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The use of drones for recreational, commercial and military purposes has seen a rapid
increase in recent years. The ability of counter-drone detection systems to sense whether a
drone is carrying a payload is of strategic importance as this can help determine the
potential threat level posed by a detected drone. This paper presents the use of micro-
Doppler signatures collected using radar systems operating at three different frequency
bands for the classification of carried payload of two different micro-drones performing two
different motions. Use of a KNN classifier with six features extracted from micro-Doppler
signatures enabled mean payload classification accuracies of 80.95, 72.50 and 86.05%,
for data collected at S-band, C-band and W-band, respectively, when the drone type and
motion type are unknown. The impact on classification performance of different amounts
of situational information is also evaluated in this paper.
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1 INTRODUCTION

Over the past decade there has been a substantial increase in the number of micro-drones,
i.e., Unmanned Aerial Vehicles (UAVs), available on both the commercial and consumer
markets. This increase can be attributed to their continually improving capabilities, ease of use,
and low cost, making them attractive to businesses and hobbyists alike. There have been countless
positive applications of micro-drone technology, e.g., agricultural and environmental surveying,
disaster response and search and rescue. However, micro-drones have become infamous for their
misuse, in performing anti-social, and often criminal activities, such as illegal filming of private/
sensitive locations or dangerous flying through restricted airspace creating a collision hazard to other
aircraft. Of particular interest in this work is the ability for micro-drones to be utilized as vehicles for
transporting payloads of dangerous substances e.g. explosives, chemical/biological weapons and
illicit drugs. This capability is of concern to security agencies worldwide (Forbes, 2019), with calls
beingmade to limit commercial drone payload capacities in order to limit the risk posed (BBC, 2016).

Current conventional radar based air surveillance systems often perform poorly when tasked with
detecting and tracking micro-drones, due to their considerably smaller Radar Cross Section (RCS)
when compared with standard aircraft, thus establishing the need for a dedicated system with
adequate sensitivity for detection of these small RCS targets (Rahman and Robertson, 2018).
Additionally, birds present an issue with drone detection systems due to their comparable RCS,
altitude and speed of flight, all of which make discrimination between these two targets challenging
using RCS information alone (Rahman and Robertson, 2018). In order to reduce the false alarm rate
and thus mature radar based drone detection technology, there is a widening body of research into
methods for discriminating between birds and micro-drones. The micro-Doppler signatures of
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drones have been identified as one method for discriminating
micro-drones from other targets and general clutter
(Tahmoush, 2014; Ritchie et al., 2016; Samiur and Robertson,
2019; Beasley et al., 2020). Micro-Doppler signatures are
produced by periodic micro-motions of a target or object,
such as flapping of a bird’s wings, the gait of a human walk
or rotation of a micro-drone’s propellers (Chen, 2019). Micro-
Doppler is the respective Doppler shift induced by these target
micro-motions which appear as side bands around the target’s
bulk Doppler. Further details on the mechanisms that produce
micro-Doppler have been extensively documented for a range of
radar targets in Miceli (2014) and Chen (2019). There are
several publications detailing micro-Doppler signatures of
drones, where comparisons are made with bird micro-
Doppler e.g., Tahmoush (2014), Ritchie et al. (2016),
Rahman and Robertson (2018), and Beasley et al. (2020).
This work has been taken further in Molchanov et al. (2014),
Kim et al. (2017), Samiur and Robertson (2019), and Rahman
and Robertson (2020), where drone micro-Doppler signatures
are fed into classifiers in order to discriminate between both
different classes of drones and between drones and birds. For a
more comprehensive review of the current literature on drone
detection and classification using machine learning, please refer
to a recent paper published on the topic by Taha and Shoufan
(2019).

There have been a number of works published on multi-
frequency micro-Doppler based classification of targets, with
gesture recognition accounting for a large portion. Such works
look to compare the suitability of particular frequency bands in
the role of micro-Doppler signature generation for
classification. A recent paper by Gurbuz et al. (2021),
investigated the use of three frequencies S-bands, namely
77 GHz, 24 and 10 GHz, for use in sign language recognition.
It was reported that, in nearly all cases, using the 77 GHz radar
data resulted in the highest classification accuracy, where the
lowest classification accuracy was reported to result from using
the 10 GHz radar data.

