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Patients with absence epilepsy fail to report almost 90% of their seizures. The

clinical gold standard to assess absence seizures is video-

electroencephalography (vEEG) recorded in the hospital, an expensive and

obtrusive procedure which requires also extended reviewing time. Wearable

sensors, which allow the recording of electroencephalography (EEG),

accelerometer and gyroscope have been used to monitor epileptic patients

in their home environment for the first time. We developed a pipeline for

accurate and robust absence seizure detection while reducing the review time

of the long recordings. Our results show that multimodal analysis of absence

seizures can improve the robustness to false alarms, while retaining a high

sensitivity in seizure detection.
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1 Introduction

Absence seizures are the main seizure type in various idiopathic generalized epilepsy

syndromes, among others, in juvenile absence epilepsy (JAE) (Hirch et al., 2022). Typical

absence seizures are characterized by motor arrest and impaired awareness. On the

electroencephalogram (EEG), they are visualized by 3–4.5 Hz generalized spike-and-wave

discharges. In patients with JAE, lifelong treatment with antiseizure medications may be

required as relapse after withdrawal is high (83%) (Hirch et al., 2022). Even patients who

are considered to be seizure free under treatment, can still relapse (25%).

It is, therefore, paramount to accurately detect absence seizures in order to improve

therapeutic decisions. However, the subtle clinical manifestation of absence seizures

hampers the patient’s and the caregiver’s ability to correctly report the seizure in the

seizure diary. In studies with patients with absence seizures, 86%–94% of the absences are

not reported (Keilson et al., 1987; Akman et al., 2009; Swinnen et al., 2021). As such, the
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seizure diary is an unreliable method, although commonly used

in clinical practice as well as surrogate endpoint in trials for

antiseizure medication (Fisher et al., 2012).

Current diagnostics are based on the clinical history and in-

hospital monitoring of seizures with video-EEG (which is

considered the gold-standard for seizure detection). Hence,

devices that could record the seizures during normal everyday

life conditions could facilitate a better logging of the seizure

events, as the use of ambulatory EEG is limited due to the

complexity of placement and the visibility and constraints in

daily life.

An explosion in the capability of monitoring individuals via

sensors built into smartphones or wearable devices has been

taking place. Following the views of the patients, the devices need

to be “as ‘normal’ as possible,” “non-stigmatizing” and “non-

intrusive” (Bruno et al., 2018). Furthermore, the majority of the

patients were willing to use a wearable device for long-term

seizure tracking, envisaged by the possibility of understanding

their condition better. The detection of absence seizures with

wearable devices is a very suitable use-case, since the number and

location of electrodes is likely to be less important than in focal

epilepsies (Duun-Henriksen et al., 2012).

However, the clinical adoption of wearable EEG remains

challenging, since no phase-4 clinical study, proving the

feasibility and comfort of the device in a home environment,

has yet been conducted. Furthermore, there are challenges

regarding the signal quality and the time needed by the

neurologists to annotate the data. Hence, research for

automated seizure detection algorithms, tailored for wearable

EEG, is still in its infancy, especially in wearable detection of

absence seizures (Kjaer et al., 2017; Dan et al., 2020; Swinnen

et al., 2021; Japaridze et al., 2022), (semi) automated seizure

detection would facilitate the adoption of EEG wearables in

clinical practice. Furthermore, even the annotation of wearable

EEG data, compared to vEEG, is not trivial (Zhang et al., 2022).

In a previous paper (Swinnen et al., 2021), we reported the

performance of an EEG-based wearable, CE marked device to

detect absence seizures, the Sensor Dot (SD; Byteflies). SD is a

discrete, user-friendly wearable that consists of four electrodes,

creating two ipsilateral channels. This device was developed

during SeizeIT1 (2016–2019). The initial results currently

reported belong to an extension of SeizeIT1, SeizeIT2 which is

a larger multicenter trial with focus on clinical validation of the

SD in people with typical absence, focal impaired awareness, and

generalized tonic–clonic seizures (EIT Health: SeizeIT2,

clinicaltrials.gov: NCT04284072) (EIT Health, 2020).

