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Deep convolutional neural networks (DCNNs) have been widely used in medical image
segmentation due to their excellent feature learning ability. In these DCNNs, the pooling
operation is usually used for image down-sampling, which can gradually reduce the image
resolution and thus expands the receptive field of convolution kernel. Although the pooling
operation has the above advantages, it inevitably causes information loss during the down-
sampling of the pooling process. This paper proposes an effective weighted pooling
operation to address the problem of information loss. First, we set up a pooling window
with learnable parameters, and then update these parameters during the training process.
Secondly, we use weighted pooling to improve the full-scale skip connection and enhance
the multi-scale feature fusion. We evaluated weighted pooling on two public benchmark
datasets, the LiTS2017 and the CHAOS. The experimental results show that the proposed
weighted pooling operation effectively improve network performance and improve the
accuracy of liver and liver-tumor segmentation.
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INTRODUCTION

Accurate segmentation of livers and liver tumors can assist doctors in better diagnosis and help
doctors make better medical plans. Therefore, liver and liver tumor segmentations have always been
one of the research hotspots in the field of medical image analysis. However, because the liver has a
similar density with other nearby organs, it is difficult to find the liver boundary accurately in a CT
image of the abdomen for non-professionals (Li et al., 2015). Relying on manual labeling of liver
regions is not only time-consuming and labor-intensive, tedious and inefficient, but also requires
high-level professional technical expertise for delineating labelers. Therefore, automatic or semi-
automatic liver segmentation algorithms have become a research goal in the field of medical image
analysis (Furukawa et al., 2017).

Before the advent of deep learning (LeCun et al., 2015), three popular image segmentation
algorithms were often used for liver segmentation: algorithms based on gray values (Adams and
Bischof, 1994; ChenyangXu and Prince, 1998; Lei et al., 2018), algorithms based on statistical shape
models (Heimann et al., 2006; Zhang et al., 2010; Tomoshige et al., 2014), and algorithms based on
texture features (Gambino et al., 2010; Ji et al., 2013). These traditional image segmentation
algorithms often employ only image low-level features such as edge, shape, texture, etc., but do
not employ the image semantic information with strong representation ability. Thus, they only
provide low image segmentation accuracy and show poor generalization. In recent years, with the
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rapid development of deep learning (Hinton and Salakhutdinov,
2006; Tu et al., 2017; Tu et al., 2018; Yang et al., 2021) in the field
of computer vision, especially after the emergence of fully
connected convolutional neural networks (Shelhamer et al.,
2017), researchers have begun to use deep learning methods
for image segmentation. The emergence of the U-Net
(Ronneberger et al., 2015) network model has greatly
promoted the development of medical image segmentation
(Lei et al., 2020a). Since then, this end-to-end segmentation
network (Nie et al., 2016) has become the benchmark for
medical image segmentations. U-Net is a completely
symmetrical encoder-decoder structure. In the encoder part,
the network gradually extracts the deep semantic information
of images, and then in the decoder part, feature maps are
gradually restored into a segmentation map. The skip
connection enables the network to fuse all levels of feature
information from the encoder during the decoding process,
which enables the network to obtain more refined
segmentation results. Due to the great success of U-Net,
various improved U-Nets have been proposed (Guo et al.,
2019; De Sio et al., 2021). These improved networks can be
roughly grouped into two categories. The first category of
methods often employs a new network backbone instead of
the convolution in the original network encoder-decoder part,
such as VGG (Simonyan and Zisserman, 2014), ResNet (He et al.,
2016), DenseNet (Huang et al., 2017), GhostNet (Han et al.,
2020), etc. The second category of method often adds some new
function modules to U-Net to enhance network performance,
such as attention U-Net (Oktay et al., 2018), CE-Net (Gu et al.,
2019), QAU-Net (Hong et al., 2021), and RA-UNet (Jin et al.,
2018). In addition, R2-UNet (Alom et al., 2018) adopts circular
convolution, that can use the same feature map to extract
information multiple times, and make full use of the
potentially useful information in the feature map. UNet++
(Zhou et al., 2020) explores the impact of different depths of
U-Net on network performance and adopts a new skip
connection to gather features of different semantic scales.
UNet3+ (Huang et al., 2020) further proposes a full-scale skip
connection to fuse the low-level information and high-level

semantics of feature maps of different sizes. LV-Net (Lei et al.,
2020b) uses a lightweight network to segment the liver.
Furthermore, there are some improved networks such as
DefU-Net (Lei et al., 2021), CE-Net (Gu et al., 2019) and
MSB-Net (Shao et al., 2019) that use multi-scale feature fusion
to enhance the feature representation of the network.