A comparatively more limited body of literature is published
on the topic of micro-Doppler based classification of unloaded
and loaded drones. A single data-set collected by University
College London’s (UCL) multistatic S-Band radar system,
NETRAD (Doughty, 2008), has been used in a number of
publications (Fioranelli et al., 2015; Ritchie et al., 2017; Patel
et al., 2019; Pallotta et al., 2020), to test the accuracy of a variety of
payload classification algorithms. In this data-set, a DJI Phantom
2 was loaded with a variety of payloads between 0 and 600 g and
made to either hover or fly towards the central radar node.
Fioranelli et al. (2015) and Ritchie et al. (2017) report high
classification accuracies using a feature extraction based
approach. In the hovering scenario, accuracies of 96–97% were
achieved using centroid based micro-Doppler features. In
contrast, for payload classification of the drone in flight, a
maximum classification accuracy of 95% was achieved when
using singular value decomposition (SVD) derived features. A
similar feature based approach was used on the same data-set in a
more recent publication by Pallotta et al. (2020), differing mainly
through the use of spectral kurtosis (Dwyer, 1983) to extract

features from the spectrograms. The algorithm produced by
Pallotta et al. (2020) achieved classification accuracies for the
hovering drone of 92.61%, marginally lower than the result
reported by Ritchie et al. (2017). In the case of the moving
drone, their classifier achieved an accuracy of 70.83%,
considerably lower than the 95% accuracy reported in the
work by Ritchie et al. (2017). The UCL data-set is again used
by Patel et al. (2019); however, a different approach is used to
tackle the classification problem. In Fioranelli et al. (2015),
Ritchie et al. (2017), and Pallotta et al. (2020) work, a single
spectrogram time-frequency representation was used, whereas in
the work by Patel et al. (2019), two additional transforms are
used, namely the cepstrogram and the cadence velocity diagram
(CVD). Instead of selecting individual features to feed a classifier,
a Convolutional Neural Network (CNN), AlexNet, is provided
with the three time-frequency representation images. In both the
hovering and moving drone scenarios, the AlexNet based image
classifier had an overall accuracy of around 95–96%, comparable
to the results reported by Fioranelli et al. (2015) and Ritchie et al.
(2017).

Rahman et al. (2020) from The University of St Andrews have
since released a substantial piece of work in which a 24 GHz
Frequency Modulated Continuous Wave (FMCW) radar and
96 GHz Continuous Wave (CW) radar were simultaneously
used to sample the micro-Doppler signatures of two large
drones (DJI S900 hexacopter and a Joyance JT5L-404 crop
spraying quadcopter) with a variety of payloads up to a
maximum of 5 kg. Rahman et al. (2020) concluded through
visual inspection of the spectrograms derived from the FMCW
radar data that there were no consistent unique signatures that
could solely be attributed to a drone carrying a payload. However,
more success was had in the case of the CW radar data, though a
conclusion was still reached that observed features could not be
used as the sole basis of a classification algorithm. Nevertheless,
an attempt was made to classify between unloaded and loaded
drones using two machine learning approaches, namely feature
extraction and a CNN. However, both approaches were found to
have limited success.

The work presented in this paper looks to expand on previous
work by comparing the effectiveness of radar data captured at
three different frequency bands to be used for determining the
payload weight which different drones are carrying. Radar
systems operating at C-band, S-band and W-band (mm-wave)
are used to measure two different types of small quadcopter type
drones carrying three different payload weights and performing
two different movement styles each. A series of investigations
with increasing complexity are then carried out using the micro-
Doppler signatures obtained from the radar measurements to be
able to classify the payload type. The rest of this paper is
organized as follows. Section 2 provides an overview of the
experimental setup and the equipment used, including
information about the radar systems and drones. Section 3
presents the theory and the methodology of the signal
processing and the classification procedures used. Section 4
reports the results obtained and provides some analysis from
these. Discussion on the observations are then summarized in
Section 5, before conclusion are finally presented in Section 6.
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2 EXPERIMENTAL SETUP

In this section, the two radar platforms used in this research to
capture radar data, the C-band and S-band ARESTOR RF sensor
system and the W-band Texas Instruments radar system, are
described. Details of the drone models flown as targets and the
experimental setup employed to gather the radar data are then
provided.

2.1 C-Band and S-Band RF Sensor
The UCL developed ARESTOR RF sensor platform is used to
collect S-band and C-band radar data from the UAV under test.
ARESTOR is a highly flexible custom-built RF sensor system,
based on the Xilinx RF System on a Chip (RFSoC) Xilinx (2021b),
which integrates multiple RF sampling rate analogue to digital
converters and digital to analogue converters with a large field-
programmable gate array (FPGA) fabric and multiple ARM
processing cores.

ARESTOR is an eight channel transmit/eight channel receive
RF sensor capable of direct sampling of RF signals up to S-band
frequencies. The system consists of a Xilinx ZCU111 RFSoC
evaluation board Xilinx (2021a), shown in Figure 1, plus FPGA
images and software infrastructure which allows the
customization of the ZCU111 such that it implements a range
of radar and RF sensor components, including FMCW radar
channels, passive radar channels and wideband electronic
surveillance channels.

Synchronization between multiple evaluation boards allows
the construction of systems with multiple Tx/Rx coherent
channels beyond the eight provided by a single board, and,
with the addition of our in-house GPSDO solution, allows for

multiple, spatially separated, ARESTOR subsystems to be
synchronized for coherent multistatic operation.

For a more detailed overview of the ARESTOR RF sensor
platform, see Peters et al. (2021).