In the same paper we proposed a novel automated absence

detection algorithm which achieved a mean sensitivity of

0.983 in the detection of absence seizures, with mean False

Alarm (FA) per hour equal to 0.9138. The use of the

automated algorithm reduced the review time of a 24 h

recording from 1 to 2 h to around 5–10 min for the

neurologists.

Nevertheless, the reported results in (Swinnen et al., 2021)

were obtained from data acquired within the hospital

environment. We argued that the first phase of the recording

of each patient will consist of routine monitoring in the EMU

after which these data can be used to train the algorithm. The

obtained classifier can be used to detect seizures from the data

acquired when the patient wears the SD at home. Similar

assumptions are being made by all of the aforementioned

studies with wearable devices and absence seizure detection.

Even in the phase-3 clinical trial of Epihunter (Japaridze

et al., 2022), the data were not obtained in an actual home

environment [as proposed in (Beniczy and Ryvlin, 2018)].

As observed from the data obtained from the patients in the

home environment with SD, the performance of the automated

seizure annotation was lower, compared to the performance of

the algorithm trained and tested with data obtained in the

hospital (Swinnen et al., 2021), especially in terms of FAs. In

the current paper we will present a pipeline for the automated

absence seizure detection for in-home monitoring, which will be

tested and validated, for the first time, with data obtained from

patients with absence seizures in their home environment. The

focus of the current paper will only be the algorithmic pipeline,

used to flag the possible seizures, the physiological findings of the

home studies will be released in future publications. The goal of

the pipeline is to be used by the neurologists in the rest of the

subjects and reduce the time needed to annotate the data. The

neurologists are requested instead of reviewing the whole

recording to only review the provided alarms from the algorithm.

2 Materials and methods

2.1 Patients

The current home-based phase of the SeizeIT2 study, is a

follow up of the phase-2 clinical study of SeizeIT2 presented in

(Swinnen et al., 2021). In total 13 patients were enrolled in two

epilepsy centers: University Hospital Leuven and University

Hospital Freiburg. Patients with a confirmed electroclinical

diagnosis of refractory Juvenile Absence Epilepsy were

enrolled between 11 March and 15 June 2022 if they had

previously participated in the in-hospital phase (Phase

2 study). Here, we used data of the first four patients (mean

age = 21 years; 3 female, 1 male) that were enrolled, to explore the

algorithmic pipeline.

In addition we included one patient with refractory absence

epilepsy, which is part of a long term monitoring study in

patients with different seizure types (Plug&Patch—PnP,

clinicaltrials.gov: NCT04642105), who had only measured

EEG at home with SD.

All patients from the trials gave written informed consent

and the studies were approved by the ethics committee of UZ/KU

Leuven.

Frontiers in Signal Processing frontiersin.org02

Chatzichristos et al. 10.3389/frsip.2022.1014700

http://clinicaltrials.gov
http://clinicaltrials.gov
https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://doi.org/10.3389/frsip.2022.1014700


2.2 Data collection

The patients had been initially admitted to UZ Leuven and were

followed for a 24-h vEEG monitoring (Schwarzer EEG amplifier,

O.S.G.) using the standardized 25- electrode array of the International

Federation of Clinical Neurophysiology. Behind each ear, two

additional Ag/AgCl cup electrodes (Ambu Neuroline cup, Ambu)

were attached on the mastoid bone for concomitant recording with

the SD. The SD, a small device of 24.5 × 33.5 × 7.73 mm (mm) and

6.3 g,was attached on the upper back using a patch (Figure 1), and two

bipolar channels were created by connecting the ipsilateral top and

lower electrode. Impedance was ≤ 5kΩ at the beginning and checked

throughout. The sampling rate of the SD and video-EEG was 250 Hz.

Battery life and memory storage of the SD were 24 h and 2 Gb,

respectively.