These networks perform pooling operations to achieve down-
sampling multiple times in the encoder part. The purpose is to
gradually pass down the feature information of images, and in
this process, the feature information of the image space and
channel is continuously integrated, and finally extracted deep
semantic information. Due to the characteristics of pooling, both
the average pooling (Wang et al., 2021) or the maximum pooling
(Nagi et al., 2011; Giusti et al., 2013; Graham, 2014; Bulo et al.,
2017) will inevitably lead to the loss of some image feature
information. Skip connection is a common operation in
medical image segmentation networks. In order to achieve
various skip connections, researchers usually use pooling
operation to process feature maps to the same size, which will
also cause the loss of feature information. This is especially so,
when we need to change the feature map ruler on a large scale to
realize skip connection (Huang et al., 2020), the information loss
caused by the pooling operation will be more.

In order to solve the problem of image information loss caused
by pooling operation, this paper proposes a weighted pooling
(Golan et al., 2012; Zhu et al., 2019) operation. The operation is to
allow images to be trained with parameters during the process of
down-sampling. Using weighted pooling operation, we can
change the size of the feature map while reducing information
loss, which provides conditions for achieving more types of skip

FIGURE 1 | p1, p2, p3, and p4 are the pixel values in the feature map, ω1,
ω2, ω3, and ω4 are the parameters to be learned in the setting window, and p is
the finally obtained pixel value.

FIGURE 2 | The use of weighted pooling reduces the loss of information
while changing the size of the feature map.
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connection, especially for the situation where a large range of
feature map size needs to be changed. In summary, we have made
the following contributions:

1) We propose a weighted pooling operation that can reduce the
loss of feature information of images while performing the
reduction of the image resolution.

2) We demonstrate that the weighted pooling operation is
helpful to the realization and improvement of various skip
connections.

3) Based on the weighted pooling operation and the full-scale
skip connection, we design a novel U-shaped network for liver
and liver-tumor segmentation, and the proposed network
achieves better performance than U-Net.

The rest of the paper is organized as follows. In Methods
section, we introduce the principle and implementation method
of weighted pooling in detail, and then explain the improvement
method of weighted pooling on skip connection, and finally
introduce the network we propose. In Experiments section, we
use experiments to demonstrate the effectiveness of weighted
pooling; Finally, in Conclusion section we present conclusions
and plan our future work.

METHODS

In this section, we will sequentially introduce the weighted
pooling operation and the improved skip connection based on
the weighted pooling operation. Then we design a new U-shaped
network for liver and liver tumor segmentation.

Weighted Pooling Operation
Pooling operation is very common in convolutional neural
networks (Seo et al., 2020), and its purpose is to perform
down-sampling on an image so that convolution kernels can
gradually obtain a larger receptive field and fuse more image

context information. The traditional pooling operation uses the
maximum pooling or the average pooling, that is, taking the
maximum value of pixels or the average value of pixels in a
window, and traversing the entire feature map to achieve the
purpose of down-sampling after determining the step size. Taking
the maximum pooling as an example, the pooling operation can
be expressed as p � max

l
pi, where l is the set of a window, pi is a

pixel values set from the window, and p is the finally selected pixel
value. Although the maximum pooling and average pooling can
achieve the purpose of extracting the main information and
average information, this simple operation will inevitably lead
to the loss of feature information, especially for some small
objects and detailed information, e.g., a relevant object
information may be completely lost after multiple pooling
operation.

The weighted pooling operation is to give each pixel in the
window a learnable parameter, and then let the window
traverse the entire feature map, which can achieve the
purpose of down-sampling and reduce the loss of image
information. Specifically, similar to the process of pooling
operation, we can set a matrix window with parameters for
the feature map of each channel. The size of the window can be
determined by itself according to different tasks or the degree
of down-sampling. After determining the step size, let the
window slide on the feature map of each channel to traverse
the entire feature map. For example, we perform pooling
operation using a 2 × 2 window with a step size of 2, the
pooling process is shown in Figure 1.

According to Figure 1, we understand the basic principle of
the weighted pooling, and the final pixel value can be
expressed as:

p � ∑
l

piωi (1)

where l is the set window size, pi is the pixel value of the feature
map in the window, and ωi is the parameter to be learned in the
window.