In this study, the sensor is configured for dual-frequency
FMCW radar operation, with one channel operating within
the native frequency range of the RFSoC device for the S-band
capture, and for C-band by extending the frequency range using a
prototype RF front end which extends the upper limits of the
frequency coverage to approximately 12 GHz.

The S-band channel uses a pair of 18 dBi dish antennas, and
the C-band channel uses a pair of ultra-wideband tapered slot
antennas, each providing 12 dBi of gain.

Radar operating parameters employed in the data captures are
shown in Table 1.

2.2 W-Band Radar
A Texas Instruments W-band radar was used to collect the
W-band data during the drone captures. This system is
comprised of an AWR1642BOOST radar evaluation board and
a Texas Instruments DCA1000EVM capture card together being
controlled from a PC using the Texas Instruments mmWave
Studio application. The main radar operating parameters used
and the parameters used for the chirped waveform design are
shown in the corresponding columns within Table 1. A picture of
the system, including the radar board and the capture card is
shown in Figure 2.

This radar is relatively simple to use out of the box, requiring
no bespoke design from the user end beyond waveform design.
While the radar includes two transmit channels and four receive
channels, only a single transmit channel was used with the four
receive channels in the collection of the data used in this study.
The system can be used in either a vertical or a horizontal
polarization by physical manipulation of the antenna
orientations. The transmit and receive antennas included on
the system and used are formed of etched patch designs. In
the horizontal polarization used, each receive antenna is
comprised of a series of connected patches in a horizontal
alignment. The use of four receive antennas which are
vertically stacked allows collection of four data streams which
can be combined prior to Doppler-time processing in order to
achieve an improved SNR with minimal distortion within
resultant Doppler signatures. This is due to the relatively small
angle differences between each receive antenna and a target. The
transmit channel of the radar provides a total gain of 9 dBi, while
each receive channel provides a gain of 30 dBi. A similar version
to this system has been proposed and used within Gusland et al.
(2021), where an initiative has been formed in order to collect and
share radar data within the radar community.

2.3 Drone Types
Two different quadcopter style drones were used in the captures
performed for this research. These are the DJI Phantom 2 and the
DJI Spark. Both drones have a target user base of hobbyists and
are two of the most common types of low cost quadcopter style
drones which are typically used for recreational purposes.

FIGURE 1 | Xilinx ZCU111 RFSoC evaluation board with attached RF
interface card.
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The DJI Spark is the smaller of the two drones used, with main
body dimensions of 143 × 143 × 55 mm, a diagonal length
(excluding blades) of 175 mm, blade length of 110 mm and a
mass (including blades and battery) of 300 g. It has a maximum
velocity of 14 ms−1 and control communications are at a
frequency of 2.400–2.483 GHz or 5.725–5.825 GHz. This drone
will be referred to as the “small drone” in the following sections of
this paper. An image of the drone can be seen in Figure 3A. The
payload masses used with this drone are: 0, 50 and 100 g. As
proportions of the mass of the drone, these payloads equate to: 0,
16.67 and 33.33%, respectively.

The DJI Phantom 2 is the larger of the two drones used, with
dimensions of 300 × 300 × 190 mm, a diagonal length
(excluding blades) of 425 mm, blade length of 240 mm and a
mass (including blades and battery) of 1,250 g. It has a
maximum velocity of 15 ms−1 and control communications
are at a frequency of 2.400 GHz. Unlike the Spark, the
Phantom includes two lower rails beneath the main body of
the drone which act as landing gear, providing it with a
distinctive difference in shape from the small drone. This

drone will be referred to as the “big drone” in the following
sections of this paper. An image of the drone can be seen in
Figure 3B. The payload masses used with this drone are: 0, 250
and 500 g. As proportions of the mass of the drone, these
payloads equate to: 0, 20 and 40%, respectively.

It should be noted that the communications signal used for
controlling the smaller drone is always within the same frequency
range as either the C-band or S-band radar systems. Likewise, the
communications signal used for controlling the big drone is
always within the same frequency range as the S-band radar
system. No interference from either of the drone communications
signals were observed within the data collected.

2.4 Data Captures
The drone captures were carried out on the same day in a flat-
terrain outdoor setting over short grass with minimal other
electromagnetic (EM) or non-drone target interference. A
diagram depicting the approximate positions of the drone
relative to the antennas of the monostatic radars and the
approximate distances over which the drone was allowed to fly
can be seen in Figure 4.

Two captures, each of 1 min duration, were carried out for
each drone, motion and payload combination, meaning a total of
24 captures per frequency band (two drone types, two motions
and three different payloads, each recorded twice). Radar data
was captured simultaneously at the three different frequency
bands during each capture. A final set of captures were carried
out to record a static target with no drone present in the
environment at S-band using the same operating parameters
as the S-band parameters used for the drone data collection,
shown in Table 1.

3 SIGNAL PROCESSING AND
CLASSIFICATION

In this section, the signal processing methodology used to
facilitate the generation of Doppler-time spectrograms is
presented. The extracted features and machine learning model
used for classification are described, and details of the
classification investigations for which results will be reported
are given.