For the home-based study, all five patients received via post the

SD kit (Byteflies, Belgium), containing the two-channel EEG-based

SDs, the EEG-holder, the docking station, and four Ambu BRS

neonatal electrocardiography (ECG) adhesive electrodes, here used

for behind-the-ear EEG. The Inertial Measurement Unit (IMU) is

embedded in the SD and are collected simultaneously with the

EEG data. They received instructions on paper and via phone call

on how to install the docking station and connect it to Wi-Fi in

order to allow upload of SD data to the cloud. They were also

instructed on how to place the electrodes behind the ears on the

mastoid bone, two on each side of the head, with the upper and

lower electrode being approximately 5 cm apart. Electrodes on the

same side had to be connected to create two ipsilateral, left and

right, EEG channels. Impedance was not checked in the home-

environment. Four of the patients had one SD recording at home

lasting 22, 23, 24, and 24 h, respectively. The fifth patient had SD

recordings at home during 16–24 h per day, twice per week for

several months1.

FIGURE 1
The full concept enabled by the use of the SD. (1) Four electrodes (in orange) are placed behind the ears of the patient and connected to the
mobile EEG device, the SD, which is attached to the upper back via an adhesive (in blue). An enlarged image of the SD is given in the circle. (2) After
24 h of recording, the SD is placed in the docking station which will allow recharging of the battery. In addition, when the SD is in the docking station,
the SD EEG data will be automatically uploaded to the cloud via a WiFi connection. (3) Afterwards, the absence detection algorithmwill analyze
the data and flag segments of interest (in red). (4) Finally, the flagged data are send back to the treating neurologist who can then review the SD EEG
data in a very short time. (Figure reused from Swinnen et al., 2021).

1 Following (Swinnen et al., 2021) the definitionwas selected for research
purposes only, considering that we aimed to study whether these
typical EEG patterns can be equally detected by the ML algorirthm.
A 3 s 3-Hz SWDmight not always have a clinical correlation (Guo et al.,
2016).
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2.3 Pipeline for the ML-based seizure
detection

The pipeline that we have used for the analysis of the in-

home recordings consists of several blocks (Figure 2). The main

Machine Learning (ML) algorithm is similar to the one used in

(Swinnen et al., 2021) with minor modifications (as will be

described). Extra blocks have been added in order to detect

movement artifacts, flat lines and disconnected electrodes which

constitute a significant portion of the in-home recordings. All the

pipeline blocks will be described in detail in the following

subsections.

2.3.1 Preprocessing and segmentation
Each EEG SD channel was filtered with a bandpass filter

(1–25 Hz). Subsequently, the data were segmented in 2-s

windows with 50% overlap. The same segmentation process

was performed for the signals of the IMU, the accelerometer

and the gyroscope, which is embedded in SD.

2.3.2 Balancing the classes
The seizure detection task is a highly unbalanced problem.

Limited number of seizure segments exist and the background

(non-seizure) segments are dominant. As noted in (Swinnen

et al., 2021) when a random subsampling of the background data

is implemented the algorithm suffers from stability issues, with

high standard deviation of the sensitivity and the false alarm rate.

Therefore, different under-sampling approaches have been tested

and we opted for the use of an adapted version of the cluster-

based under-sampling approach (Yen and Lee, 2009). The

number of background samples, Nk, selected from each cluster

k was set equal toNk � mSs
Sbk
Sb
. Where m is the ratio between the

background and seizure samples we aimed to obtain in our

training set, K is the number of clusters on which we

clustered all the background samples and Ss, Sb and Sbk are

the total number of seizure samples, the total number of

background samples and the number of background samples

in the k cluster, respectively. Similarly, to (Swinnen et al., 2021)m

was set equal to 25 and K = Ss (which varies per patient).

