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Choral singing in the soprano, alto, tenor and bass (SATB) format is a widely practiced and
studied art form with significant cultural importance. Despite the popularity of the choral
setting, it has received little attention in the field of Music Information Retrieval. However,
the recent publication of high-quality choral singing datasets as well as recent
developments in deep learning based methodologies applied to the field of music and
speech processing, have opened new avenues for research in this field. In this paper, we
use some of the publicly available choral singing datasets to train and evaluate state-of-
the-art source separation algorithms from the speech and music domains for the case of
choral singing. Furthermore, we evaluate existing monophonic F0 estimators on the
separated unison stems and propose an approximation of the perceived F0 of a
unison signal. Additionally, we present a set of applications combining the proposed
methodologies, including synthesizing a single singer voice from the unison, and
transposing and remixing the separated stems into a synthetic multi-singer choral
signal. We finally conduct a set of listening tests to perform a perceptual evaluation of
the results we obtain with the proposed methodologies.
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1 INTRODUCTION

Choral singing is one of the most widespread types of ensemble singing (Sundberg, 1987). It is a
central part of musical cultures across the world and it has been an important activity for humans to
express ideas and beliefs, as well as for social entertainment and mental wellbeing (Clift et al., 2010;
Livesey et al., 2012). Vocal ensemble is the term we commonly use to describe a set of multiple singers
singing simultaneously. These singers are often divided into different sections based on their vocal
range, and an ensemble comprising multiple sections is often referred to as a choir. Singers within a
section typically sing the same melodic line, referred to as a unison, which is complementary to the
melodic lines sung by other sections. A commonly used configuration for Western choral singing,
which is the focus of this paper, is the Soprano, Alto, Tenor and Bass (SATB), comprising the
aforementioned four sections. Combined together, these sections produce a harmonious effect,
known as the SATB choir sound. This form of singing is widely practised and studied in Western
culture.

Music Information Retrieval (MIR) is the field of research combining techniques from the fields of
musicology, signal processing, and machine learning among others, to computationally analyze
music so as to assist practitioners, learners, and enthusiasts. In this field, we find some early literature
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about the acoustic properties of choral singing (Rossing et al.,
1986; Ternström, 1991; Ternström, 2002) which attempted to
understand the “choral sound.” Over the last few years, the MIR
community has shown an increasing interest on the topic,
particularly with the emergence of data-driven machine
learning methodologies, as well as novel datasets. Studies on
singers’ intonation and interaction in vocal ensembles (Devaney
et al., 2012; Dai and Dixon, 2017; Cuesta et al., 2018; Dai and
Dixon, 2019; Weiss et al., 2019), the analysis and synthesis of
vocal unisons (Cuesta et al., 2018; Cuesta et al., 2019; Chandna
et al., 2020), multi-pitch estimation of polyphonic vocal
performances (Su et al., 2016; Schramm and Benetos, 2017;
Cuesta et al., 2020), automatic transcription (McLeod et al.,
2017), or the separation of voices (Gover and Depalle, 2020;
Petermann et al., 2020; Sarkar et al., 2020) have been published
recently.

Most of these studies focus on vocal ensembles with one singer per
voice part. More specifically, the majority of them examine vocal
quartets, i.e., four singers of different vocal ranges. However, we find a
large amount of amateur and professional vocal ensembles with
multiple singers per part singing in unison, i.e., choirs. While quartet
and choral singing are conceptually very similar, they differ in the
amount of singers within one section. According to Ternström
(1991), while a single performer produces tones of well-defined
properties, e.g., pitch, loudness, and timbre, an ensemble of
performers, i.e., multiple singers per part, will generate sounds
characterized by statistical distributions of these properties. Hence,
we need to take this characteristic into consideration when working
with choir recordings that include unisons instead of single singers.

In this study we evaluate source separation algorithms for
separating the individual parts which have unison singing. In
particular, we study various types of recently proposed deep
learning based source separation algorithms while keeping an
eye on the limited data available for training and evaluation. We
also extend the work done in (Chandna et al., 2020), which
proposes a model to synthesize a single singer signal from a
unison input and vice-versa. The model proposed extracts
linguistic content from an input unison signal and uses this to
along with the F0 to synthesize a voice signal. To facilitate this
synthesis from a unison track separated from a choral mixture, we
study the pitch characteristics of a unison signal extracted by the
source separation process. Using this study, we propose an
application framework that uses the separated unison signals
to synthesize a single singer with the unison linguistic and
melodic content. Then, this solo singer signal can be pitch-
transposed, converted back to a unison, and remixed with
other voice parts to generate a synthetic multi-singer choral
recording. Finally, we propose a framework for separation,
analysis, and synthesis of SATB ensembles, depicted in Figure 7.

