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The rapid increase in the Industrial Internet of Things (IIoT) use cases plays a significant role
in Industry 4.0 development. However, IIoT systems face resource constraints problems
and are vulnerable to cyberattacks due to their inability to implement existing sophisticated
security systems. One way of alleviating these resource constraints is to utilize multi-
access edge computing (MEC) to provide computational resources at the network edge to
execute the security applications. To provide resilient security for IIoT using MEC, the
offloading latency, synchronization time, and turnaround time must be optimized to
provide real-time attack detection. Hence, this paper provides a novel adaptive
machine learning–based security (MLS) task offloading (ASTO) mechanism to ensure
that the connectivity between the MEC server and IIoT is secured and guaranteed. We
explored the trade-off between the limited computing capacity and high cloud computing
latency to propose an ASTO, where MEC and IIoT can collaborate to provide optimized
MLS to protect the network. In the proposed system, we converted the MLS task
offloading and synchronization problem into an equivalent mathematical model, which
can be solved by applying Markov transition probability and clock offset estimation using
maximum likelihood. Our extensive simulations show that the proposed algorithm provides
robust security for the IIoT network with low latency, synchronization accuracy, and energy
efficiency.

Keywords: internet of things, iot-edge, task offloading, multi-access edge computing, time-synchronization,
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INTRODUCTION

Over the decade, high latency, throughput, high cost of setting up cloud infrastructure, and energy
optimization have been the principal influence of the IIoT developers to find an alternative to the
cloud computing services. Cloud computing consolidates computing, storage, and network
management functions in a centralized manner. Hence, there is a need for a modern computing
paradigm that will support the IIoT system, which alleviates the challenges mentioned above.
Another contributing factor for a change in cloud computing services is the IIoT devices’ ability to get
real-time responses. Industrial and manufacturing segments have embraced IoT technologies,
known as the Industrial Internet of Things (IIoT). This concept of IIoT, which also referred to
as industry 4.0., enhances factory and industrial transformation. The IIoT transforms traditional and
linear manufacturing supply chains into dynamic, interconnected systems, also known as the digital
supply network (DSN). As key enablers of DSNs, IIoT technologies change the way products are
made and delivered. IIoT makes factories more efficient, ensuring better safety for human operators
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and, in some cases, saving millions of dollars. However, the
development of this emerging phenomenal (IIoT) has faced
substantial security challenges (Bakhshi et al., 2018). Security
is a fundamental concern for the safe and reliable operation of
IIoT devices. According to research conducted by the
University of Portsmouth (Finnerty et al., 2018) in 2018,
32% of small businesses, 60% of medium companies, and
69% of large-scale businesses in the United Kingdom
experienced IIoT security breaches. IIoT security breach had
increased to 69% across industries in 2019. In the work of
Irdeto-Media-Team (2019), it was forecasted in 2019 that eight
out of 10 businesses encountered cyberattacks on their IIoT
devices. The increasing number of cyberattacks is critical
because organizations use IIoT to capture vital information
to make life-dependent decisions. IIoT devices also serve as a
platform for cyberattackers to initiate threats against other
connected devices in the same network. Such attacks are
successful because the IIoT devices are resource-constrained
and cannot run the existing security software. Hence,
deploying sophisticated security applications at the edge of
the IIoT network utilizing multi-access edge computing
(MEC) becomes the ideal solution (Figure 1). Edge
computing is implemented based on a network virtualized
platform. Specifically, network functions virtualization (NFV)
enhances an edge device to supply computing services to
numerous connected IIoT devices by creating multiple
virtual machines (VMs) (Mao et al., 2017) to perform
different tasks spontaneously or operate different network
functions.

Paper Motivation
Because IIoT plays a critical role in the modern industrial revolution
and livelihood, creating a resilient security system to protect IIoT
devices is paramount (Wurm et al., 2016). However, the IIoT has
resource-constraint problems, and they are deployed in hostile
distributed environments, which expose their network interfaces to
external access and cyberattacks. The issues above can bemitigated by

placing a MEC server at the edge of the IIoT network, which hosts a
sophisticated security system. The proposed method demonstrates
the deployment of an online machine learning–based security (MLS)
system to the MEC server while offloading the MLS task from the
IIoT devices at a timely interval to perform deep intrusion analysis
and provide adequate security for the connected IIoT devices. An
online machine learning algorithm is employed in our proposed
method to enhance the security model ability to continuously learn
new attacks and normal data to prevent it from been obsolete. The
offloading process between the IIoT and the MEC server must be
optimized to achieve real-time security response. Because of the
number of IIoT devices that share the MEC server resources in
the network topology, three common problems arise (Akherfi et al.,
2018).

• Network congestion
• Energy wastage
• The inability of the MEC server to identify high
priority tasks.

This paper presents a novel ASTO that uses a minimum
resource to offload computational MLS from the IIoT devices
(nodes or the sources) to a proximal MEC server (vertices). The
MEC server receives the IIoT end device request and creates a
schedule for offloading MLS task based on the availability of
resources, congestion rate (latency on the network), and priority
of the task. Each IIoT in the queue receives an update timestamp
from the MEC server to enhance time synchronization and
energy consumption optimization. We also modeled the
network between the IIoT devices and the MEC servers as a
probabilistic direct acyclic graph. Moreover, we applied the
Markov queuing process to optimize the congestion and
latency rate during the MLS task offloading. Our contributions
in this paper are summarized as follows:

• We propose a novel energy-efficient ASTO to produce
reliable security in a distributed large-scale IIoT network.

FIGURE 1 | MEC server connected IIoT architecture.
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• Node pair selection algorithms to determine the next
available MEC server to handle the incoming high-
intensity security computation are also applied.

• We derive an efficient algorithm for clock offset that
employs a two-way synchronization exchange model for
the MLS task offloading process.

• Finally, the proposed technique is validated by offloading a
MLS task to a proximal MEC server in a distributed IIoT
network.

Outline
The rest of this paper is organized as follows: Section 2 contains
the related works. Section 3 presents the mathematical models of
the task offload process. Section 4 provides a detailed
presentation of the proposed ASTO algorithm. Section 5
describes the experimental setup and performance evaluations,
and Section 6 concludes our findings.