2.3.3 Feature calculation
The feature set used in this study is similar to the one used in

(Swinnen et al., 2021). The feature set was chosen among the

features used in (Kjaer et al., 2017) and in (Vandecasteele et al.,

2020) after performing Random Forest selection (Deviaene et al.,

2019). Our final feature set is given in Table 1. The thirteen

different features were extracted from each window and each

channel separately. Due to the subject dependent differences in

the amplitude of the EEG over time, normalization of the features

was needed to achieve optimal detection of seizure events. We

have used the median decaying memory as the optimal

normalization method for line length features. The main

difference between the feature set used in (Swinnen et al.,

2021) is the fact that the zero crossings were computed from

the raw signal and not the filtered one. Similarly to Swinnen et al.

(2021) all the frequency domain features were derived using the

raw signal.

2.3.4 Discarding of bad quality segments
We noticed that in home recordings there are some segments

(not whole recordings) that one of the channels is either flat, or

disconnected. In such cases, the original algorithm that was

FIGURE 2
The pipeline for the analysis of the home data recordings.
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developed to detect seizures based on two channels is not able to

capture the seizure solely from the remaining, non-artifacted

channel (e.g., such a case can be seen in Figure 3). We do not

want to discard the complete recording or the whole channel for

the entire recording in order tomaximize the data utility. In every

segment (window of 2 s) we check the zero-crossings of the raw

signal and the Root Mean Squared Amplitude (RMSA) of the

filtered signal. RMSA equal (or very close) to zero indicates a flat

TABLE 1 Feature set of EEG.

Time domain • Zero crossings (raw signal)

• Cross-correlation between two consecutive windows

• Root mean square error amplitude

Frequency domain • Power of the signal in frequency band 1–30 Hz

• Relative power of the signal between bands 3–12Hz and 1–30 Hz

• Log-Sum of Wavelet Transform: 32–64 Hz

• Log-Sum of Wavelet Transform: 16–32 Hz

• Log-Sum of Wavelet Transform: 8–16 Hz

• Log-Sum of Wavelet Transform: 2–4 Hz

• Cross-correlation of same window in two different bands 3–12 Hz and 1–30 Hz

• Dominant phase

• Mean phase variance

• Mahalanobhis variance between each point of the 3–12 Hz band and 1–30 Hz

FIGURE 3
An example of disconnected channel (low impedance) during an absence seizure. The absence seizure can be detected by the spike-and-wave
discharges (red arrow) on the remaining channel. The raw, unfiltered signal is shown here.
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line, a very big number of zero-crossings per segment indicates a

possible misplacement of the electrode (high impedance). Hence,

we have set two different thresholds t1 = 0.01 and t2 � 2Fs
5

(Figure 2), with Fs being the sampling frequency. In the case

that the RMSA of the specific segment of one channel is lower

than t1, or the zero crossings are above t2 the segment of the

specific channel is considered bad and only the features of the

other channel are used (the features of the non-bad channel are

mirrored in the bad channel).

2.3.5 Training and classification
A weighted Support Vector Machine (SVM) with a radial

basis function kernel was used as classifier. Even though a cluster-

sized sub-sampling method was used for balancing the clusters, still

the ratiom was not set to one but equal tom = 25, which is why the

weighted version of the classifier was used. Theweights given to each

non-seizure and seizure data point were N+Ss
2N and N+Ss

2Ss
, respectively,

withN being the number of background samples selected during the

sub-sampling and Ss the total number of seizure points.

Three different approaches are being used for the training of

the SVM model, based on the availability of the data (Figure 4).

We opted for different alternatives for the detection pipeline

since the amount of data collected per patient in the home

environment fluctuates among different studies (e.g.,

SeizeIt2 and PnP). The available in-home data determines the

best training scheme for the ML models.

• Train with data of the test patient obtained during first day

of in-home recording. The first day shall be annotated by

the neurologists. This approach shall be used when

multiple days exist (PnP study).

• Train with the hospital data of the patient. In this case the

post-processing (explained in next subsection) must be

softer in order to capture all the seizures. A bigger number

of FAs is expected

• Train with annotated home data from other patients (if

available) and “personalize” with the hospital data of the

test patient.