The rest of the paper is structured as follows: Section 2 reviews the
most relevant literature related to source separation, analysis, and
synthesis of four-part vocal ensembles. Section 3 presents the
proposed methodology for this paper while Section 4 discusses
the experiments we carried out to evaluate the various parts of
the methodology, including a perceptual evaluation in Section 4.6.
Proposed applications of the analysis are discussed in Section 5.
Finally, conclusions drawn from our study are discussed in Section 6.

2 RELATED WORK

2.1 Four-Part Singing Ensembles
A musical ensemble of singers singing simultaneously is
commonly known as a choir. Choral music is a tradition
that has been practiced throughout society from the
medieval ages to modern times, involving diverse groups of
singers of various capabilities and with different vocal ranges.
As such, choral singing is a social activity that can be
performed in various arrangements with or without
instrumental accompaniment, the latter referred to as a
cappella singing. The earliest form of ensemble choral
singing can be traced back to the Gregorian chants of the
4th century, which involved multiple singers singing the same
content simultaneously, in unison.

Such compositions are widely practiced today in dedicated
conservatories across the world. Being a social activity, one of the
most popular formats of choral singing makes use of the distinct
male and female vocal range, with female singers capable of
singing high pitches arranged in choir parts known as soprano
and alto, while male singers are consigned to tenor and bass parts.
The soprano part is typically for singers comfortable in the
260–880 Hz vocal range. For the alto section, the associated
range is 190–660 Hz. Singers comfortable in the lower ranges,
145Hz–440 Hz and 90–290 Hz, are generally assigned the tenor
and bass voices, respectively (Scirea and Brown, 2015). An SATB
choir may also have just four singers, one singing each of the
parts, resulting in a quartet arrangement. It is also common to
have multiple singers singing in unison in each of the parts,
resulting in even more pronounced choral effect.

We denote the voice signal of a singer in the soprano part as
xj
S, where j = 1, . . ., J, with J being the number of singers singing in

unison in the soprano voice. The signal for the unison of
sopranos, xU

S , is a linear mixture of the individual singers:

xU
S � ∑

J

j�1
ajSx

j
S (1)

where ajS represents the gain of the individual singers in the
unison signal. This gain depends on the position of the individual
singer with respect to the microphone used for recording and on
the voice’s loudness. Similarly, the individual voice signals of the
singers in the alto, tenor and bass voices are denoted as xj

A, x
j
T and

xj
B, respectively. The unison signals for the respective parts are

denoted by xU
A , x

U
T and xU

B . The sum of the unison signal gives us
the choral mixture signal,

xC � bUS x
U
S + bUAx

U
A + bUTx

U
T + bUBx

U
B (2)

where bUS , b
U
A , b

U
T and bUB represent the gains of the soprano, alto,

tenor and bass unison signals in the mixture signal. In Western
choral music, voices are commonly written to harmonize with
each other, which combined with voices having relatively similar
timbres, leads to a high number of overlapping harmonics in the
resulting mixture.

Focusing on Western choral singing, we aim at separating the
four voices from an audio recording of a choir mixture. Our goal
is to separate four unisons, and not each voice in the ensemble:
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xC → x̂U
S , x̂

U
A, x̂

U
T , x̂

U
B (3)

where x̂U
v , v ∈ {S,A, T, B} denotes each separated unison stem. The

unison separation process enables several subsequent
applications such as the analysis of the unison signal, or the
synthesis of a single voice with pitch and lyrical content
resembling the one in the original unison, among others. We
explore some of these further applications in Section 5.

2.2 Vocal Ensembles Datasets
The data-driven models for source separation that we aim to
adapt in this study require large amounts of data for learning.
MUSDB18 (Rafii et al., 2017) dataset, commonly used for training
and evaluating source separation algorithms for the case of
musical source separation, contains a collection of 150
multitrack recordings with their isolated drums, bass, vocals,
and “others” stems. The dataset contains individual stems for
vocals, drums, bass, and other musical instruments for each of the
tracks. These stems were recorded and mixed in professional
studios with each instrument tracked individually.