TABLE 1 | Operating parameters of radars and waveforms used.

Parameter W-Band C-Band S-Band

Operating mode FMCW FMCW FMCW
Waveform Rising sawtooth Rising sawtooth Rising sawtooth
PRF (Hz) 5,000 5,000 5,000
Chirp length (us) 160 100 100
Carrier frequency (GHz) 77.00 5.80 2.44
RF bandwidth (MHz) 2,560 80 80
Duty cycle (%) 80 50 50
Tx power (dBm) 12 20 20
Tx gain (dBi) 9 12 18
Rx gain (dBi) 30 12 18
Sampling rate (ksps) 6,250 1875 (post mixing and decimation) 1875 (post mixing and decimation)
Polarisation Horizontal Horizontal Horizontal

FIGURE 2 | Texas Instruments W-band radar system including
AWR1642BOOST radar evaluation board and DCA1000EVM capture card.
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3.1 Signal Processing
An overview of the signal processing performed on the captured
data sets is shown in the block diagram provided in Figure 5, in
which data structures are contained within blue blocks and
operational stages are contained within red blocks.

For each frequency band, the data obtained within a capture is
initially organized into samples recorded for each returned chirp,
commonly referred to by fast and slow time samples. A range fast
Fourier transform (FFT) is performed on the samples within each
chirp to obtain the range-time data. A moving target indication
(MTI) algorithm is used on this range-time data to remove
returns from static targets within the vicinity and to enable a
greater concentration onto the response from the drone. This
stage is desirable as returns from static targets can produce a
prominent component at the 0 Hz Doppler frequency within the
spectrograms which are used for classification. A strong

component at this Doppler frequency has the potential to
dominate over intricate micro-Doppler components resulting
from reflections from the drone within the spectrogram and
would cause the features used for classification to be based upon
the return from the stationary objects instead of the drone. A
range-time sample synchronization process is then used in order
to remove capture initiation offsets between data collected from
the three frequency bands to ensure features within the generated
spectrograms will arise from the same observed physical
phenomena. Following this, the range bins in which the drone
target is determined to be located in at any given time are
collected and formed into a single dimensional time spanning
vector, RΣ. A short time Fourier transform (STFT) can be
performed across these bins to generate a Doppler-time
spectrogram containing the Doppler signature of the drone.
The value of the STFT at frequency bin k at time slice m is

FIGURE 4 | Depiction of layout for experimental setup used and distances over which drone flights were carried out.

FIGURE 5 | Block diagram showing stages involved in data processing from collected raw data to features used for classification. Data structures are contained
within blue blocks and operational stages are contained within red blocks.

FIGURE 3 | The two drones used within tests in this research: (A) DJI Spark, smaller drone (B) DJI Phantom 2, larger drone.
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then given by Eq. 1, where L is the number of samples in a
window length, x [i] is the ith sample within RΣ, and hi is the ith
sample within the weighting window used for tapering the short
time samples.

F m; k[ ] � ∑
L−1

n�0
hnx m + n[ ]e−j2πnkL (1)

The parameters used to perform the STFT on the range-time
data for all the datasets used in this research are shown in Table 2.

The resultant Doppler-time spectrogram for the drone motion
throughout the capture is then cut into a series of one second long
segments.

3.2 Feature Extraction
Feature extraction is carried out on each of the Doppler-time
segments and the obtained values for each of the features are
recorded into feature vectors along with a class label of the weight
of the payload. It should be noted here that a Doppler-time
segment (and the use of the word “segment”) refers to a single,
one second long spectrogram slice containing values in decibels.
The use of one second long spectrogram samples has been shown
to be an effective length for drone micro-Doppler classification in
Ritchie et al. (2017). This short sample length ensures that feature
values are based on micro-movements intrinsic to the drone
instead of events such as: variations in flight path, the amount the
drone moves within the 1 min capture, or other unrelated
phenomena occurring within the scene during the capture
period. If a one second long spectrogram slice is represented
as matrix Dcomplex, then the Doppler-time segment upon which
feature extraction is carried out is given by DdB:

DdB � 20 × log10 Dcomplex

∣∣∣∣
∣∣∣∣ (2)

A comprehensive list of the features which are extracted from
Doppler-time segments and used for classification are presented
in Table 3. The features extracted from the Doppler-time
segments are based on statistical values and empirical
characteristics obtained from the segments. These provide
measures of the power distributions and variations within
spectrogram samples. The feature set is comprised of some
features which have previously been used in Dhulashia et al.
(2021) for the purpose of human activity micro-Doppler
signature classification, simple statistical measures of the
segment, and an application specific feature well suited to
finding the mean bulk Doppler frequency for drone targets.

The feature vectors are stored within categorized tables based
on the drone type and movement type. All of the feature vectors
for each of the four combinations (two drone types and two
movement types) formed from these categories from all payload
captures are stored for each of the frequencies examined in the
work. The feature vector collections for each frequency can then
be used to train a classifier upon choice of movement type and/or
drone type.