RELATED WORKS

Recently, many researchers have proposed algorithms for
computational task offloading in MEC. Sun and Ansari (Sun and
Ansari, 2017) solved the latency problem in task offloading by
formulating a mathematical model for the task offloading to
minimize the average response time for IoT devices and
presented a method to solve it efficiently. The resources available
in MEC compared to centralized cloud computing have motivated
many researchers to jointly address the resource allocation and task
offloading problem in the quest to utilize the available resources
(Tanaka et al., 2018). Chen et al. (2019) tackled the energy efficiency
challenges in task offloading by applying stochastic optimization
techniques to transform the original stochastic problem (energy
wasted) into a deterministic optimization problem and proposed an
energy-efficient dynamic offloading algorithm called EEDOA. Xu
et al. (2019) used a blockchain-enabled computation offloading
method, called BeCome, in their research. Blockchain technology
is applied in edge computing to secure data integrity. Using a genetic
sorting algorithm, they adopted strategies to balance resource
allocation among the connected IoT devices. Wu et al.
(2020) solved the trade-off overheads of limited computing
capacity and high latency while ensuring data integrity during
the offloading process in IoT. The authors considered a
blockchain scenario where edge computing and cloud
computing can collaborate to secure the task offloading
process. Chen et al. (2018) and Hsu et al. (2019) explored
the novel perspective of resource efficiency and created an
efficient computation offloading mechanism, which consists
of a delay-aware task graph partition algorithm. They used an
optimal VM selection approach to reduce IoT and edge
resource occupancy while satisfying its QoS requirement.
Moreover, Ansere et al. (2019) focused on using time
synchronization in large-scale VANETs and proposed an
adaptive beacon time synchronization (ABTS) algorithm to
intensify timing message synchronization. Their ABTS
algorithm selects the best time synchronization pairs to
decrease the number of timing messages transmitted. A

distributed time synchronization approach was proposed
by Nasrallah et al. (2016) for the two-way timing message
synchronization exchange system in inter-cluster and intra-
cluster nodes communication. Their architecture allows the
automatic clustering of nodes and selection of node heads to
maximize energy efficiency. Yang et al. (2021, 2022) proposed
machine learning–based IoT to MEC offloading. The authors
demonstrated the need to offload computational intensive to
the MEC server due to resource-constraint problems on the
IoT devices. Their proposed frameworks were backed with
experimentation, which proved promising. Sun et al. (2019)
also proposed an intelligent computing architecture for the
IIoT, including cooperative edge and cloud computing. An
AI-enhanced offloading framework for service accuracy
maximization is provided based on the proposed
computational architecture, including service correctness
as a new parameter and latency, and intelligently
distributes traffic to MEC servers. In all the above research
works, the authors provided the various ways of offloading
data to MEC server. However, our paper adds to knowledge
by proposing a novel method of providing security for the
resource constraint IIoT by offloading the computational
logic (MLS) to the MEC while enhancing the task
offloading processes using the Markov transition.

Tange et al. (2020) and Sadeghi et al. (2015) reviewed most of
the security challenges in IIoT and elaborated on the need to use
MEC and Fog to design security for the IIoT devices. They
demonstrated that IIoT devices generate, process, and
exchange vast amounts of security-critical and privacy-
sensitive data, which draws the attention of attackers.

SYSTEM MODEL AND PROBLEM
FORMULATION

This section details the system design in detail, including the IIoT
model, MEC model, energy-efficient control, latency in IIoT to
MEC offloading, and MLS to be offloaded to the MEC server.

Industrial Internet of Things to Multi-Access
Edge Computing Network Model
Consider a practical industrial context consisting of nth number
of IIoT devices μn, such that each IIoT device can connect to one
of the kth number of the proximal distributed MEC servers Φk,
through a wireless connection with distance δ at the edge of the
network. We also assumed that each IIoT device connects to a
selected MEC server in an orthogonal link, whereas the IIoT
devices share security information through context-awareness.
Let ϑ represent the network traffic density for the interconnected
IIoT devices and the MEC servers. By applying Poisson
distribution for a large-scale network, the probability of
selecting the closest MEC server Φk with a wireless link xn can
be expressed as follows:

F Φk, xn( ) � χ( )Φ e−χ( )
Φk!

,Φk ≥ 0 (1)
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where χ = ϑx signifies the Poisson distribution parameter for a
random bounded section of the distributed network. We obtain
the probability that the distance between the connected IIoT
device and a MEC is minimal than δ. Hence, the likelihood that at
least one IIoT connects to a MEC server within δ is expressed as
follows:

ρc δ ≤xn{ } � F xn( ) � 1 − e−ϑxn (2)
Considering that the IIoT devices connects to a MEC server in

an industrial settings, we define a variable Rk to determine
whether the MEC servers Φk are deployed at location L; then,
we can express the variable as follows:

Rk � 1 if MEC serverΦk is deployed at locationL,
0 otherwise.

{ (3)

However, let the probability that there is no accessible MEC
server available for the IIoT device be represented as ρo at a
distance δ such that MLS task offloading can take place is given by

ρo � F 0, xn( ) � e−ϑxn (4)
The state of ρo could occur when all the MEC servers are

engaged with an equally important task to execute. However, the
IIoT device will move into a waiting state and continue to retry till
a connection is established to a MEC server. This state is
considered in the MLS task offload model in the following
subsection.

Computational Machine Learning–Based
Security Task Offloading Model
In a MEC-IIoT environment, each IIoT device executes MLS
locally or remotely on the MEC servers. We represent each MLS
task as φ[γ, τ, κ] where γ denotes the input size (in bit), τ denotes
completion deadline (in seconds), and κ is the computational
workload intensity (in CPU cycles per bit). Moreover, the MLS

algorithms are implemented on various MEC servers based on a
virtualized platform (Bing et al., 2019; Doan et al., 2019) that
leverages the current improvements in NFV, information-centric,
and software-defined network. During task offloading processes,
the IIoT devices could be destructed by network attacks, such as
denial-of-service (DoS) network flooding, increasing energy
consumption and latency. In our proposed model, the MLS
detects network attacks, thereby mitigating all attacks to
enhance the optimal offloading process. All our assumptions
are based on these virtualization technologies. The MLS begins its
process on the IIoT devices and performs deep intrusion analysis,
which requires high computation resources on the MEC server.
During the MLS task offloading process, energy and latency must
be paramount. We represent the task offloading algorithms with
the principle of the task call graph. Figure 2 shows the directed
acyclic graph (DAG) of a computational offloading.