FIGURE 3 | Liver and liver-tumor segmentation network designed using weighted pooling and improved full-scale skip connection.
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According to (1), we can design the corresponding parameter
matrix window, but the existing modules allow us to implement
weighted pooling very conveniently. We can perform the
convolution operation on the feature map of each channel
separately, because the convolution operation is the process of
sliding the matrix window with parameters on the feature map,
which is the same as the idea of the weighted pooling. The
window size in the pooling process is generally even, which is
more conducive to our down-sampling, because odd-numbered
windows will have more stringent requirements on the resolution
of the feature map, so the weighted pooling also chooses even-
numbered convolution kernels. To perform the operation, and
then set different step lengths to achieve different down-sampling
requirements. In different tasks, we can freely choose even-
numbered convolution kernels of different sizes to perform
weighted pooling operation.

The Full-Scale Skip Connection
A key factor for the success of U-Net is the use of skip
connection (Milletari et al., 2016; Jin et al., 2017; Guo et al.,
2021), which enables the network to fuse low-level and high-
level feature information during the decoding process, and
finally obtains a more accurate segmentation result. It is worth
noting that there is a premise for using skip connection. The
premise is that the feature maps must have the same size. Due
to the limitation of the size of the feature map, skip connection
is not arbitrary.

For vanilla skip connection, to obtain the feature map of the
same size, researchers often use the pooling operation to change
the size of the feature map. According to the previous analysis, the
use of pooling to change the size of the feature map will inevitably
lead to the loss of image information, especially when the image
size needs to be changed in a large range, just like the full-scale
skip connection in U-Net3+. The proposed weighted pooling
operation can well solve the problem, which provides the
possibility for the proposal of more effective skip connections,
which is also another important contribution of this work. The
improvement of weighted pooling to skip connection is shown in
Figure 2. This paper mainly uses weighted pooling to improve
full-scale skip connection.

It can be seen from Figure 2 that we can use weighted pooling
to change the size of the feature map to the target size, which will

facilitate our subsequent skip connection and provide more
possibilities for the design of the network model.

The Proposed Network
This paper uses the weight poolingmodule and the improved full-
scale skip connection to design a network for liver and liver-
tumor segmentation. The network framework is shown in
Figure 3.

In Figure 3, we can see that the network is an enhanced
version of U-Net. The entire network can still be divided into
two parts: the encoder and the decoder. The convolution
modules of the encoder and the decoder use deep separable
convolution (Chollet, 2017), which can greatly reduce the
number of parameters of the network while maintaining
segmentation performance of the network. In the encoder
part, all down-sampling operations use the weighted
pooling module to replace the original maximum pooling
module, which can reduce the loss of image information.
For the first and second down-sampling, we used a 2 × 2
window for weighted pooling, which is conducive to the
extraction of image edge information and detail
information. Small windows are often adopted since they
can do this well. For the third and fourth down-sampling,
we used 4 × 4 and 8 × 8 windows respectively for weighted
pooling. We hope that the deeper layer of the encoder can fuse
the image information of the larger area of the feature map,
which is conducive to the decoding process and finally obtains
more accurate image segmentation results. A large window is
often adopted since it can do this well. For the feature map
containing deep semantic information finally obtained by the
encoder, we use the SE module (Jie et al., 2017) to perform
feature fusion. In the decoder part, for upsampling, we use the
combination of bilinear interpolation (Accadia et al., 2003;
Kirkland, 2010) and 1 × 1 convolution (Szegedy et al., 2015) to
replace the original deconvolution operation (Noh et al.,
2016), which can reduce the parameters at the same time,
and avoid the checkerboard-like phenomenon in the
feature map.

Full-scale skip connection can combine low-level appearance
information and high-level semantic information from feature
maps of different sizes to clarify better the location and boundary
of the liver. As shown in Figure 3, it is clear that each layer of the
convolution module of the decoder combines the feature maps of
all layers in the encoder. Compared with the original skip
connection of U-Net, the full-scale skip connection is
integrated from the network as a whole with sufficient
information, and these features at different scales can obtain
fine-grained details and coarse-grained semantics. As shown in
Figure 3, every time the encoder part is down-sampled, the
resolution of the feature map will become half of the original
feature map. To achieve a full-scale skip connection, we must
ensure that the size of the feature map is consistent. Then wemust
use pooling to make the feature map resolution consistent. But we
can see in Figure 3 that the largest difference in size between the
two feature maps is 8 times, which means that we need to use
pooling to change the feature map to 1/8 of the original. The
information loss in the middle will be huge. When we use

TABLE 1 | The improvement effect of weighted pooling on different networks.