3.3 K-Nearest Neighbors Classifier
The classifier model used in this research is the K-Nearest
Neighbor (KNN) algorithm. This model is trained by mapping
the training data into a six-dimensional feature space based on
the extracted feature values for each data segment. Test samples
are similarly mapped into the feature space. The class types of the
“k” nearest training data points to the test data point within the
feature space are known and a vote is made amongst these to find
the majority class type. The test data point is then classified as
being a member belonging to this class type. In all classification
tests included in this research, the number of neighbors over
which voting is carried out (i.e., k value) is three. The KNN
method for classification is suitable as it is non-parametric and
therefore makes no assumptions regarding the probabilistic
distribution of the data, as well as being well suited to
problems where the data sets consist of smaller amounts of
data. The choice to use three nearest neighbors for class label
voting is to reduce computation times while minimizing the
impact on classification of erroneous or low quality individual
training data samples as well as potential overfitting.

3.4 Classification Methodology
In a fully deployable radar system, for usage outside of the
experimental research context, a hierarchical classification
procedure would typically be used. The initial stage of such a
classification methodology would perform target detection and
recognition. Here, a distinction would be made regarding the type
of target which is being observed. This would enable the system
to determine whether the observed target is a drone or some
other similar RCS target of non-interest, for example, a bird.
Such target determination methods are presented in Ritchie
et al. (2016) and Rahman and Robertson (2018). If the system
determines that the target is a drone, a second classification
stage would then be employed in order to classify the payload
status of the drone. In the context of the work presented in this
paper, a single classification stage is used. It is assumed that the

TABLE 2 | Short time Fourier transform parameters used to generate Doppler-
time spectrograms.

Parameter Value

Window type Hamming
Window length (samples) 500
Window length (% of PRI) 10
Overlap length (samples) 450
Overlap factor (% of window length) 90
FFT Points (samples) 4,000

TABLE 3 | Descriptions of features extracted from Doppler-time segments which
comprise feature vectors used for classification.

Feature Feature description

1 Mean of mean values from each time sample within segment
2 Variance of all values within segment
3 Median power of all values within segment
4 Maximum power of all values within segment
5 Mean of standard deviation of values in each time sample within

segment
6 Mean bulk Doppler frequency within segment
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target is present and that the target is already known to be
a drone.

Since the classification methodology employed in this work
did not use a hierarchical classification scheme, the data samples
from the static target captures allows for the inclusion of a class of
type, “No Drone,” within the training set data when constructing
classifiers used for the investigations within this research. The
purpose of this is to ensure that if a provided test sample is of
sufficiently low quality, for example, if the drone was not
observed, the classifier will be able to determine this as being
the case instead of forcefully attempting to classify the sample
into one of the three payload based classes pertaining to the drone
being present.

The research presented in the results section of this paper is
broken down into four classification investigations based on
supervised learning problems of differing complexities. The first
classification investigation aims to classify the payload carried
by a drone, given that the drone type and drone motion is
known. This classification is found using data from each
frequency band separately. This is achieved by creating
classifier training data sets using one second spectrogram
segments obtained from the captures for all three payloads
but only for a particular drone, motion, and frequency band
combination. 80 samples per payload mass are used to construct
these training data sets, as well as an additional 40 samples of
type “No Drone,” which correspond to samples taken when no
drone was flying, resulting in a total training set size of 280
samples. Unseen test samples corresponding to the same drone
and motion combination but of varying payload are then
provided to the classifier for classification. A total of 2,000
test samples are used in each classification test in a Monte-Carlo

fashion. Within a single classification test type, the classifier
model will be retrained with a new selection of randomly chosen
training data several times in order to allow the number of
Monte-Carlo tests to be reached. The same format of Monte-
Carlo tests along with the same number of repetitions are also
used in investigations two, three and four. Figure 6 shows the
feature table banks from which data is randomly selected
depending on the classification test type and how data is
provided to the classifier. It should be noted that the
algorithm used for randomized file selection ensures test data
remains unseen by the classifier during training and that only
samples corresponding to the test type being carried out
are used.

The second classification investigation aims to classify the
payload being carried by a known drone type but with unknown
motion. As such, training and test sets are both created using a
mixture of data from both “Hovering” and “Moving” motion
types for each of the frequency bands being investigated, as well
as the training set including “No Drone” samples. Similarly to
the first investigation, 80 samples per motion type per drone
type are included in each training set, along with 40 samples of
type “No Drone,” meaning training sets have a total size of 520
samples.

The third classification investigation looks to classify the
payload being carried by an unknown drone type but with
known motion. This is performed for a given frequency band
by creating classifier training sets comprised of samples for all
payloads from both the big and small drone but for only a single
motion type, as well as 40 type “No Drone” samples. The total
training set size is then 520 samples, and the classification tests are
repeated for each of the two motion types.

