the process model
and computing the sample mean and covariance. Refer to Julier
et al. (2000), Julier and Uhlmann (1997), Julier and Uhlmann
(2004) for a detailed discussion.

3.4.2 Update
The computation of updated estimate and covariance, x̂k|k and
Pk|k, is based on the statistical information of the predicted
measurement as follows (Julier et al., 2000; Julier and
Uhlmann, 1997;Julier and Uhlmann, 2004):

• Measurement estimate (ŷk|k−1) is obtained by propagating ξ
andW through the measurement model and computing the
sample mean.

• Measurement error covariance (Pyy
k|k−1) is obtained by

propagating ξ andW and computing the sample covariance.
• The cross-covariance (Pxy

k|k−1) is computed in a similar way
as Pyy

k|k−1 is computed in the previous step.

Finally, the desired parameters, x̂k|k and Pk|k, are obtained by
correcting the predicted estimate and covariance on the receipt of
newmeasurement yk. The correction is based on Kk, and the steps
to evaluate x̂k|k and Pk|k are given in the literature by Julier and
Uhlmann (1997) and Julier and Uhlmann (2004).

The estimate x̂k|k � [τ̂ok f̂ dk]T provides the desired estimate of
time delay and Doppler shift. The estimation algorithm based on
UKF is summarized in Algorithm 2.

3.4.3 Comparison Between EKF and UKF
EKF is an early development using filtering under the Bayesian
framework. As discussed in Section 3.3, its implementation
involves derivative-based computation, which causes several
limitations, like smoothness requirement for system models and
poor stability. Though it outperforms the KLMS-Modified NC-
based estimator and other estimators used in radar systems, it has
certain limitations. For instance, the derivative requires a smooth
system model; however, it is not guaranteed in the radar systems.
Moreover, the propagation of estimate and covariance through
locally approximated system models leaves scope for further
improvement. Despite all the limitations, it attracts practitioners
due to its fast computation and implementation simplicity,

especially in applications where a small shift in estimation
accuracy does not affect the decisiveness about the presence of
target (Athans et al., 1968; Rao, 2005; Song and Speyer, 1985).

UKF offers a derivative-free implementation, which is based
on numerical approximation. Due to derivative-free
implementation, it shows better stability in comparison to
the EKF. Along with derivative-free implementation, it offers
higher-order approximation of moments and thus
outperforms the EKF in terms of estimation accuracy,
especially in complex environments (Jiang et al., 2007;
Zhan and Wan, 2007; Chang et al., 2013).

Algorithm 2 Estimation of time delay and Doppler shift
using UKF

1: Input: f : xk−1 → xk, h : xk → yk, Qk, and Rk

2: Output: x̂k|k
3: Initialization: x̂0|0, P0|0
4: while k≤K do
5: Compute the prediction parameters

ξf
j,k−1|k−1 � f (ξj,k−1|k−1)
x̂k|k−1 � ∑Ns−1

j�0 Wjξ
f
j,k−1|k−1

Pk|k−1 � ∑Ns−1

j�0
Wj(ξfj,k−1|k−1 − x̂k|k−1)(ξfj,k−1|k−1 − x̂k|k−1)T +Qk

6: Compute the update parameters

ξhj,k|k−1 � h(ξj,k|k−1)
ŷk|k−1 � ∑Ns−1

j�0 Wjξ
h
j,k|k−1

Pyy
k|k−1 � ∑Ns−1

j�0
Wj(ξhj,k|k−1 − ŷk|k−1)(ξhj,k|k−1 − ŷk|k−1)

T + Rk

Pxy
k|k−1 � ∑Ns−1

j�0
Wj(ξj,k|k−1 − x̂k|k−1)(ξhj,k|k−1 − ŷk|k−1)

T

Kk � Pxy
k|k−1(Pyy

k|k−1)−1
x̂k|k � x̂k|k−1 + Kk(yk − ŷk|k−1)
Pk|k � Pk|k−1 − KkP

yy
k|k−1K

T
k

7: Return x̂k|k
8: end while

ξ f
j,k−1|k−1, x̂k|k−1, Pk|k−1, ξhj,k|k−1,ŷk|k−1, Kk, x̂k|k, and Pk|k are

obtained as in the work of Julier et al. (2000), Julier and
Uhlmann (1997), and Julier and Uhlmann (2004).