Recording such a database of choral singing is a technically
challenging task since a typical choir setting requires multiple
singers to sing simultaneously, and recording an individual singer
within the ensemble requires highly directional microphones
which reduce leakage from other singers. Consequently, there
has been a scarcity of datasets for research on vocal music.
However, in the last years, great effort was brought towards
releasing curated multitrack datasets of ensemble singing. In this
work, we select some of these multitrack datasets to train and
evaluate source separation methods and for F0 analysis in
polyphonic vocal music. Table 1 provides a summary of the
main features of the datasets we consider, and we describe some
additional details about them such as recording conditions and
how they affect the inter-microphone bleeding in the following.

Choral Singing Dataset (CSD) (Cuesta et al., 2018) is a publicly
available multitrack dataset ofWestern choral music. It comprises
recordings of three songs in the SATB format, each in a different
language (Catalan, Spanish, and Latin). The songs are all
performed by a choir of 16 singers, organized in four per
section. Each section of the choir was recorded independently,
using microphones to isolate the voice of each singer. F0
trajectories for each recording as well as section-wise MIDI
notes are available for each of the songs. The total audio
duration is around 7 min, which makes it a small dataset in
comparison to MUSDB18 dataset. Recordings from CSD contain
some leakage from contiguous singers of the same section, which

is less problematic than leakage from other sections in the context
of this work.

Similarly, Dagstuhl ChoirSet (DCS) (Rosenzweig et al., 2020)
is a dataset with ensemble singing recordings of two songs in
Latin and Bulgarian languages. The dataset also contains a set of
vocal exercises consisting of scales, cadences, and intonation
exercises. Combinations of handheld dynamic microphones,
headset microphones, and throat microphones, as well as a
stereo pair microphones were used to record 13 singers,
grouped into uneven SATB sections. All singers were recorded
simultaneously, leading to slightly higher leakage in the
individual tracks than the CSD, including some inter-section
leakage. The dataset contains annotations for beats, synchronized
score representations, and automatically extracted F0 contours.
The total audio duration is around 55 min.

ESMUC Choir Dataset (ECD)1 is a multitrack data collection
that comprises three songs, in German and Latin, performed by a
choir of 12 singers, unevenly distributed into SATB choir
sections. The singers were recorded simultaneously using
handheld dynamic microphones, and with a stereo pair
microphone capturing the overall choir sound. Individual
recordings from ECD contain high inter-singer and inter-
section leakage, significantly higher than CSD and DCS. The
dataset contains 20 min of audio, with manually corrected F0, and
note annotations for each of the tracks.

Bach Chorales Dataset (BCD) is a commercial multitrack
dataset used in the experiments in (McLeod et al., 2017;
Schramm and Benetos, 2017). It consists of 26 songs
performed by a SATB quartet, i.e., one singer per part. The
total amount of audio of the BCD is around 58 min. Each singer
in the quartet was recorded individually in a professional setup
and there is not inter-singer leakage in the recordings. BCD
contains each individual audio track and the mixture of the four
voices. Besides, it provides MIDI files and automatically extracted
F0 trajectories. However, due to the original commercial source of
the recordings, this dataset is not publicly available for research
purposes.

All audio files used in this project are resampled to a common
sampling rate of 22 050 Hz.

2.3 Source Separation
Source separation, a task which consists in separating a mixture of
signals into the constituent signals, has been well researched

TABLE 1 | Summary of the multitrack datasets of ensemble singing we use in this project. The reported durations refer to the total recording duration, not considering
multiple stems per recording.

Dataset Voices and
nb. of
singers

Multitrack Duration (hh:mm:ss) Music material Annotations

Choral Singing Dataset 4S-4A-4T-4B Yes 00:07:14 3 songs F0, notes, MIDI
Dagstuhl ChoirSet 2S-2A-4T-5B Yes 00:55:30 2 songs exercises F0 (automatic),score, beats
ESMUC Choral Dataset 5S-3A-3T-2B Yes 00:21:08 3 songs exercises F0, notes
Bach Chorales SATB Yes 00:58:20 26 songs F0 (automatic),MIDI

1https://zenodo.org/record/5848990
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across many different fields, including finance, medicine, geology,
and audio and video signals. For audio signals, the task entails
breaking a mixture composed of multiple signals (i.e., sources),
down into its individual components. A significant amount of
research in the domain has been dedicated to separating the voice
signal from an audio mixture.