For a computational MLS task φ[γ, τ, κ] with CPU clock speed
fm, the total energy that is required to execute the task on the IIoT
is derived as follows:

Em � zγκf2
m (5)

and the base execution latency task of φ[γ, τ, κ] can be calculated
with the equation

Tm � γκ

fm
(6)

where z = 1 denotes the coefficient of proportionality of the
energy consumed per CPU cycle on the IIoT device. If the wireless
bandwidth required during task offloading from each IIoT
devices to the proximal MEC is Hm, ϖm is the latency on the
wireless network during the task offloading, and Am is the size of
offloaded task, then we compute the wireless communication
overheads ]m as follows:

]m � ϖm + Am

Hm
(7)

According to Eqs 5–7, we can then compute the
computational overhead in terms of offloading latency and
energy as follows:

Cm � αt
mTm + αe

mEm + ]m, (8)
where αtm and αem represent the weighting parameters of
computational time and energy for IIoT device, respectively.
The αtm and αem are expressed mathematically as follows:

αt
m, α

e
m ∈ 0, 1[ ], αt

m + αe
m � 1. (9)

Suppose each MLS task must be offloaded from the IIoT to
the MEC server at the edge of the network, then the probability
of losing a task during the offloading process is ρ. If a task is
destroyed on any wireless networks, then it must be re-offloaded
across a different route in the distributed network. The
probability that the MLS task is offloaded successfully is
denoted by (1 − ρ)r, where r is the total number of remote
radio units (RRU) available and (1 − ρ) is the probability of
successful offloaded task in d consecutive independent trials.

FIGURE 2 | IIoT to MEC DAG representation.
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An IIoT composed of dMLS tasks is much less likely to offload
efficiently on the first trial. In such a scenario, the d tasks must be
offloaded over the RRU network until it is received successfully or
a total of rd successful transmissions. The probability of such an
instance is expressed as (1 − ρ)rd. Let ω be the random variable
representing the number of times the MLS is offloaded over the
selected wireless network path, the average number of offloaded
tasks through the shortest path, E(ω), and qr,d denote the
probability that the task is offloaded successfully in d trials.
The qr,d can be expressed mathematically as follows:

r, d � 1 − ρ( )rd
qr,d � 1 −∑d−1

j�1
qr,j⎛⎝ ⎞⎠ 1 − ρ( )rd (10)

All the previous attempts must have failed for the re-offloading
to be accomplished on the dth try. For the possibility that the
offloading succeeded for some j < d is ∑d−1

j�1qr,j, the prospect of
failing is 1 −∑d−1

j�1qr,j. Finally, the dth attempt must succeed to
obtain (1 − ρ)r. However, using non-recursive computation, Eq. 8
can be expressed as follows:

qr,d � 1 −∑d−1
j�1qr,j( ) 1 − p( )r

qr,d � 1 − ρ( )r − 1 − ρ( )r∑d−1
j�1qr,

qr,d � qr,d−1 − 1 − ρ( )rqr,d−1
qr,d � ρd−1 1 − 1 − ρ( )r( )
qr,d � qr,r 1 − 1 − ρ( )r( )d−1
qr,d � 1 − ρ( )r 1 − 1 − ρ( )r( )d−1 (11)

Then, the average number of transmissions required to offload
a single MLS task to the MEC is given by

E ω( ) � ∑∞
d�1

d 1 − ρ( )r 1 − 1 − ρ( )r( )d−1 � 1

1 − ρ( )r (12)

We can also estimate the energy saved after offloading the
MLS task completely to the selected MEC server as follows:

Esv � ∑k
d�1

δdE
sv
d( ) (13)

where Esv
d is the dth energy saved. If Cm represent the

computational overhead in terms of offloading latency and
energy, then, using Eqs 4, 6, Esv

d for offloading MLS task to a
MEC server can be calculated with the equation

Esv
d � Em − Cm E ω( )( ) (14)

Industrial Internet of Things to Multi-Access
Edge Computing Network Connectivity
Analysis
We determined the shortest route from an IIoT device (source
node) to a selected MEC server by analyzing a collection of
available wireless links with a minimum distance and congestion
(minimum latency). In the proposed model, the IIoT device

denotes the source node, and the target vertex is the MEC
server. We apply the shortest route analysis (SRA) approach
to solve a minimization problem to create an optimization
technique for the offloading process. Our adopted SRA uses
the greedy search algorithm to find the optimal solution.

Let S denote a set of IIoT devices (nodes) connected in a network
whose final shortest route to the MEC server is determined, μn is the
source node, andΦk is any of theMEC server nodes connected to μn.
ϑ is the cost of weight or the network traffic on the link between two
nodes, and then, ϑ, in our scenario, can be defined as ϑ = [NT, δ],
where NT is the offloaded tasks between two nodes, and δ is the
distance between the nodes with a priority queue Q of

Q � Φk − Sk (15)
We can represent our network topology as a directed graph G

and find the shortest distance between the IIoT device and MEC
server using Algorithm 1.

Algorithm 1. SRA(G, ϑ, S)

Adaptive Time Synchronization
Wemade the following assumptions during our design process to
help the IIoT device synchronize with the MEC server during the
offloading process.

• Each IIoT device is considered a node that offloads its task
and receives responses from the proximal MEC server.

• Each IIoT device maintains its time synchronization
information.

• Each IIoT device uses its address (mac address) as an ID
during the synchronization process to avoid collisions.

• It is assumed that the network can consist of more than one
MEC server with multiple functionalities.

The following two major steps were considered during the
ATS processes:

Two-Way Time Synchronization Between
Multi-Access Edge Computing Server and Industrial
Internet of Things Device
In this section, the two-way timing synchronization and update
mechanism for the queuing process required for task offloading
are determined. The timing process requires minimal complexity
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due to the resource constraint problems faced by the IIoT device.
The proposed algorithm is self-configured, which allows each
IIoT device to record, update, and store its timestamps with its
local clock. This method requires three phases: discovery phase,
synchronization, and the network evaluation phase. The following
brief description summarizes the ATS;

1. Discovery phase: This is when the IIoT device identifies the
proximal MEC server in the network.

2. Synchronization: The ATS establishes a link between the
selected MEC server and requests time for offloading based
on the priority and available jobs.

3. Evaluation phase: The MEC server re-examines the available
jobs in the process queue and network congestion to update
the various IIoT devices.

In the ATS, the time updates received by the IIoT device
determine when to initiate the task offloading process to
minimize energy consumption.