The values of the hyperparameters, which resulted in the

maximum sensitivity in the training set, were selected for the test

set (in our use-case we were looking for maximum sensitivity to

mark all possible events after which they were reviewed by an

epileptologist). Hence, the hyperparameter search is not likely to

overfit the dataset as it is only exposed to the training set.

2.3.6 Multimodal postprocessing
In (Swinnen et al., 2021) (where our models were trained and

validated only with in-hospital data) we had a single EEG-based

postprocessing rule. As mentioned before with the data obtained

from the home of the patients we noticed high FAs rates. Most of

the FAs were arising from the movement of the patients within

their home environment, which was not present in hospital. In

order to minimize the FAs we employed the accelerometer and

gyroscope data obtained from IMU. The use of IMU and

Electromygraphy (EMG) data in a multimodal framework is

common for the detection of tonic-clonic seizures (Milošević

et al., 2016) but has never been employed in the context of

absence seizure detection.

Four different postprocessing rules were set:

• If the (normalized) RMSA of the segment is above t3 =

200 μV the segment is considered as artifact and no alarm

is provided

• An alarm for seizure detection is given only when three

consecutive windows were noted as seizures

FIGURE 4
The different options for the analysis of the home data recordings based on the amount of available data.
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• Whenever two seizures (of three windows each) were

separated only by one non-seizure window, they were

merged

• If the standard deviation either of the accelerometer or of

the gyroscope is above a specific threshold t4 = 0.05 then

the specific EEG segment is considered a movement

artifact and no alarm is provided. The multimodal

postprocessing based on the IMU data has significantly

decreased the FAs in some patients.

3 Results

In this section we will provide some initial results from the

two home studies. The selection of the recordings of the patients

that were analyzed was based on the number of seizures. We

selected the first four patients of SeizeIt2 recorded in 2022 that

had at least one absence seizure and the first 6 days of the first

absence patient of PnP study for which at least one seizure was

recorded. In both datasets, the onset and end of all 3-Hz

generalized spike- and- wave discharges (SWD), lasting 3 s

or more1, were marked by neurologists. We will refer to

these annotations as “absences,” these annotations were used

as the ground truth for the performance metrics that will be

presented.

In this section we will try to justify and explain the usability

of the different blocks of our pipeline. We will compare the

results with the three different training options and to the

algorithm presented in (Swinnen et al., 2021) that was tested

only with in-hospital recordings. We must note that for the PnP

patient no in-hospital recording exists, hence only the first

training option will be used. For the SeizeIt2 patients since we

have a single day of in-home recordings we will use options two

and three for training.

The following metrics were applied to determine the

performance of the seizure detection algorithm [following the

definitions in Vandecasteele et al. (2020)]:

• Sensitivity: TP
TP+FN. A seizure was detected correctly (TP) if

the detection occurred between the EEG onset and end of

the seizure. A seizure was not detected (FN) if no overlap

between the alarm and the seizure existed.

• FAs/h. FAs within 3 s of each other were counted as

one FA.

We will not report specificity measures since for all cases the

specificity was above 99%, due to the highly imbalanced classes.

As can be noted from Table 2 in the PnP patient, the

postprocessing decreases significantly the Fas/h, with a slight

decrease of the sensitivity in most of the recordings. The removal

of the bad segments (column 4) retains the low FA rate but

increases the Sensitivity, reaching 1 in almost all of the days.

There is minor influence from the postprocessing with the

IMU data.

For the SeizeIt2 data (Table 3) we can see that the

postprocessing has similar effect as in the PnP patient. We

shall note the tremendous decrease in the FAs/h for Subj-3.

Furthermore, the IMU postprocessing results in a slight decrease

in the sensitivity in Subj-3. The decrease is due to the activity

noticed in accelerometer and gyroscope during two seizures

(Figure 5). We note the very low performance of all the

versions of the algorithm in the last Subject.

TABLE 2 Results of the PNP patient trained with the first day of in-home recording. In the first column in parenthesis the total number of seizures per
subject. In the last column the number of seizuresmissed by the neurologists and detected by the algorithm can be viewed (in themetrics they are
counted as FAs though).