Over the last decade, research in source separation has shifted
to data-driven machine learning techniques, particularly with the
advent of deep learning. Several deep learning based models have
been proposed for the related but distinct tasks of music source
separation and asynchronous speech separation. The first of these
tasks entails separating temporally and harmonically correlated
sources in terms of distinct musical instruments, including the
singing voice. The sources to be separated in this case have
distinct spectral structures, e.g., the singing voice has a distinct
formant structure, which is internally modeled by the source
separation algorithms. Speech source separation refers to
separating two asynchronous speech signals from distinct
speakers. The distinction modeled by source separation
algorithms pertains to temporal cues and the distinctive
timbre of the speakers involved. Both of these tasks are closely
related to our study, which consists of separating four sources
with similar spectral structures, which can primarily be
distinguished by their fundamental frequency (F0).

Source separation for synthetic choral data has been studied
employing score-informed non-negative matrix factorization
(NMF) and the Wave-U-Net architecture by Gover and
Depalle (2020). The authors synthesized 371 Bach chorales
using a commercial MIDI synthesizer named FluidSynth. This
allowed for synthesized choral mixes and stems aligned with score
information. Then, the Wave-U-Net (Stoller et al., 2018)
architecture was adapted to accept temporal conditioning. The
conditioning was applied both at the input and output layers, as
well as the downsampled bottleneck layer. It was shown that the
Wave-U-Net architecture outperformed the NMF-based
baseline, even without the conditioning.

In the context of real-world SATB choir recordings, voice
separation has been studied using transfer learning (Bugler et al.,
2020) with a ChimeraNet model (Luo et al., 2017) pre-trained on
the MUSDB and Slakh datasets (Manilow et al., 2019). This
model was then fine tuned to segregate the male and female voices
in SATB recordings in the DCS.

Our previous research on source separation for SATB
recordings (Petermann et al., 2020) investigated the
performance of the deep learning architectures mentioned
above specifically on voice segregation for choir recordings.
The first part of this work involved the assessment of state-of-
the-art (SOTA) models given two use-cases: 1) using mixtures
with exactly one singer per singing group, in a quartet, and 2)
using up to four singers per SATB group, for a total of up to 16
singers. We also proposed an adapted version of the Conditioned
U-Net by Meseguer-Brocal and Peeters (2019), leveraging the
varied frequency ranges of the constituent parts of an SATB choir
to segregate the voices. We conditioned the U-Net on the oracle
F0 of the individual parts using a feature-wise linear modulation
(FiLM) layer (Perez et al., 2018). This led to an increase in
performance over the vanilla U-Net model.

2.4 Unison Analysis and Synthesis
We recently proposed a system for unison analysis and synthesis
(Chandna et al., 2020). This system extracts the linguistic content
from an input unison signal using a network trained via a
student-teacher schema. A language independent linguistic
content representation is extracted by using the intermediate
layers of a SOTA voice conversion model (Qian et al., 2019). This
representation is used to generate the harmonic and in-harmonic
parts of theWORLD vocoder (Morise et al., 2016), which are used
along with the F0 to synthesise the waveform pertaining to a
single singer singing the unison signal. While our previously
proposed model has proven to effectively model the linguistic
content of the unison signal, extraction of the F0 from the unison
remains a challenging task. To model this F0, we must analyze the
pitch of the unison.

Previous studies have shown that listeners perceive unison
performances to have a single pitch, even though this pitch is
produced by multiple singers (Ternström, 1991). We would
require large perceptual studies with enormous amounts of
unison recordings to study in depth which is the pitch that a
listener perceives when they hear a unison performance. In an
early study by Ternström (1991), perceptual experiments were
conducted with expert listeners to investigate, among other
aspects, the preferred level of pitch scatter in unison vocal
performances. Pitch scatter is defined in the original paper as
the standard deviation over voices in the mean F0—the average
F0 computed over the duration of each note of a song. The
authors used synthesized stimuli with different levels of scatter,
and found that while listeners tolerate up to 14 cents of scatter,
the preferred level of pitch scatter for a unison ranges between 0
and 5 cents. These findings suggest that while slight deviations in
pitch between singers are preferred, they should be small enough
so that the overall sound is still perceived as a unique pitch. To
extract this unique pitch from an input unison signal, we use
monophonic F0 estimation, introduced in the following.