Figure 3 notes a two-way IIoT-MEC-IIoT time exchange
handshake between an IIoT device and a MEC server. The
timestamps T1, T2, T3, and T4 are obtained from the duration
of the kth offloading request based on the local clocks of IIoT and
MEC server, respectively. During the request process, T1 and T4
signify the local clock time captured by the IIoT device, whereas
T2 and T3 denote local clock time captured by MEC server. First,
the IIoT sends an offloading request to the MEC server with its
current timestamp T1 after obtaining the shortest path with the
SRA. The proximal MEC server records and keeps its new time T2
at the reception of the request. At time T3, theMEC server sends a
synchronization message to the IIoT device including T2 and T3
and a timestamp T4 for the offloading to initiate. The IIoT device
has a new set of timestamps T1, T2, T3, and T4 rounds of message
exchanges. On the basis of the pairwise synchronization model in
Figure 3, we represent the clock offset in the following equations:

T2 � T1 + d + ψ + ζ (16)
T4 � T3 + d − ψ + β (17)

ψ is the clock offset of source IIoT device, d is the propagation
delay assuming symmetric direction is employed, and ζ and β are

random variables. The presence of clock skew causes the drifting of
clock offset in the IIoT end device and the MEC server. The ATS
improves the clock skew to secure offloading reliability and optimize
energy consumption in synchronization processes. The clock offset
(ψ) and propagation delay d can be estimated as follows:

ψ � T2 − T1( ) − T4 − T3( )[ ]
2

(18)

d � T2 − T1( ) + T4 − T3( )[ ]
2

(19)

We considered the errors as a Gaussian probability density
function to reduce synchronization errors. The IIoT
devices’ clock offsets are changed regularly to ensure that
the clock and timing synchronization is reliable. The
timing synchronization ensures that the IIoT device
offloading its MLS task maintains functional network
connectivity.

ATS Clock Offset Estimation Using Maximum
Likelihood Technique
To retain the MLS task offloading process described in Figure 3, we
assume that the clock skew is absent by this period. The clock offset
for maximum likelihood (ML) and CRLB across linked IIoT devices
is calculated using the two-way timing data exchange paradigm.
Because of the task offloading latency over the network, the random
variables ζ and β are assumed to be autonomous and arbitrarily
distributed, for the corresponding mean ] and variance ξ2 as
C ~ (G, ξ2). Hence, the likelihood function is realized in I � T2 −
T1 � d + ϕ + ζ and H � T4 − T3 � d − ϕ + β observations.
Mathematically, the ML is computed as follows:

L ], ξ2;x1, . . . , x1( ) � ∑n
j�1

fx x1; ], ξ2( )
� ∑n

j�1
2πξ2( )−1/2 exp −1

2

xj − ]( )2
ξ2( )

⎧⎪⎨⎪⎩
⎫⎪⎬⎪⎭

� 2πξ2( )−n/2 exp − 1

2ξ2
∑n
j�1

xj − ]( )2⎧⎨⎩ ⎫⎬⎭ (20)

Applying Eq. 17 to estimate ML expression

L ϕ, ], ξ2( ) � 2πξ2( )N exp − 1

2πξ2
∑N
i�1

Ii − d + ϕ + ]( )2(⎡⎣⎧⎨⎩
+∑N

i�1
Hi − d + ϕ + ]( )2( ⎤⎦⎫⎬⎭ (21)

By differentiating the log-likelihood role in Eq. 18, we arrive at

ϕ
h � argmaxϕ InL ϕ( )[ ] � ∑N

i�1 Ii −Hi[ ]
2N

�
�I − �H

2
(22)

Therefore, ML of clock offset is estimated by

z2InL ϕ( )
zϕ2 � −2N

ξ2
Har ϕ

h( )≥ − E
z2InL ϕ( )

zϕ2[ ]−1
� ξ2

2N
(23)

FIGURE 3 | ATS time Synchronization model.
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ϕ
h � argmax

ϕ
InL ϕ( )[ ] � ∑N

i�1 Ii −Hi[ ]
2N

�
�I − �H

2
(24)

where N designates the number of observations; �I and �H denote
the mean sampling of observations I and H.

Cramer–Rao Lower Bound Technique
The deterministic parameter of the approximate estimate in
variance is the foundation of CRLB. It is mostly useful in
practice due to its easy implementation. Assume that Equation
(15) fulfills a regularity requirement in CRLB that exists in a given
estimation is 0 and that the CRLB result is obtained by
differentiating Equation (15) as follows:

z2InL ϕ( )
zϕ2 � −2N

ξ2
(25)

Then, the CRLB for clock offset is given by

Har ϕ
h( )≥ − E

z2InL ϕ( )
zϕ2[ ]−1

� ξ2

2N
(26)

Industrial Internet of Things to Multi-Access
Edge Computing Pair Selection and
Scheduling Using Markov Transition
Assume that there is c number of MEC servers at the network
edge, and the various IIoT devices preparing to offload their data
are organized in a queue according to a Poisson process with rate
λ > 0. The inter-arrival times of the various IIoT devices are then
independent and identically exponentially distributed with λ. The
service times are also independent and identically exponentially
distributed with rate υ > 0. We apply First-In First-Out principle
and leave the queue Q capacity to infinity. This information
indicates that the process X � {Xt, t≥ 0}, where Xt represent the
number of IIoT end devices in the queue at time t, is a
homogeneous Markov chain on state space S � N. The
continuous-time Markov transition employs the birth-and-
death process, where birth increase the number of IIoT end
devices in the offloading queue (state variables) by one and death
decrease the state by one. When birth transpires, the number of
IIoT devices in the queue advances from state n to n + 1. When a
death occurs, the queue goes from state n to state n − 1. The
Markov chain state diagram is represented in Figure 4.

For any n ≥ 0, we represent λn by the transition rate from state
n to state n + 1 and for any n ≥ 1, we denote by υn the transition
rate from state n to state n − 1.We assume that υn > 0 for any n ≥ 1
and that υn > 0 for any n ≥ 1. The IIoT end device MLS task
offloading process generates Q of chain represented as follows:

Q �

−λ0 λ0 0 0 0 . . . ,
υ1 − λ1 + υ1( ) λ1 0 0 . . . ,
0 υ2 − λ2 + υ2( ) λ2 0 . . . ,
0 0 υ3 − λ3 + υ3( ) λ3 . . . ,

..

. ..
. ..