Date EEG EEG + post EEG + post + bad EEG + post + bad + IMU

Sens Fas/h Sens Fas/h Sens Fas/h Sens Fas/h Extra
Seiz

D2-10-
21 (2)

0,50 5,60 0,50 0,00 0,50 0,10 0,50 0,10 1,00

D3-11-
21 (5)

1,00 5,66 0,80 0,14 1,00 0,14 1,00 0,14 1,00

D4-11-
21 (4)

0,75 8,62 0,50 0,12 1,00 0,73 1,00 0,69 3,00

D5-11-
21 (2)

1,00 2,61 0,50 0,21 1,00 0,10 1,00 0,10 1,00

D6-11-
21 (4)

1,00 11,79 1,00 0,34 1,00 1,29 1,00 1,22 2,00

1 Following (Swinnen et al., 2021) the definitionwas selected for research
purposes only, considering that we aimed to study whether these
typical EEG patterns can be equally detected by the ML algorirthm.
A 3 s 3-Hz SWDmight not always have a clinical correlation (Guo et al.,
2016).
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TABLE 3 Results of the SeizeIt2 patients trained with the hospital recordings. In the first column in parenthesis the total number of seizures per
subject.

Subject EEG EEG + post EEG + post + bad EEG + post + bad
+ IMU

Sensitivity Fas/h Sensitivity Fas/h Sensitivity Fas/h Sensitivity Fas/h

Subj-1 (23) 0,96 15,60 0,91 2,64 1,00 2,76 1,00 2,60

Subj-2 (72) 0,92 9,66 0,88 0,74 0,99 0,76 0,93 0,63

Subj-3 (4) 0,75 42,34 0,75 38,43 1,00 41,40 1,00 1,22

Subj-4 (55) 0,13 20,32 0,11 12,59 0,13 19,49 0,13 9,72

FIGURE 5
One of the two seizures that weremissedwhen themultimodal post processingwas used. In this rare casewe can see activity both in gyroscope
and accelerometer during this short absence.

TABLE 4 Results of the SeizeIt2 patients trainedwith the hospital recordings + in-home recordings of other patients. In the first column in parenthesis
the total number of seizures per subject.

Subject EEG EEG + post EEG + post + bad EEG + post + bad
+ IMU

Sensitivity Fas/h Sensitivity Fas/h Sensitivity Fas/h Sensitivity Fas/h

Subj-1 (23) 0,96 15,60 0,91 2,64 1,00 2,76 1,00 2,60

Subj-2 (72) 0,92 9,66 0,88 0,74 0,99 0,76 0,93 0,63

Subj-3 (4) 0,75 42,34 0,75 38,43 1,00 41,4 1,00 1,22

Subj-4 (54) 0,91 2,43 1,21 12,59 0,95 1,71 0,91 1,12
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When we train the SVM with data obtained from home

recordings of other patients and “personalize” it with the hospital

recording of the test patient (Option 3- Figure 4), we note that the

performance in Subj-4 increases significantly and is comparable

to the other Subjects (Table 4). There is a minor effect to the rest

of the Subjects.

We must note that both for the PnP subject and the

SeizeIt2 subjects, the algorithm found some seizures that were

missed by the neurologists (and are currently counted as FAs,

since they were not included in the gold standard). More

specifically for the PnP subject eight seizures were found that

were initially missed by the neurologist (the extra seizures per

recording can be viewed in the last column of Table 2), while for

the SeizeIt2 subjects 1 seizure was found (examples of missed

seizures can be viewed in Figure 6.

4 Discussion

According to the standards for testing and clinical validation

of seizure detection devices (Beniczy and Ryvlin, 2018), our

studies can be classified as a phase-4 study, since the accuracy

and usability of the SD in a home environment is investigated in a

multicenter trial (EIT Health: SeizeIT2, clinicaltrials.gov:

NCT04284072). To the best of our knowledge, these are the

first (preliminary) results of a phase-4 trial of an automated

detection of absence seizures with a wearable device. As

mentioned in the introduction the full analysis and report for

the findings of the study will follow in another publication and

the main focus of this paper is to investigate design choices in the

pipeline used for the automatic detection of the seizure events.