2.5 Monophonic F0 Estimation
Although unison performances are commonly considered
monophonic signals, depending on the magnitude of pitch
and timing deviations they contain, they can be more
challenging for monophonic F0 trackers than single singer
recordings. In this work, we assess the performance of two
SOTA methods for monophonic F0 tracking on unison
performances to see which one performs better. We
hypothesize that a reliable F0 contour extracted from a unison
signal approximates its melodic content, which can be used for
further analysis and synthesis applications, as we detail it in the
next sections. We consider a knowledge-based F0 tracker, pYIN,
and a data-driven F0 tracker, CREPE.

pYIN (Mauch and Dixon, 2014) is a knowledge-based F0
tracking method based on the well-known YIN algorithm (de
Cheveigné and Kawahara, 2002). YIN is a time-domain
monophonic F0 tracker for speech and music signals based on
the auto-correlation function (ACF). In this method, the authors
propose a modified difference function based on the ACF, where
they locate the dip corresponding to the period of the signal.
pYIN was later introduced as a probabilistic version of YIN,
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where multiple F0 candidates are computed together with their
probabilities, and then one F0 value per analysis frame is selected
through hidden Markov models (HMM) and Viterbi decoding.

CREPE (Convolutional Representation for Pitch Estimation)
(Kim et al., 2018) is a data-driven F0 tracking algorithm based on
a deep convolutional neural network that operates on the time-
domain waveform. The output of the network is a 360-
dimensional output vector, ŷ, and each of the 360 nodes is
associated to a specific F0 value in cents, covering six octaves
with a 20 cents resolution. The output F0 estimate is calculated as
the average of the associated F0 values weighted by their
corresponding values in the output ŷ. One F0 estimate is
obtained for each analysis window of the input signal.

3 PROPOSED METHODOLOGY

This section introduces the methodology we follow. In the
proposed framework, we experiment with three main tasks:
first, source separation models to separate the individual
unison signals from a choral mixture; second, approximating
the perceived pitch of the unisons; and third, the analysis-
synthesis framework to regenerate individual singing voice
signals which can be remixed together.

3.1 Source Separation
We assess the performance of a set of SOTA models for both
music and speech source separation applied to our target case
(SATB choirs). We first select the Open-Unmix model (Stöter
et al., 2019), which provided SOTA results on the musical source
separation task over the 2018 Signal Separation Evaluation
Campaign (Stöter et al., 2018) (SISEC). For asynchronous
speech separation, we select the Conv-TasNet (Luo and
Mesgarani, 2019), which has been shown to outperform the
ideal time-frequency (TF) mask for the case of synchronous
source separation. We note that while this algorithm has been
adapted to the task of music source separation (Défossez et al.,
2019; Samuel et al., 2020), we use the original variant specifically
proposed for speech source separation for our study. This is done
because and we want to compare models proposed for musical
source separation with speech source separation when adapted to
the task at hand. Choral singing is a mixture of multiple voices,
which is the case addressed in speech source separation, but it also
has a musical structure for which musical source separation
might be more apt. By comparing state-of-the-art models in
both domains, we can assess which models might be more
suitable for adaptation to choral source separation.

Deep learning based algorithms have been proposed for both
tasks over the last few years. While many of the models are based
on a time-frequency representation like the spectrogram, recently
proposed models have explored end-to-end waveform based
separation (Lluís et al., 2019). It has been postulated that
waveform based source separation algorithms require a larger
amount of data for training than spectrogram based models.
Given the limited availability of data in our case, we assess
whether waveform based source separation models can
perform as well as spectrogram based models for segregating

the parts of an SATB choir. For this we compare the U-Net
(Jansson et al., 2017) model for source separation with its
waveform-based counterpart, operating directly on the
waveform, Wave-U-Net (Stoller et al., 2018).

3.2 Modeling the Pitch of a Unison
Several aspects influence the pitch we perceive from a unison.
Some of them are the relative loudness of each singer with respect
to the others, the listener’s position, or the frequency range.
However, in this paper we follow Occam’s Razor and use the
hypothesis that the simplest possible function of the individual F0
of each singer, the mean, is thus the simplest possible
representation of the perceived pitch in a unison performance.
Therefore, to obtain a reference F0 contour to characterize the
melodic content of the unison, we approximate the perceived
pitch of a unison as the average along the F0s produced by each
singer of the group. However, to account for potential differences
in the energy of each contributing source, we consider a weighted
average where each source has an associated weight (as we
mentioned in Section 2.1, ajS denotes the weight of soprano
singer j.) In practice, in our experiments we compute the weights
as the normalized root mean square (RMS) of each source, which
we can roughly associate to their volume. For the rest of this paper
we refer to this weighted average as the approximated perceived
pitch of the unison. In Section 4.6, we validate this
approximation using perceptual experiments. The multitrack
nature of our working dataset allows the calculation of the
RMS for each recording individually, for which we use the
RMS algorithm from librosa (McFee et al., 2015).