.
1 1 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (27)

The discrete-time Markov chain embedded during the
transition period of X consists of the parameters pn and qn,
for n ≥ 1 is expressed mathematically as follows:

pn �
λn

λn + υn
and qn �

υn
λn + υn

(28)

However, we introduce a quantity ηn defined as follows:

η0 � 1 and ηn �
υ1 . . . , υn
λ1 . . . λn

(29)

We then compute the sums A as follows:

A � ∑∞
n�0

ηn (30)

The transition process converges to equilibrium with the
expected time, wn � E τX(0) | X0 � n{ }, of the first passage to
state 0, starting from state n. The first passage time τX(0) to state
0 is defined as follows:

τX 0( ) � inf t≥T1 | Xt � 0{ } (31)
where T1 is the first instant of jump of chain X. The transient
process with respect to X can be represented using the
annotations

X is transient5A<∞,
or

X is recurrent5A � ∞

To define the positive recurrence of chain X, it is no longer
adequate in the discrete state to examine the invariant probability,
and chain X is non-explosive, which is expressed as follows:

vn � 1 − fX

n,0 �
1
A
∑n−1

j�0ηj if A<∞

0 if A � ∞

⎧⎪⎨⎪⎩ (32)

where fX
n,0 is the probability, starting from n that the first return

to state n occurs at X. If n ≥ 0, applying Equation (30) to ηn will
produce

ηn �
υnn!

λn
if n≤ c − 1

υicn−cc!
λn

if n≥ c.

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (33)

However, the quantity A defined in Equation (32) is given by

A � ∑c−1
n�0

υnn!

λn
+ c!

cc
∑∞
n�c

cυ

λ
( )n

(34)

whereA <∞5λ > cυ. The above relations indicate that chainX is
non-explosive and uniform.

Estimating the Task Offloading Error
In this paper, we considered two types of errors that are likely
to occur.
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Maximum Location Error
The proposed algorithm requires the IIoT device to find the shortest
route to the MEC server. Hence, the location of the IIoT devices and
the MEC server in the network is important. Therefore, minimizing
location error ME is determined to measure the connected IIoT
device’s estimated location (a2, b2) and the actual location (a1, b1).
The average location error AVE is given by

AVE � ∑N
k�1

                  
a1 − a2( )2 + b1 − b2( )2

√
N

(35)

We then compute the maximum location error ME achieved by
applying the localization approach, which is calculated as follows:

ME � max
                  
a1 − a2( )2 + b1 − b2( )2

√
(36)

Offloading Failure Probability
During the MLS task offloading processes, wireless and network
channel fluctuation causes fading and shadow effects. The effects
cause an offloading failure, which is a problem. Assuming that η is
the block error rate, ]m denotes transport block size for
offloading the MLS task to the MEC server, and then, the
error probability of offloading is given by

Perr
m γ( ) � 1 − 1 − η( )γτκ]m (37)

The offloading failure probability is given by

Pf γ( ) � 1 −∏N
m�1

1 − Perr
m γ( )[ ] (38)

Combining the two errors will give the total error rate Terr that
is likely to occur in the offloading process.

Terr � 1
Pf γ( ) +ME

(39)

PROPOSED ASTO ALGORITHM

This section analyzes the proposed algorithms to enhance the
MLS task offloading among the connected IIoT devices and the

MEC server. The ASTO algorithm ensures that the IIoT device
under attack can offload their MLS tasks to the selected MEC
server and receive the attack analysis results in time. The whole
detection process must complete in real time to prevent the IIoT
device from experiencing downtime. The IIoT must first establish
the shortest route to the proximal MEC server in the network
hierarchy (Han et al., 2018). Assuming that there are different
MEC servers available at the edge of the network such as
{M1,M2 . . .Mk} and that the source node connects to
different routes to the MEC server, then the IIoT selects the
optimal path that maximizes latency and the synchronization
errors. This approach aims to reduce the time required by the
IIoT end device to thoroughly perform attack detection and
minimize energy consumption while preserving
synchronization accuracy. The proposed ASTO algorithm is
divided into two: the machine learning–based security system
and the adaptive task offload.

Machine Learning–Based Security System
In this subsection, we demonstrate how the online machine
learning method was used to design network attack detection
system deployed to the MEC server. All the network traffic
captured (MLS) by the IIoT devices are offloaded to MEC
server using the proposed ASTO algorithm. Several machine
learning methods exist in literature, but, to prove our concept,
a stochastic gradient descent (SGD) was adopted to design an
online network attack detection system. We adopted SGD due to
the dynamic (frequent change in environmental data and
network traffic) nature of the data offloaded from the IIoT
devices. Moreover, cyberattackers keep changing their
approaches. It is difficult to rely on classical machine learning
methods to design a network attack detection system. Hence,
using online SGD allows the model to learn new attacks and
system operational data to prevent the model from becoming
obsolete. Unlike batch gradient descent, which calculates the
gradient using the whole dataset, SGD, also known as
incremental gradient descent, iterates over a single randomly
selected training sample to identify minimums or maximums. To
achieve accurate results with SGD, the data sample should be in a
stochastic order by shuffling the training set for every epoch. First,
we define a cost function for determining the weights of i − th
observation in the training dataset for an adaptive linear neuron
as follows:

FIGURE 4 | Continuous-time birth-and-death process state diagram.
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J w( ) � 1
2
∑N
i�1

y i( ) − ϖ wTx( ) i( )( )2

(40)

where x � [x1, x2, . . . xi] ∈ R is least squares with features from
the training data, y � [y1, y2, . . . , yi] ∈ R denote the
observations, w = [w1, w2, . . ., wi] are the weight vectors, and
ϖ represent the an activation function. If a defined negative
gradient weight change Δw is multiply by a learning rate r,
then the cost function can be expressed as follows:

Δw � −r∇J � r∑N
i�1

y i( ) − ϖ wTx( ) i( )( )x i( ) (41)

In batch gradient descent, the gradient is computed from the
whole training set to minimize a cost function. If we have a large
dataset with millions of data points, then performing batch
gradient descent may be extremely expensive because we must
assess the whole training dataset once we go one step closer to the
global minimum. Rather than updating the weights based on the
total cumulative errors across all samples x(i) through the Δw
described above, we may utilize the following update in the SGD
method:

Δw � −r∇J � r y i( ) − ϖ wTx( ) i( )( )x i( ) (42)

However, we update the weights incrementally when new data
arrive from IIoT devices.

Adaptive Security Task Offloading
Assuming the Tsync is the average synchronization time (in
seconds) of the MEC server connected with Si IIoT devices, Xt

denotes the various of IIoT in the queue, and Tresp is the average
response time of the MEC server.

Algorithm 2. Proposed Adaptive Time Synchronization

The shortest route between the selected MEC server and the
source node is determined based on Algorithm 2. The MEC
server creates an offloading task schedule and communicates the
result to the IIoT devices. If any of the MEC servers experience

changes or delays, then the new offloading time is synchronized
with the IIoT devices to minimized latency, energy consumption,
and offloading errors. The task offloading process initializes after
the aforementioned processes. Finally, the selected MEC server
applies the online SGD to perform attack detection and return the
security responses to the corresponding IIoT devices in the
network to implement the right security policies on the
network, where Toff is the scheduled offloading time by the
MEC server, Tsn is the synchronized time on the IIoT end
device, and Tlocal is the local time of the IIoT end device.