FIGURE 6 | Diagram depicting stages involved in selection of feature vectors from banks to results storage.
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The fourth classification investigation is concerned with the
classification of the payload given that both the drone andmotion
types are unknown. While the numerical value of the payload
weights is different for both drones, the use of the payload labels:
“Empty,” “Light” and “Heavy,” ensures that the problem remains
a four class problem (also including the ‘No Drone class). The
training set for this investigation for a given frequency band
consists of 80 samples from each of the payload, drone type and
motion type combinations, as well as the 40 samples from the “No
Drone” class, making the total training set contain 1,000 samples.

In all four investigations, it is ensured that the test sets are
balanced such that an equal number of samples from each of the
true payload classes are provided, as well as equal numbers from
each motion type and/or drone type, in the cases where either (or
both) of these variables are considered unknown.

4 RESULTS

This section first presents examples of Doppler-time
spectrograms obtained from captures using two different

payload weights at each of the three frequency bands before
presenting the results from the different classification tests in the
order introduced in the preceding section.

A series of example Doppler-time spectrograms corresponding
to 1 min of radar data are shown in Figure 7. The spectrograms
show the differences between data collected at the three different
frequency bands being used to generate a Doppler signature
corresponding to the same capture. Spectrograms are also shown
for two different payloads: No payload and heavy payload (500 g).
All the example spectrograms are generated from data collected
using the big drone and the “Moving” motion type.

The initial classification investigation aimed to classify the
weight of the carried payload by the drone given that the training
set data was formed only from samples corresponding to the same
drone and motion type as test samples being used, along with
samples from a static target. Figure 8 shows the results from this
classification investigation for both drone and motion types at
each of the three frequency bands.

It can be seen from Figure 8 that when the motion type is
“Hovering,” higher payload classification accuracies were
achieved using S-band and C-band when the small drone was

FIGURE 7 | Example Doppler signatures from recordings of large drone moving: (A) S-band, 0 g payload (B) S-band, 500 g payload (C) C-band, 0 g payload (D)
C-band, 500 g payload (E) W-band, 0 g payload (F) W-band, 500 g payload.
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used, whereas a higher classification accuracy was achieved
using W-band when the big drone was used. When the big
drone is used, the performance ranking of the three frequency
bands, from best to worst is: W-band, C-band, S-band. When
the small drone is used, the ranking is reversed: S-band, C-band,
W-band. This shows that despite the smaller payload weight to
body weight ratio, when the smaller drone is used, the payload
classification problem is still easier for the small drone when the
motion type is “Hovering” and either S-band or C-band are
being used.

When the motion type is “Moving,” it is seen that the
performance ranking of the three frequency bands, from best
to worst is: W-band, S-band, C-band. This is the same ranking
order for both drone types; however, higher classification
accuracies are observed for the big drone compared to small
across all frequency bands. The classification accuracies for
samples from the big drone were higher than that from
samples from the small drone by the following amounts:
S-band � +28.90%, C-band � +20.60%, W-band � +6.50%,
showing that the smallest performance spread due to different
drone types was seen when usingW-band.When the motion type
is “Moving,” payload classification accuracy for both drones at all
frequencies is lower than for the “Hovering” motion type,
showing that classification of payload weight using signatures
from the drone hovering is more accurate than classification
using signatures from moving drones.

By taking into account the graphs for both motion types in
Figure 8, it can be seen that W-band data leads to the best
classification accuracy in three out of the four cases and S-band
data has the best payload classification accuracy for the remaining
case. C-band ranks second best when the motion type is

“Hovering,” for both drone types. S-band ranks second best
for both drones when the motion type is “Moving.”

Out of the four cases for which data is shown in Figure 8, the
largest performance spread between any two frequency bands
occurs in the case of small drone and a motion type of “Moving,”
between W-band and C-band, where the classification accuracy
difference is 47.65%. Across the four cases included in the first
investigation, the best overall payload classification accuracy is
achieved at W-band when using the big drone in a “Hovering”
motion, while the worst overall payload classification accuracy is
achieved at C-band when using the small drone in a “Moving”
motion.

Figure 9 shows the results from the second classification
investigation, in which training sets are constructed using
samples from a specific drone type but for both moving and
hovering motions, as well as static non-drone target samples.

From Figure 9 it can be seen that the ranking order of the
frequency bands from best to worst payload classification
accuracy is the same for both drone types: W-band, S-band,
C-band. The payload classification accuracy is seen to be higher
for the small drone compared to the big drone for S-band and
C-band, though this difference is very small (<2%). The opposite
is seen for results obtained using the W-band data. The
classification accuracy spread across the three frequency bands
for the big drone is 23.85%, while for the small drone this spread
is 19.50%, meaning less variation in performance across
frequency bands is seen when using the smaller drone
compared to the bigger drone.