We compute the F0 weighted average on a frame basis
considering only the active voices per frame. Due to timing
deviations between singers, note transitions have a set of
frames where not all voices are in sync, i.e., one singer starts
or ends a note slightly before or after another singer. To account
for such passages, at each frame of analysis, we only use the F0s
from active singers for the average calculation.

3.3 Synthesis and Remixing
Once we have extracted the individual unison stems from a choral
mixture and modeled the perceived pitch of the unison signal, we
can use the Unison-to-Solo (UTS) methodology we proposed in
(Chandna et al., 2020) to synthesize a single singing voice
pertaining to the melodic and linguistic content of the signal.
The framework for the UTS methodology is illustrated in
Figure 1: it extracts the linguistic content, the melody, and the
timbre from an input unison signal to generate vocoder features
for synthesizing a single singing voice.

From this synthetic single singing voice representation of the
individual parts of the choral mixture, we employ the Solo-to-
Unison (STU) methodology, also proposed in (Chandna et al.,
2020), to generate a unison signal. As illustrated in Figure 2, the
STU methodology uses the analysis-synthesis framework that
enables the addition of pitch and timing deviations, along with
singer timbre variations using voice conversion models. Since we
are synthesising the unison signal, the methodology can be used
to apply transformations such as pitch shifting, time stretching
and other score based transformations including increasing the
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number of singers singing the in unison. These synthesised
unison signals can then be remixed using the framework
illustrated in Figure 7 to support the editing of choral
recordings for more accessible and targeted singing practice.

4 EXPERIMENTS

In this work, we perform two main experiments to assess the type
of source separation model and the data required for the task of
segregating the parts of an SATB choir. We train and evaluate
four models for the task, as listed in (Table 2). We compare the
spectrogram-based U-Net model (UNet) (Jansson et al., 2017)
with its waveform-based counterpart, Wave-U-Net (WaveUNet)
(Stoller et al., 2018). We note that while the original U-Net
proposed for singing voice separation uses two separate networks
to predict TF masks for the vocal and accompaniment stems, we
use a single network to predict four masks to be applied for each
of the four parts. This allows us to assess if waveform-based

models can perform as good as spectrogram based models for the
task, given the limited data used for training.We also compare the
Open-Unmix (UMX) model with the Conv-TasNet
(ConvTasNet) model. While the former represents the SOTA
for music source separation, the later represents the SOTA for
speech source separation. UMX uses four sub-networks, one for
each of the parts.

As discussed in Section 2.2, there is a limited amount of data
available for training and evaluation of the models. While CSD,
DCS, and ECD contain individual tracks for multiple singers per
part of an SATB choir arrangement, there is significant overlap in
the songs present in CSD and DCS, while ECD has significant
inter-singer leakage in the tracks. BCD has the cleanest data
amongst the datasets, but only has quartet recordings with a
single singer per part. We see that, while it is easier to obtain clean
data for quartets, real-world choir recordings often have multiple
singers per part. As such, we need to assess if quartet based data is
sufficient for training a deep learning based source separation
model for the task of segregating parts with multiple singers.

FIGURE 1 | Diagram of the Unison-to-Solo (UTS) methodology.

FIGURE 2 | Diagram of the Solo-to-Unison (STU) methodology.
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Table 3 summarizes the datasets and data partitions we
consider for each experiment and model, and the experiments
we conduct are described as follows.

4.1 Experiment 1: Incremental Training
In this first experiment, we first train the four models on CSD,
with all possible combinations of singers within a song
constrained by two cases: Quartet case, wherein the number of
singers per part of the input is limited to one (quartet input), and
Choir case, wherein we allow all possible combinations of singers
from one to four singers per part of a song. We denote the models
trained with the CSD as modelnameC, where modelname in
{UNet, WaveUNet, UMX and ConvTasNet}. We then augment
the data from CSD with quartet data from BCD. As the training
data is incrementally increased using the quartets from BCD, we
term this experiment “Incremental training.” These models are
termed asmodelnameCB, using a nomenclature similar to the one
previously mentioned.

4.2 Experiment 2: ESMUC Choir Dataset
Leakage Removal
To evaluate the models from the incremental training
experiment, we need to consider a dataset which is not part of
the training set to avoid overlap between the songs and singers
used for training and evaluation. While ECD fits this criteria,
there is a significant amount of inter-section leakage, i.e., presence
of alto, tenor, and bass tracks in the soprano track within the
tracks of the dataset. To alleviate this problem, we use a cleaning

procedure using the models trained in the incremental training to
clean the individual tracks of ECD before mixing them together to
create the evaluation set.