4 SIMULATION RESULTS

In this section, the performance of the proposed EKF- and UKF-
based estimation techniques is validated with Matlab simulation,
and a comparative analysis with the existing nonlinear estimator
based on KLMS-Modified NC and estimator based on FFT is
discussed. We consider two monostatic LFM radar systems
having different parameter values. The parameter values are
shown in Table 1, where Scenario I (Abatzoglou and Gheen,
1998) and Scenario II (Zhang et al., 2017) refer to the two radar
systems. As shown in Table 1, Scenario I represents a practical
LFM radar system whose parameter values are different from
the other practical LFM radar system referred to as Scenario II.
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The parameter values for both Scenario I and Scenario II are
from the work of Abatzoglou and Gheen (1998) and Zhang
et al. (2017), respectively. The practicality of the two
considered scenarios is validated by the fact that, for the
X-band radar, the center frequency is in the GHz range.
The initial values for xk|k−1 and Pk|k−1, used in simulations
for EKF and UKF, are mentioned in Table 2. In simulations, for

both EKF and UKF and for Scenario I, Qk � [ 10−19.8 0
0 0.001

],
and for Scenario II, Qk � [ 10−16.7 0

0 2.5 × 10−6 ].
For both Scenario I and Scenario II and for both estimators

based on EKF and UKF,Rk � σ2vI (where σ
2
v is obtained according

to specified SNR). The SNR is defined as the relative strength of
the signal with respect to noise; for this work, SNR � h(xk+1)Th(xk+1)

nσ2v
.

The estimation of time delay and Doppler shift is obtained for
20 dB SNR; however, the comparative analysis is provided for
various SNR ranging from −30 dB to 20 dB in decibels. In
simulations, for UKF and for both Scenario I and Scenario
II,κ � 0.5 and 5 sigma points are considered according to 2n +
1 (where n is the dimension, which is 2 here). The estimators
based on EKF and UKF in Algorithm 1 and Algorithm 2,
respectively, are run for 5000 iterations, i.e., K � 5000. The
100 Monte–Carlo (MC) trails are implemented to get
statistically smooth NMSE and variance curves of EKF and UKF.

4.1 Estimation of Time Delay and Doppler
Shift
The EKF- and UKF-based estimators were implemented with
simulated data obtained using (Eq. 10, 11) over 5000 sampling
intervals. The true data of states (obtained from Eq. 10) are used
as reference values for comparison. The NMSE is given by

NMSEk(i) � 1
Mc

∑Mc

mc�1

(xmc
k (i) − x̂mc

k (i))2
(xmc

k (i))2 , (18)

where i is the index corresponding to time delay or Doppler
shift. The NMSEs obtained from different estimators are shown
in Figures 5, 6 for Scenario I and in Figures 7, 8 for Scenario II.
The figures show a reduced NMSE as well as a faster
convergence for the proposed EKF- and UKF-based
estimators compared to the KLMS-Modified NC. Specifically,
as shown in Figure 5, the EKF- and UKF-based estimators
attain the final NMSE at around 3000th iteration, and KLMS-
Modified NC converges at around 4500th iteration.
Additionally, the final NMSE attained by EKF and UKF is
significantly lower than the KLMS-Modified NC. Hence,
though the estimators based on EKF, UKF, and KLMS-
Modified NC take time to converge, the EKF- and UKF-
based estimators converge fast and attain much lower final
MSE as compared to the estimator based on KLMS-Modified
NC. The reduced NMSE concludes an improved accuracy in
estimation of time delay and Doppler shift with the proposed
estimation techniques. The figures also conclude a relatively
better accuracy for the UKF compared to the EKF. Also, as

shown in Table 3, the relative computational complexity of EKF
and UKF is similar and lower than KLMS-Modified NC and FFT
as n3 ≪ML. However, in simulation, it is observed that the run
time of UKF is 1.7 times higher as compared to the EKF. The 70
percent increase in run time accounts for the processing of 2n +
1 (for our case 5) sigma points. Therefore, because of the
processing of multiple sigma points (which is not the case
with the EKF), the run time of UKF is 1.7 times of EKF,
where the 70 percent increase is because of the processing of
5 sigma points.