Figure 10 shows the results from the third classification
investigation where payload classification accuracies are found
using mixed drone data but known movements (the left hand set

FIGURE 8 | Payload classification accuracy from data collected at each frequency band for a known drone and motion type.
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of bars correspond to the hovering movement and the central set
of bars correspond to the moving drone movement), as well as for
the fourth classification investigation where mixed drone data
and mixed movement data is used (shown in the set of bars on the
right side of the graph).

From the first two sets of bars (bars for “Hovering” and
“Moving”) in Figure 10, it can be determined that when the
drone type is unknown, the highest payload classification

accuracy is achieved for motion type “Hovering” for all three
frequency bands. The smallest variation in performance across
S-bands also occurs for hovering data, where all three frequency
bands performed within 4.35% of each other. While the
performance differences are small for hovering data, the
frequency band ranking from best to worst is seen to be:
W-band, C-band, S-band. In the case where the data type is
from the drones performing the “Moving”motion, the frequency

FIGURE 9 | Payload classification accuracy from data collected at each frequency band for unknown motion but known drone type.

FIGURE 10 | Payload classification accuracy from data collected at each frequency band for unknown drone type.
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band performance ranking is: W-band, S-band, C-band. The
performance differences seen between the “Hovering” and
“Moving” signatures for each band are: S-band � −17.55%,
C-band � −38.25% and W-band � −6.90%, showing the
smallest variation in performance across different motion
types to be achieved by W-band.

When the signatures used in an investigation are of unknown
motion and unknown drone (corresponding to the set of bars on
the right hand side of Figure 10), the payload classification
accuracy of the frequency bands from best to worst is:
W-band, S-band, C-band. It is also seen that S-band and
C-band perform better in this investigation than when moving
only data is used, but worse than when hovering only data
(i.e., the results from investigation three), while W-band shows
a minor performance reduction compared to the case where the
motion type is known to be “Moving” (<1%).

Figure 11 includes three confusionmatrices pertaining to each
of the three frequency bands. Each confusion matrix is
constructed by recording the total number of classification
attempt outcomes for each investigation carried out within the
research presented. The values in the confusion matrices shown
the proportional breakdown of outcome class predictions given a
particular true payload class.

It can be seen from the confusion matrices that the highest
proportion of correct classifications for each payload type
occurred when using W-band data, followed by S-band data,
and the worst performance is seen fromC-band data.When using
C-band data, the highest misclassification situation occurs when
the correct payload is “Heavy” but the “Empty” class is predicted.

The second highest misclassification situation when using
C-band data occurs jointly when the true payload is “Light”
but the “Empty” class is predicted, and when the true payload is
“Empty” but the “Heavy” class is predicted. Three
misclassification scenarios occur with the same rate as these
two variations when using S-band. For all three frequency
bands, no instances were observed where a situation was
classed as having no drone present. For all three frequency
bands, the most likely true payload to be misclassified is the

“Heavy” payload. Similarly, for all three frequency bands, the
most likely true payload to be correctly classified is the ‘Empty’
payload, though the true class of “Light” payload has an equal
misclassification rate as this in the case of S-band.

All classification tests reported in this section of were repeated
using a set of eight conventional SVD features, previously used for
micro-Doppler classification in Fioranelli et al. (2017) and
Dhulashia et al. (2021). The four investigations reported
include a total of 27 different reported classification accuracy
results. A comparison of the classification accuracy achieved in
each of the tests using the SVD features with that achieved using
the features proposed in this work can be seen in Figure 12.

As shown in Figure 12, the feature set reported in this paper
outperformed the SVD feature set in 25 out of the 27 classification
tests, with classification accuracies being an average of 26.67%
higher when using the feature set proposed in this paper.

5 DISCUSSION

The results shown within this paper provide evidence that it is
possible to classify the payload of different quadcopter micro-
drone platforms. The tests included used payloads varying from
0% up to 40% of the drone body weight and achieved a peak
classification success of 98.55%. From the results shown in
Figures 8, 10, it can be seen that higher payload classification
accuracies were achieved when using signatures from the
“Hovering” scenarios, compared to those from when the drone
is performing the “Moving”motion. This may be due to a greater
number of degrees of freedom in the drone movement for the
“Moving” motion, causing greater variations within the
signatures for this motion type. Examples of these include
more deviations in: Flight path, drone altitude and drone tilt.

It can be determined that the best payload classification
accuracy can be achieved using signatures obtained at W-band
frequencies. However, the W-band radar system is significantly
range limited compared to the C-band and S-band systems, and
suffers from rapid SNR reduction as the range to the target

FIGURE 11 | Confusion matrices from all classification attempts using samples generated from data obtained at each frequency band: (A) S-band (B) C-band (C)
W-band.
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increases. For the W-band data, the lack of observable Helicopter
Rotation Modulation (HERM) lines within Doppler signatures
means that the features extracted were dominated by the bulk
Doppler contribution which appears to be sufficiently different in
each payload example to allow high classification success rates
despite the lack of HERM lines. This may be due to the changed
reflectivity of the target from the added metallic weights creating
the payload. As such, this conclusion is limited to the short range
examples tested in this research and the W-band system is likely
to have a significant drop off in classification success rate with
increases in range, unless highly directive antennas coupled with
significant power amplification is built into the radar system.