Heuristically, in the incremental training experiment we find
UMXCBmodel to perform the best amongst those trained. Hence,
we select this model to clean the individual stems of ECD by
passing them through the corresponding sub-network ofUMXCB.
We pass the soprano stem of each song from ECD through the
trained Open-Unmix model for the soprano part to clean the
soprano stem. This procedure is repeated for alto, tenor, and bass
stems. These cleaned stems are then mixed together to form the
evaluation set for the first experiment. We conduct a perceptual
evaluation of this cleaning procedure, presented in Section 4.6.
This allows filtering out interference from parts of the choir that
do not belong to the target part. Then, we consider the cleaned
ECD, denoted as ECDclean, for evaluation of the models from the
incremental training experiment.

4.3 Experiment 3: Full Training
For the full training experiment, we augment the training set with
ECD and DCS and train the models on the both cases of data.
These models are termed modelnameCBDE and we evaluate them
on three takes of the song Die Himmel from ECD, which were
excluded from the training set (see Table 3). Excluding these
recordings allows for the evaluation of the models on an unseen
song. To further evaluate the models for unseen singers, we
exclude the first singer from each of the parts from CSD and
use the quartet of singer one (composed of the first singer of each
section and denoted CSDQ1) songs from the CSD for evaluation.

TABLE 2 | The models we adapt for voice segregation in SATB choirs.

Model Input Originally proposed for

U-Net Jansson et al. (2017) Spectrogram Music source separation
Wave-U-Net Stoller et al. (2018) Waveform Music source separation
Open-Unmix Stöter et al. (2019) Spectrogram Music source separation
ConvTasNet Luo and Mesgarani, (2018) Waveform Speech separation

TABLE 3 | Summary of the models trained for each experiment.

Models Name Trained on Evaluated on Experiment

UMX modelnameC CSD ECDclean Incremental training
UNet
WaveUNet
ConvTasNet

UMX modelnameCB CSD, BCD ECDclean Incremental training
UNet
WaveUNet
ConvTasNet

UMX modelnameCBDE CSD*, BCD, ECDclean**, DCS Die Himmel, CSDQ1 Full training
UNet
WaveUNet
ConvTasNet

ECDclean refers to ECD after the leakage removal. CSD* denotes CSD excluding the quartet formed by the combination of the first singer of each section (CSDQ1). ECDclean** represents all
clean ECD excluding the three takes of the song Die Himmel.
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4.4 Evaluation Results
This section presents the evaluation metrics we consider to
measure the performance of our models, followed by the
results we obtain for the described experiments.

4.4.1 Evaluation Metrics
We evaluate our models with the BSS eval set of objective metrics
(Vincent et al., 2006). In particular, we consider the
bss_eval_sources set of metrics, pertaining to single-channel
source signals. The three metrics we select are the Source-to-
Interferences Ratio (SIR), which measures the amount of
interference in an estimated source from the other sources in
the mixture, the Sources-to-Artifacts Ratio (SAR), which measures
the artifacts introduced by the source separation process, and the
Source-to-Distortion Ratio (SDR), which provides an estimate of
the overall quality of the separation, compared to the ground truth.

4.4.2 Results Incremental Training
The results of the incremental training experiment are depicted in
Figures 3–5. The evaluation shown is for models trained using

Choir case data, with all possible combinations of singers from
CSD (except the first singer of each section), augmented with
quartet data from BCD. The evaluation set contains all the songs
from ECDclean dataset with all singers in the mixture. Figure 3
shows the SDR metrics for the four models trained with CSD
data, denoted as modelnameC, and with CSD data augmented
with quartet data from the BCD, denoted as modelnameCB.
Figures 4, 5 show the SIR and SAR metrics for the same
models, respectively.

We note that the performance on all three evaluation metrics
of the Wave-U-Net model is comparable to that of the U-Net
model. As the two models are similar in architecture, this allows
us to conclude that waveform-based models for source separation
are just as effective as their spectrogram-based counterparts for
the task of segregating the different parts of an SATB choir
recording. We also note that the Open-Unmix model
outperforms the other models evaluated in the study while the
Conv-TasNet model under-performs the rest. This suggests that
music source separation algorithms are more suited for the choral
singing domain than models proposed for asynchronous speech

FIGURE 3 | Boxplot SDR results for the Choir case models trained on CSD (modelnameC) and CSD + BCD (modelnameCB).