The current state-of-the art have failed to provide accurate

detection of the absence seizures with the home data mainly due

to the high FA rate obtained. We have exhibited that our pipeline

provides accurate detection of the absence seizures with very high

sensitivity and low FAs/h. Furthermore, it managed to detect

seizures that were initially missed by the neurologists. We shall

note the difference in the amount of seizures missed by the two

neurologists in the different studies which is probably due to the

multiple recordings in the span of several months for the PnP

study. The large amount of EEG data requires extended time for

annotation of the seizures, hence, lower performance might be

expected by the annotators. The need of automated seizure

detection pipelines is evident when large amount of data are

acquired. The lower signal quality of the in-home recordings and

the presence of artifacts that did not exist in the hospital

recordings, dictate the use of alternative blocks in our pipeline.

Furthermore, we have exhibited for the first time the added

value of multimodality in the context of absence seizure

detection. Multimodal seizure detection has been widely used

FIGURE 6
An example of an absence seizure missed by the reviewer in the PnP study, but captured by the ML algorithm. The signal is filtered with a
highpass filter of 0.53 Hz, a lowpass filter of 35 Hz and aNotch filter of 50 Hz. The EEGwas visualized at a sensitivity of 70 μV/cm. These settings were
also used by the reviewers during the review process. The red arrows point the spike-and-wave discharges.

Frontiers in Signal Processing frontiersin.org09

Chatzichristos et al. 10.3389/frsip.2022.1014700

http://clinicaltrials.gov
https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://doi.org/10.3389/frsip.2022.1014700


for the detection of motor seizures (Leijten, 2017) and focal

seizures (Vandecasteele et al., 2021). However, multimodal

approaches have not been employed for the detection of

absence seizures, mainly due to lack of movement or heart

rate variability during typical absence seizures. We have

shown that detection of movement with SD can help into

distinguishing seizure events from movement and dramatically

decrease FAs (Subj-3, SeizeIt2).

The thresholding based on the standard deviation of the IMU

signals was adopted in order to decrease the significant amount of

FAs that were caused by the movement of everyday life. The

hospital data do not include suchmovement segments, hence, the

classifier, when trained only with hospital data do not recognize

those segments as background but as seizure segments. “Turning

off” the IMU postprocessing can result in a detection of a very

limited number of seizures, similar to the one presented in

Figure 5, for which the standard deviation (std) of the IMU

data is above the threshold.

The current pipeline uses IMUmodality only for postprocessing,

an initial attempt to use an hierarchical clustering for detection of

walking and running artifacts had inferior performance to the simple

threshold-based postprocessing. However, different “true” fusion

approaches (Chatzichristos et al., 2022) either early or late ones

will be further explored.

Concerning the different training approaches that we have

proposed we can note that it seems that in some cases (Subj-4,

SeizeIt2) the in-hospital data differ a lot from the in-home data.

In such cases the addition to the training set of data from in-

home recordings of other patients can be beneficial. When

multiple days of in-home recordings exist the training of the

model with labelled data from one of the days provides the best

performance. We recommend the use of the first option of the

pipeline if there are multiple day recordings per subjects and the

third pipeline when a single day of recording exist per subject.

Further work will aim to independently replicate those

results with the data collected from the different centers that

participate in SeizeIt2 and with the rest of the patients from UZ

Leuven. Correct interpretation of artifacts in SD recordings will

also be helpful in the detection of other seizure types and

reduction of FA in the home setting.

Furthermore, when the amount of the data collected allows,

we will study approaches based on Neural Networks which have

shown significant success in several seizure detection

applications (Chatzichristos et al., 2020; Japaridze et al., 2022),

very recently even with the detection of absence seizures with

two-channel EEG (Hartmann et al., 2022).
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