In the ideal case, a single system capable of simultaneous
measurements of all three frequency bands would be used along
with transmission and reception hardware to ensure no difference
in gain values. Such a system would allow for a comparison of the
classifiability of micro-Doppler signatures for the three frequency
bands while ensuring no other operating variables have any
bearing on the results. The measured SNR of the S-band and
C-band signals collected in this work were seen to be similar, thus
legitimizing a comparison of data obtained using different
hardware architectures.

In comparing the C-band and S-band results, the S-band was
found to generally outperform the C-band measurements,
particularly for the “Moving” and combined movement cases.
Therefore, the recommendation based on the findings of this
work would be to utilize the S-band frequencies for the task of

micro-drone payload classification, due to this frequency band’s
long range capabilities and high classification success rates. While
the superior classification accuracy of the W band is likely due to
the greater magnitude of Doppler frequencies spanned by the
bulk Doppler signature, the S-band and C-band signature
classification results from a greater contribution of the HERM
lines observed within the spectrograms. The bulk Doppler
contribution will be lower for these bands since this
component of the signature spans only a small proportion of
the overall Doppler frequency span. The S-band is shown to result
in a higher overall classification accuracy than the C-band. Two
factors are thought to contribute to this. The first of these results
from the differences in the distribution of the HERM lines within
the signatures from the two bands. In the S-band spectrograms, it
can be observed that the HERM lines are unambiguously
captured, while in the C-band spectrograms HERM lines may
extend beyond the Doppler frequency range and result in overlap.
Varying the payload on the drone results in changes in the rate at
which the motor rotates which induces changes in the
distribution of the HERM lines. For a higher payload and a
higher rate of motor rotation this would appear only as the
spreading of HERM line spacing in the S-band spectrograms.
Conversely, this change would result in some increase in HERM
line spacing and others becoming closer in the C-band
spectrograms, due to the overlap wrapping effect. The S-band
and C-band performance differences are also partially likely due
to the higher SNR of the HERM lines within the S-band

FIGURE 12 | Comparison of classification accuracy achieved in each test using feature set proposed in this paper and using SVD feature set.
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spectrograms compared to the C-band spectrograms. Since the
features used for classification are based on measuring the
distribution of energy within the signature, a more sensitive
distinction between signatures of different payload classes is
achievable for higher variations between the energy distributions
in the spectrograms from different payload classes. The stronger
HERM lines observed in the S-band spectrograms would result in
higher variations between the energy distributions within segments
from different payload classes, thereby resulting in a higher overall
classification accuracy compared to the use of C-band
spectrograms, which exhibit less energy distribution variations
across segments from different payloads due to the lower SNR
HERM line contributions. The disadvantage of S-band is that a
system operating at this frequency band requires a larger antenna
due to the longer wavelengths involved. This may present
additional logistical challenges if deployment is required on a
lightweight or small platform. Another potential reason for the
higher classification success rates achieved when using S-band
could be that the features being extracted have a greater propensity
towards characteristics more readily observed within the S-band
spectrograms compared to the C-band spectrograms.

6 CONCLUSION

This paper has presented results of using micro-Doppler features
extracted from radar data obtained at three frequency bands to
classify between three different payloads carried by two types of
quadcopter micro-drones performing two different motions. It
has been shown that the features and classification methodology
used in this work can successfully determine the payload being
carried by a drone in problems chosen to have varying
complexities and situational knowledge. The reported results
show that W-band is the preferable choice of radar frequency
band to use for micro-drone payload classification. Out of the
three frequency bands investigated, S-band is the second most
preferable and C-band is the least preferable. It has also been
shown that micro-Doppler signatures collected from hovering
drones lead to more accurate payload classification than
signatures from moving drones.

Further work will aim at collecting additional data in different
conditions to validate these preliminary results, including the use
of additional models of micro-drones and selecting different
locations in which to perform tests.

The results shown within this paper are all based on data
captured using horizontal polarization (H-pol) geometries. Future
work may look to investigate the benefit of a multiple polarized
sensing systemwhen looking to classify a drone payload. H-pol was

selected to maximize the micro-Doppler signatures but vertical
polarization (V-pol) may also give information on flight dynamics,
particularly when the drone is moving at higher velocities and
travelling at a significantly tilted orientation.

In all four of the classification investigations presented in this
work, classification decisions were made solely on the data from a
selected frequency band at any given decision instance. If a multi-
frequency system were to be used with a voting system to make
classification decisions, it is likely that the payload classification
accuracy would be greatly increased. This could be achieved by
using the data collected from all three frequency bands and
applying separate classifiers, before voting on the outcomes to
obtain a joint decision. It is expected that this fused decision
would provide an improved overall success rate.
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