4.2 Performance Analysis With Varying SNR
The accuracy of the proposed estimation techniques for various
SNRs is evaluated in terms of error variance. The error variance at
the kth instant is given as

Ω2
k(i) �

1
Mc

∑Mc

mc�1
(xmc

k (i) − x̂mc

k (i))2. (19)

The error variance in the estimation of time delay and
Doppler shift is evaluated at various SNRs ranging from −30
dB to 20 dB. The variances are compared with the achievable
analytical CRLBs for each of the time delay and Doppler shift.
The CRLB analysis provides an efficient tool for performance
analysis of the EKF- and UKF-based unbiased estimators
(Cortina et al., 1991; Farina et al., 2002; Masarik and Subotic,
2016), as well as for their comparison with the existing estimators
used for time delay and Doppler shift estimation. Masarik and
Subotic (2016) derived the approximate expressions for the
CRLB on the variance of unbiased estimates of the parameters
of a narrow-band radar model in the presence of additive white
Gaussian noise as well as interference with known structure. The
derived CRLB expression is, however, suitable for the non-
Bayesian estimation approach and cannot be applied to the
Bayesian estimator as considered in this work. Therefore, in
this work to derive the CRLB over the Bayesian estimate of τo and
fd , the following recursive expression of Fisher information
matrix (Jk) is used

Jk(i, j) � −E[z2(lnP(yk, xk))
zxk(i)zxk(j) ]; i, j � 1, 2. (20)

Here, xk(i) is the ith element of xk, Jk(i, j) is the element at ith row
and jth column of Jk, and P(·) is the joint probability density
function.

From the work of Tichavsky et al. (1998), Jk+1 can be computed
recursively as

Jk+1 � D22
k − D21

k (Jk + D11
k )−1D12

k , (21)

where

D11
k � FTkQ

−1
k Fk,

D12
k � −FTkQ−1

k � [D21
k ]T ,

D22
k � Q−1

k +HTR−1
k+1H.

(22)

The analytical expression of CRLB for time delay and Doppler
shift is given by
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CRLB(τok) � J−1k+1(1, 1), (23)

CRLB(fdk) � J−1k+1(2, 2). (24)

The variances obtained from the EKF, UKF, KLMS-Modified
NC, and FFT are shown in Figures 9–12. As shown in the figures,
the variances obtained with the EKF and UKF are closer to the
achievable CRLB in comparison to the KLMS-Modified NC and
FFT. Moreover, the figures validate a marginally better accuracy
for the UKF compared to the EKF.

5 CONCLUSION

Increasing applications of target tracking in space technology,
defense systems, and ocean exploration requires radar systems
with a highly accurate estimator. The target tracking is based on
the estimation of the target’s unknown parameters (time delay
and Doppler shift) from the returning signal. The recently
introduced nonlinear estimator based on KLMS-Modified NC
can significantly improve the accuracy compared to conventional
linear estimators. However, its practical utility is limited by the
longer convergence time and parameter modeling errors. Hence,
to circumvent these shortcomings, in this paper, two new
nonlinear estimation techniques, based on EKF and UKF, are
proposed. Significantly, EKF estimates the target’s unknown
parameters by linearly approximating the system nonlinearity.
This significant approximation may lead EKF to suffer from poor
estimation accuracy (particularly in complex environments). The
UKF, unlike EKF, instead of linearly approximating the system
nonlinearity, considers the true nonlinear model for estimation.
Consequently, UKF shows better stability in comparison to EKF
and is found to yield estimates with slightly better/similar
accuracy. Further, to access the comparative performance of
the proposed estimation techniques with the existing nonlinear
estimator and linear estimator, CRLBs are used as a benchmark.
Lastly, simulations performed over realistic LFM radar systems
reveal that the proposed nonlinear estimation techniques based
on EKF and UKF outperform the recently introduced nonlinear
estimator based on KLMS-Modified NC and linear estimation
technique based on FFT. Also, the variance yields in the
estimation of the time delay and Doppler shift by the

proposed estimators are found closer to the corresponding
CRLBs.

In the proposed work, the nonlinear version of the Kalman
filter (EKF and UKF) suitable for Gaussian perturbation is
explored. However, in practice, the presence of clutter, usually
model by non-Gaussianity, is ubiquitous. Therefore, in future, to
handle the effects of clutter, the nonlinear version of the Kalman
filter capable of dealing with non-Gaussianity can be explored.
Also, for accurate tracking, the tracker requires range, radial
velocity, and angle information. In light of this, the possible
challenge of the proposed approach would be how to estimate the
angle information at the signal level itself. We left the estimation
of angle using the proposed technique as a future work.
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