LiTS2017 CHAOS

Method Liver Tumor Liver

DICE (%) DICE (%) DICE (%)

U-Net+Maxpooling 94.03 88.24 91.98
U-Net+Weighted pooling 95.57 92.41 93.81
CE-Net+Maxpooling 94.04 90.17 92.37
CE-Net+Weighted pooling 94.96 91.23 92.93
U-Net+++Maxpooling 94.01 89.85 92.05
U-Net+++Weighted pooling 95.12 90.97 92.57
Proposed 95.65 92.52 95.58

The best values are in bold.
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weighted pooling to change the size of the feature map, we can
reduce the loss of information, because we will learn with
parameters when we change the resolution of the feature map.
In this paper, we use an operation with a window size of 2 × 2 and
a step size of 2 to change the resolution of the feature map to 1/2,
and use an operation with a window size of 4 × 4 and a step size of
4 to change the resolution of the feature map to 1/4, and use an
operation with a window size of 8 × 8 and a step size of 8 to
change the resolution of the feature map to 1/8.

EXPERIMENTS

Dataset and Pre-Processing
In order to evaluate the effects of the weighted pooling module on
improving the performance of the liver and liver tumor
segmentation network, we used the LiTS2017 (Liver Tumor
Segmentation Challenge) dataset and CHAOS (Combined
Healthy Abdominal Organ Segmentation) dataset as
experimental data.

The LiTS2017 dataset contains 131 cases of labeled abdominal
3D CT scan images, in which the in-plane resolution ranges from
0.55 to 1 mm, the slice pitch ranges from 0.45 to 6 mm, and each
image size is 512 × 512. The CHAOS dataset is a small dataset that
contains 20 3D data, where the image size is 512 × 512. The entire
experiments use the axial 2D slice images of the LiTS2017 and
CHAOS dataset. We constructed the training set and validation
set using 90 patients and 10 patients. Then the other 30 patients
are considered as the test set. For the CHAOS, it was split into 16
patients for training and 4 patients for test.

FIGURE 4 | Segmentation results of maximum pooling and weighted pooling. The experimental network is U-Net.

TABLE 2 | The improvement effect of weighted pooling on skip connection.

Method Liver Tumor

DICE (%) DICE (%)

U-Net+general skip connection 94.32 90.17
U-Net+improved skip connection 95.38 91.78
Proposed in this paper 95.65 92.52

The best values are in bold.
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Medical CT axial slices are different from normal axial slices.
The former can obtain values ranging from −1,000 to 3,000, while
the latter can only obtain values ranging from 0 to 255. In order to
eliminate interference and enhance the liver area, we selected the
[−200, 250] HU range and performed a normalization process.

Experimental Setup and Evaluation Metrics
All the algorithms in this experiment are implemented on the
NVIDIA GeForce RTX 3090 Ti server. The neural network
chooses pytorch 1.7.0 as the framework for training and
execution. In the training process, the learning rate is set to
0.001, and this experiment did not use the dynamic learning rate.
The number of training rounds in this experiment is set to 100.

The most commonly used and effective index for medical
image segmentation is Dice score. The value of Dice ranges from
0 to 1. The larger the value, the higher the accuracy of
segmentation. The value of Dice for perfect segmentation is 1.
This experiment uses the average Dice of all slices in the test
dataset as the evaluation metrics.

Ablation Study
This paper is mainly to study the effect of the weighted pooling
operation on the liver and liver-tumor segmentation. The paper
mainly highlights two contributions. The first is that the weighted
pooling operation can be used to replace the traditional pooling
module to reduce the loss of image feature information, and the

FIGURE 5 | Segmentation results of general skip connection and improved skip connection. The experimental network is U-Net.

TABLE 3 | The accuracy of different network models on the LiTS2017 dataset and
CHAOS dataset.

LiTS2017 CHAOS

Method Liver Tumor Liver Training parameters

DICE (%) DICE (%) DICE (%)

U-Net 94.03 88.24 91.98 115,960,322
U-Net++ 94.01 89.85 92.05 9,041,700
CE-Net 94.04 90.17 92.37 29,003,668
H-DenseUnet 95.97 91.36 93.74 46,978,875
Proposed 95.65 92.52 95.58 18,618,935

The best values are in bold.
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FIGURE 6 | Liver segmentation results of different approaches.
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second is that the weighted pooling operation can improve
various skip connections. This paper improves the full-scale
skip connection. In order to explore the validity of these
contributions, we conducted two sets of ablation experiments
on the LiTS2017 dataset and CHAOS dataset.