PERFORMANCE EVALUATION AND
RESULTS ANALYSIS

In this section, we present the experimental implementation of
our proposed system in a controlled environment using
MATLAB Simulink library. Our design mimics a real-world
IIoT scenario.

Testbed Preparation
The setup consists of three IIoT devices connected in a mesh
topology to two remote radio head made up of wireless routers.
The IIoT devices connect to the router via its wireless links. The
MEC layer consists of three MEC servers connected in a mesh
topology via a border router. In each of the experiments, the network
trafficsw on the various links are varied. Figure 5 shows a sample of
the SRA algorithm finding the shortest route from the IIoT device to
the MEC server based on w on the network link. Node 1, Node 2,
andNode 3 represent our IIoT end devices, Node 4 andNode 5 form
the RHH that connects the three IIoT devices in a mesh topology,
Node 6 and Node 7 are the border routers that connect the MEC
servers (Node 8, Node 9, and Node 10) at the edge of the network.
The red path indicates the selected optimal path with minimum
network congestion from a source node 1 (IIoT end device) to a
MEC server (Node 10). The values assigned to the links between the
connected nodes show the network traffic w.

The MEC servers contain the trained MLS model for network
attack analysis, the synchronization algorithm, and the Markov
chain queuing algorithm. Because the IIoT devices are resource
constraints, we reduced the computational stress on these nodes.
We deployed a simple model consisting of a network packet
capturing, a table for the queuing, synchronization time
parameter, and task offloading system. The IIoT devices sampled
different sizes of the test set and submit it to the MEC servers. In
each sample, MLS model performs network attack analysis and
send responds to the IIoT device that offloaded the task.

Dataset Used
There are no approved public datasets for network attack
detection created in the context of IIoT devices to MEC
networks during our studies, as far as we know. However,
we created and tested the MLS model’s performance using a
publicly available DoS dataset known as the CICDDoS2019
intrusion datasets created by the Canadian Institute
for Cybersecurity (Sharafaldin et al., 2019). CICDDoS2019
is a collection of benign and up-to-date common DDoS

Frontiers in Signal Processing | www.frontiersin.org April 2022 | Volume 2 | Article 7889439

Gyamfi and Jurcut Robust Security for IIoT Networks Utilizing MEC

https://www.frontiersin.org/journals/signal-processing
www.frontiersin.org
https://www.frontiersin.org/journals/signal-processing#articles


attacks that closely mimics real-world data. It also provides
the results of a network traffic analysis with labeled flows
based on the time stamp, source and destination IPs, source
and destination ports, protocols, and attack using
CICFlowMeter-V3. PortMap, NetBIOS, LDAP, MSSQL,
UDP, UDP-Lag, SYN, NTP, DNS, and SNMP are among
the contemporary reflecting DDoS network attacks
included in the dataset. The CICDDoS2019 dataset suites
our experiment due to its modern attacks, structure, and
network architecture used during its creation.

Numerical Results
In the experiment, we repeated our algorithms multiple times
in a loop (30 iterations) and calculated an average value from
the results obtained. Table 1 shows the response from the
MLS model, which was trained and deployed to the MEC
servers.

The experiment was repeated for 10 different samples of the
test dataset, and Table 2 shows the results obtained.

Figure 6 compares the prediction of different the machine
learning models deployed to the MEC server. Figure 6A provides

the total time (turnaround time) required to complete for each
IIoT device to offload the sampled test data to the MEC server for
network attack analysis. Figure 6B shows the average time taken
for the MEC server to perform attack analysis based on the size of
test sampled dataset received.

In Figure 7, we increased the number of connected IIoT
devices and measured the latency and the energy consumed
when our proposed system was applied. Figure 7C and
Figure 7D show respectfully the latency and the energy
consumed (in kilojoules).

RESULTS DISCUSSION

From Figure 6, when the load of the sampled test set is increased,
the time required by the IIoT to perform a network attack also
increases. The average accuracy of the SGD model is 99.9%,

FIGURE 5 | Sra algorithm response and network connection.

TABLE 1 | SGD MLS model on the MEC server.

Performance of the MLS model. Accuracy: 0.99

Precision Recall F1-Score

Attacks detection rate 0.98 0.99 0.99
Normal detection rate 0.99 0.99 0.99
Macro avg 0.99 0.99 0.99
Weighted avg 0.99 0.99 0.99

TABLE 2 | MLS model response for 10 samples offloaded to the MEC server.

Performance of 10 samples

Experiment Data records Precision Recall F1-score Accuracy

EXP 1 1,000 0.89 0.87 0.87 0.87
EXP 2 2,491 0.81 0.75 0.73 0.75
EXP 3 3,985 0.99 0.99 0.99 0.99
EXP 4 4,981 0.99 0.99 0.99 0.99
EXP 5 7,471 0.99 0.99 0.99 0.99
EXP 6 9,962 0.99 0.99 0.99 0.99
EXP 7 12,452 0.99 0.99 0.99 0.99
EXP 8 14,942 0.99 0.99 0.99 0.99
EXP 9 17,433 0.99 0.99 0.99 0.99
EXP 10 19,923 0.99 0.99 0.99 0.99
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multilayer perceptron also produced 99.62%, and the Naive Bayes
also produced the lowest with 57.78%. However, in all cases, the
SGD outperformed the other machine learning models in
execution time and performance (accuracy). It is evident that,
as the number of connected IIoT devices requesting to offload
their MLS task increases, the energy required to offload their task
also increases. The conventional method also performed better
than the conventional method. Figure 7C shows that, when the
number of IIoT devices increases, the MEC server requires more
time to synchronize and offload the MLS task. Energy consumed
increases with the increasing number of IIoT devices. Hence,
increasing the number of IIoT devices will require more energy.
The latency also increases rapidly, which indicate that special
bandwidth and network channel must be allocated for such a
security system. We believe that our proposed method improves

the task offloading, but applying other techniques such as
machine learning, specifically reinforcement learning methods,
will help optimize the security system. Moreover, attacks such as
network flooding targeting the IIoT device could hinder the
offloading of the MLS task to the IIoT devices before the MEC
server performs the deep intrusion detection. Such cases may
require exceptional circumstances to be created in the proposed
model to resolve them.

CONCLUSION

This paper proposed a novel adaptive time synchronization
MLS to provide security for the IIoT utilizing MEC. By
employing the ATSO, all connected IIoT end devices can

FIGURE 6 | Comparing different machine learning models.

FIGURE 7 | Latency and energy consumed.
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synchronize with the MEC server to enhance performance
requirements in latency, MLS task offloading, and energy
consumption. We proposed node pair selection algorithms
for IIoT devices to synchronize with the proximal MEC
servers. ATS significantly increased the task offloading
accuracy and reduced the energy consumed by the various
IIoT devices. The Markov chain contributed to the queuing
process of the MLS task offloading by the various IIoT
devices. However, the adopted SGD online learning model
also outperformed the other machine learning models. The
proposed ATSO system is scalable with the IIoT to MEC
mesh topology from the experimental results. Future works
will explore different online machine learning methods to
improve intrusion detection on the MEC server and deep
reinforcement learning to create routing algorithms to
optimize the task offloading process.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data can
be found at https://www.unb.ca/cic/datasets/ddos-2019.html.

AUTHOR CONTRIBUTIONS

EG prepared the paper while AJ also reviewed and provided
extensive ideas.

FUNDING

The paper publication will be paid for by the School of Computer
Science, University College Dublin.

REFERENCES

Akherfi, K., Gerndt, M., and Harroud, H. (2018). Mobile Cloud Computing for
Computation Offloading: Issues and Challenges. Appl. Comput. Inform. 14,
1–16. doi:10.1016/j.aci.2016.11.002

Ansere, J. A., Han, G., and Wang, H. (2019). A Novel Reliable Adaptive beacon
Time Synchronization Algorithm for Large-Scale Vehicular Ad Hoc
Networks. IEEE Trans. Veh. Technol. 68, 11565–11576. doi:10.1109/tvt.
2019.2946225

Bakhshi, Z., Balador, A., and Mustafa, J. (2018). “Industrial Iot Security
Threats and Concerns by Considering cisco and Microsoft Iot Reference
Models,” in Proceedings of the 2018 IEEE Wireless Communications and
Networking Conference Workshops (WCNCW), Barcelona, SpainApril
2018 (Piscataway, New Jersey, United States: IEEE), 173–178. doi:10.
1109/wcncw.2018.8368997

Bing, L., Yunyong, Z., and Lei, X. (2019). An Mec and Nfv Integrated Network
Architecture. ZTE Commun. 15, 19–25. doi:10.3969/j.issn.1673-5188.2017.
02.003

Chen, X., Shi, Q., Yang, L., and Xu, J. (2018). Thriftyedge: Resource-Efficient Edge
Computing for Intelligent Iot Applications. IEEE Netw. 32, 61–65. doi:10.1109/
mnet.2018.1700145

Chen, Y., Zhang, N., Zhang, Y., Chen, X., Wu, W., and Shen, X. (2021). Energy
Efficient Dynamic Offloading in mobile Edge Computing for Internet of
Things. IEEE Trans. Cloud Comput. 9, 1050–1060. doi:10.1109/TCC.2019.
2898657

Doan, T. V., Nguyen, G. T., Salah, H., Pandi, S., Jarschel, M., Pries, R., et al. (2019).
“Containers vs Virtual Machines: Choosing the Right Virtualization Technology
for mobile Edge Cloud,” in Proceedings of the 2019 IEEE 2nd 5G World Forum
(5GWF), Dresden, Germany, 30 September-2 October 2019 (Piscataway, New
Jersey, United States: IEEE), 46–52. doi:10.1109/5gwf.2019.8911715

Finnerty, K., Motha, H., Shah, J., White, Y., Button, M., andWang, V. (2018). Cyber
Security Breaches Survey 2018: Statistical Release. Portsmouth, England:
University of Portsmouth.

Han, G., Yang, X., Liu, L., Chan, S., and Zhang, W. (2018). A Coverage-Aware
Hierarchical Charging Algorithm in Wireless Rechargeable Sensor Networks.
IEEE Netw. 33, 201–207. doi:10.1109/MNET.2018.1800197

Hsu, C.-W., Hsu, Y.-L., and Wei, H.-Y. (2019). “Energy-efficient and Reliable Mec
Offloading for Heterogeneous Industrial Iot Networks,” in Proceedings of the
2019 European Conference on Networks and Communications (EuCNC),
Valencia, Spain, June 2019 (Piscataway, New Jersey, United States: IEEE),
384–388. doi:10.1109/eucnc.2019.8802020

Irdeto-Media-Team (2019). New 2019 Global Survey: Iot-Focused Cyberattacks
Are the New normal - Irdeto. Available at: https://irdeto.com/news/new-2019-
global-survey-iot-focused-cyberattacks-are-the-new-normal/(Accessed on
03 06, 2020).

Mao, Y., You, C., Zhang, J., Huang, K., and Letaief, K. B. (2017). A Survey on
mobile Edge Computing: The Communication Perspective. IEEE Commun.
Surv. Tutorials 19, 2322–2358. doi:10.1109/comst.2017.2745201

Nasrallah, Y. Y., Al-Anbagi, I., and Mouftah, H. T. (2016). “Distributed Time
Synchronization Mechanism for Large-Scale Vehicular Networks,” in
Proceedings of the 2016 International Conference on Selected Topics in
Mobile & Wireless Networking (MoWNeT), Cairo, EgyptApril 2016
(Piscataway, New Jersey, United States: IEEE), 1–6. doi:10.1109/mownet.
2016.7496600

Sadeghi, A.-R., Wachsmann, C., and Waidner, M. (2015). “Security and Privacy
Challenges in Industrial Internet of Things,” in Proceedings of the 2015 52nd
ACM/EDAC/IEEE Design Automation Conference (DAC), San Francisco, CA,
USA, June 2015 (Piscataway, New Jersey, United States: IEEE), 1–6. doi:10.
1145/2744769.2747942

Sharafaldin, I., Lashkari, A. H., Hakak, S., and Ghorbani, A. A. (2019). “Developing
Realistic Distributed Denial of Service (DDoS) Attack Dataset and Taxonomy,”
in Proceedings of the 2019 International Carnahan Conference on Security
Technology (ICCST), Chennai, India, October 2018 (Piscataway, New Jersey,
United States: IEEE), 1–8. doi:10.1109/ccst.2019.8888419

Sun, W., Liu, J., and Yue, Y. (2019). Ai-enhanced Offloading in Edge Computing:
When Machine Learning Meets Industrial Iot. IEEE Netw. 33, 68–74. doi:10.
1109/mnet.001.1800510