The Effectiveness of the Weighted Pooling Operation
We let the U-Net, CE-Net, and U-Net++ networks to be trained
on the liver and liver-tumor training dataset respectively, and
then get the segmentation accuracy of the liver and liver-tumor
on the test dataset. Then, we use the weighted pooling operation
instead of the maximum pooling in the U-Net, CE-Net, U-Net++.
Then the new network is trained on the liver and liver-tumor
training dataset respectively, and the segmentation accuracy of
the liver and liver-tumor on the test dataset is obtained.

In Table 1, when we use the weighted pooling operation to
replace the maximum pooling module, the segmentation
accuracy of liver and liver-tumor are improved, which verifies
the first contribution of the paper. Especially for the CHAOS
dataset with a small amount of data, reducing the information
loss in the pooling process can more effectively improve the
network performance. In Figure 4, we can see the difference of
the segmentation results more clearly.

We have marked the main differences in the segmentation
results with red dashed lines. We can see from the segmentation
results that weighted pooling is more powerful. The first set of
liver segmentation results show that weighted pooling can reduce
the loss of information. The second set of liver segmentation
results show that weighted pooling has better feature learning
capabilities. The segmentation results of the two groups of liver-
tumor show that weighted pooling is more conducive to the
segmentation of small target objects, and weighted pooling has a
better ability to learn detailed information.

The Improvement Effect of Full-Scale Skip Connection
The experiment process is similar to the first set of
experiments. We trained U-Net with a general full-scale
skip connection and U-Net with an improved full-scale skip
connection, and then obtained the accuracy on the liver and
liver-tumor test datasets.

In Table 2, when we use the improved full-scale skip
connection, the segmentation accuracy of the liver and liver-
tumor are improved, which demonstrates the improvement effect
of full-scale skip connection based on the weighted pooling. In
Figure 5, we can also see the difference in segmentation results.
We have marked the main differences in the segmentation results
with red dashed lines. We can see from the segmentation results
that weighted pooling enhances the information transmission of
skip connection, and weighted pooling reduces the information
loss in skip connection.

Comparative Experiment
In order to test the performance of the proposed network, we
conducted a set of comparative experiments on LiTS2017
dataset and CHAOS dataset. We trained several popular
medical image segmentation networks, including U-Net,
U-Net++, CE-Net, H-DenseUnet (Li et al., 2017), etc., and

then obtained the segmentation accuracy of liver and liver-
tumor of these networks on the test dataset. In Table 3 for the
LiTS2017 dataset, we can see that the segmentation accuracy of
the network proposed in the paper is higher than that of some
popular medical image segmentation networks, except that
H-DenseUnet has a slightly higher liver segmentation accuracy
than our network. Although the liver segmentation accuracy of
H-DenseUnet is slightly higher than our method, its network
parameters are higher than our network. Fewer parameters
means that our network takes up less memory and consumes
less training time. At the same time, our network is easier to
migrate to other devices. Our method achieves a good balance
between computational complexity and performance. For the
CHAOS dataset, our network achieved the best performance,
which shows that our network has better learning ability in the
case of less data.

In Figure 6, we can see the liver segmentation results of
different methods. Our method performs well on detailed
information and edge information, which shows that our
method reduces the loss of information and better combines
global feature information. The red dashed line marks some
typical differences between our method and H-DenseUnet.

CONCLUSION

In this work, we have rethought pooling operation in DCNNs for
liver and liver-tumor segmentations. We have found that the
vanilla pooling operation suffers from a problem of information
loss leading to performance degradation of networks for image
segmentations. To overcome this, we have proposed a weighted
pooling operation to solve the problem. The weighted pooling
operation allows an image to be learned with parameters during
the down-sampling process, which reduces the image resolution
while ensuring the integrity of the image information. Using the
weighted pooling operation can easily make the feature map size
consistent, which is helpful for the realization and improvement
of various skip connections. The final experiments demonstrate
the effectiveness of the weighted pooling operation for liver and
liver-tumor segmentation. In the future, we will explore the
availability of weighted pooling for segmentation of other
types of images.
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