Sun, X., and Ansari, N. (2017). Latency Aware Workload Offloading in the
Cloudlet Network. IEEE Commun. Lett. 21, 1481–1484. doi:10.1109/lcomm.
2017.2690678

Tanaka, H., Yoshida, M., Mori, K., and Takahashi, N. (2018). Multi-access Edge
Computing: A Survey. J. Inf. Process. 26, 87–97. doi:10.2197/ipsjjip.26.87

Tange, K., De Donno,M., Fafoutis, X., and Dragoni, N. (2020). A Systematic Survey
of Industrial Internet of Things Security: Requirements and Fog Computing
Opportunities. IEEE Commun. Surv. Tutorials 22, 2489–2520. doi:10.1109/
comst.2020.3011208

Wu, H., Wolter, K., Jiao, P., Deng, Y., Zhao, Y., and Xu, M. (2021). Eedto: An
Energy-Efficient Dynamic Task Offloading Algorithm for Blockchain-Enabled
Iot-Edge-Cloud Orchestrated Computing. IEEE Internet Things J. 8,
2163–2176. doi:10.1109/JIOT.2020.3033521

Wurm, J., Hoang, K., Arias, O., Sadeghi, A.-R., and Jin, Y. (2016). “Security
Analysis on Consumer and Industrial Iot Devices,” in Proceedings of the
2016 21st Asia and South Pacific Design Automation Conference (ASP-DAC),
Macao, China, January 2016 (Piscataway, New Jersey, United States: IEEE),
519–524. doi:10.1109/aspdac.2016.7428064

Xu, X., Zhang, X., Gao, H., Xue, Y., Qi, L., and Dou, W. (2019). Become:
Blockchain-Enabled Computation Offloading for Iot in mobile Edge
Computing. IEEE Trans. Ind. Inform. 16, 4187–4195.

Yang, B., Cao, X., Bassey, J., Li, X., and Qian, L. (2021). Computation Offloading in
Multi-Access Edge Computing: A Multi-Task Learning Approach. IEEE Trans.
Mobile Comput. 20, 2745–2762. doi:10.1109/TMC.2020.2990630

Frontiers in Signal Processing | www.frontiersin.org April 2022 | Volume 2 | Article 78894312

Gyamfi and Jurcut Robust Security for IIoT Networks Utilizing MEC

https://www.unb.ca/cic/datasets/ddos-2019.html
https://doi.org/10.1016/j.aci.2016.11.002
https://doi.org/10.1109/tvt.2019.2946225
https://doi.org/10.1109/tvt.2019.2946225
https://doi.org/10.1109/wcncw.2018.8368997
https://doi.org/10.1109/wcncw.2018.8368997
https://doi.org/10.3969/j.issn.1673-5188.2017.02.003
https://doi.org/10.3969/j.issn.1673-5188.2017.02.003
https://doi.org/10.1109/mnet.2018.1700145
https://doi.org/10.1109/mnet.2018.1700145
https://doi.org/10.1109/TCC.2019.2898657
https://doi.org/10.1109/TCC.2019.2898657
https://doi.org/10.1109/5gwf.2019.8911715
https://doi.org/10.1109/MNET.2018.1800197
https://doi.org/10.1109/eucnc.2019.8802020
https://irdeto.com/news/new-2019-global-survey-iot-focused-cyberattacks-are-the-new-normal/
https://irdeto.com/news/new-2019-global-survey-iot-focused-cyberattacks-are-the-new-normal/
https://doi.org/10.1109/comst.2017.2745201
https://doi.org/10.1109/mownet.2016.7496600
https://doi.org/10.1109/mownet.2016.7496600
https://doi.org/10.1145/2744769.2747942
https://doi.org/10.1145/2744769.2747942
https://doi.org/10.1109/ccst.2019.8888419
https://doi.org/10.1109/mnet.001.1800510
https://doi.org/10.1109/mnet.001.1800510
https://doi.org/10.1109/lcomm.2017.2690678
https://doi.org/10.1109/lcomm.2017.2690678
https://doi.org/10.2197/ipsjjip.26.87
https://doi.org/10.1109/comst.2020.3011208
https://doi.org/10.1109/comst.2020.3011208
https://doi.org/10.1109/JIOT.2020.3033521
https://doi.org/10.1109/aspdac.2016.7428064
https://doi.org/10.1109/TMC.2020.2990630
https://www.frontiersin.org/journals/signal-processing
www.frontiersin.org
https://www.frontiersin.org/journals/signal-processing#articles


Yang, B., Fagbohungbe, O., Cao, X., Yuen, C., Qian, L., Niyato, D., et al. (2022).
A Joint Energy and Latency Framework for Transfer Learning over 5g
Industrial Edge Networks. IEEE Trans. Ind. Inf. 18, 531–541. doi:10.1109/
TII.2021.3075444

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations or those of

the publisher, the editors, and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Gyamfi and Jurcut. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not
comply with these terms.

Frontiers in Signal Processing | www.frontiersin.org April 2022 | Volume 2 | Article 78894313

Gyamfi and Jurcut Robust Security for IIoT Networks Utilizing MEC

https://doi.org/10.1109/TII.2021.3075444
https://doi.org/10.1109/TII.2021.3075444
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/signal-processing
www.frontiersin.org
https://www.frontiersin.org/journals/signal-processing#articles

	A Robust Security Task Offloading in Industrial IoT-Enabled Distributed Multi-Access Edge Computing
	Introduction
	Paper Motivation
	Outline

	Related Works
	System Model and Problem Formulation
	Industrial Internet of Things to Multi-Access Edge Computing Network Model
	Computational Machine Learning–Based Security Task Offloading Model
	Industrial Internet of Things to Multi-Access Edge Computing Network Connectivity Analysis
	Adaptive Time Synchronization
	Two-Way Time Synchronization Between Multi-Access Edge Computing Server and Industrial Internet of Things Device
	ATS Clock Offset Estimation Using Maximum Likelihood Technique
	Cramer–Rao Lower Bound Technique

	Industrial Internet of Things to Multi-Access Edge Computing Pair Selection and Scheduling Using Markov Transition
	Estimating the Task Offloading Error
	Maximum Location Error
	Offloading Failure Probability


	Proposed ASTO Algorithm
	Machine Learning–Based Security System
	Adaptive Security Task Offloading

	Performance Evaluation and Results Analysis
	Testbed Preparation
	Dataset Used
	Numerical Results

	Results Discussion
	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References