FIGURE 4 | Boxplot SIR results for the Choir case models trained on CSD (modelnameC) and CSD + BCD (modelnameCB).
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separation. However, we observe that the Conv-TasNet model
shows better results on the SAR metric than the other models,
especially when trained with CSD (ConvTasNetC). The Open-
Unmix model uses 4 separate networks while the U-Net and
Wave-U-Net models use a single network with 4 output masks.
We observe that while the Open-Unmix model outperforms the
other two models, this improvement can be attributed to a more
complex network architecture, rather than the use of separate
networks for each of the sources.

We further note that augmenting the multiple data
combinations of CSD with the quartet data of BCD leads to
a significant improvement of results across all the models and
parts. This suggests that we can use quartet based data in the
future to further train the source separation models for the
choral singing case. We note that pitch shifting can also be
used for data augmentation, as in (Cuesta et al., 2020) for
multi-pitch estimation. However, we did not experiment with
this technique in this study. Finally, we also note that the
performance of all the models worsens a little for the tenor
part, as compared to the other parts, whereas the bass part is
easily separated. We assume this difference is because of the
overlap in the melody range for the tenor and alto part. As the
F0 of the parts is the major distinguishing feature between
them, we believe this overlap in range leads to confusion
between the two parts. We further investigate this in
Section 4.5.3.

4.4.3 Results Full Training
Table 4 shows the SDRmetric for models trained on data from all
4 datasets. The results are shown for models trained with both
cases, i.e., Quartet case, which is restricted to one singer part, and
Choir case, which uses combinations of multiple singers for
each part.

For this evaluation, we consider 3 takes of a single song from
ECDclean, which were excluded from the training set, and the
quartets formed by mixing the stems of the singers excluded from
training fromCSD, CSDQ1 (see Table 3). This allows us to test the
performance of the models for unseen songs and unseen singers.
We observe that there is an improvement in performance in the
U-Net and Open-Unmix models, when trained with Choir case
data, while the Wave-U-Net and Conv-TasNet are slightly worse
when multiple singers are used for training the models.

Table 5 shows the SIR results for the same models, while
Table 6 shows the SAR results. We again observe that the
performance of all models is lower for the tenor part than it is
for the other parts. We believe this is due to the confusion
between the overlapping pitch ranges of the soprano and alto
parts, and the tenor and bass parts. We also note that the
performance of the U-Net and Open-Unmix models improves
when considering Choir case data for training, but does not
consistently improve for Wave-U-Net and Conv-TasNet.
However, from the incremental training experiment, we
observe that the model training can be improved by

FIGURE 5 | Boxplot SAR results for the Choir case models trained on CSD (modelnameC) and CSD + BCD (modelnameCB).

TABLE 4 | SDR results frommodelname_CBDE evaluated on ECD songs (13 singers with all the singers in the mix), showing the training with data from the quartet case (left)
and choir case (right).

Model Quartet case: SDR (dB) Choir case: SDR (dB)

Soprano Alto Tenor Bass Avg Soprano Alto Tenor Bass Avg

Wave-U-Net −3.92 ± 4.69 8.91 ± 1.37 −11.43 ± 2.10 5.46 ± 0.98 −0.24 −4.45 ± 4.61 8.50 ± 1.14 −12.81 ± 1.41 4.61 ± 0.94 −1.05
U-Net 1.67 ± 3.78 9.80 ± 0.96 −7.13 ± 2.07 7.20 ± 0.91 2.88 2.06 ± 3.37 10.40 ± 1.19 −4.79 ± 2.04 7.60 ± 0.92 3.81
Open-Unmix −1.21 ± 5.88 10.70 ± 3.59 −8.20 ± 4.96 7.42 ± 2.01 2.17 −0.14 ± 7.06 10.82 ± 3.89 −7.09 ± 4.18 8.02 ± 2.03 2.90
ConvTasNet −7.29 ± 2.18 1.05 ± 1.54 −15.78 ± 1.03 4.98 ± 0.29 −4.26 −7.14 ± 2.28 −0.57 ± 2.03 −16.45 ± 1.52 3.70 ± 0.74 −5.11
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augmenting the training data with multiple singers per part along
with quartets.

4.5 F0 Modeling Experiments
In this section, we present the evaluation of the monophonic F0
trackers (see Section 2.5) in two different scenarios. We first
consider a reference unison created as the mixture of individual
singers from the same vocal part, and evaluate the prediction of
the F0 trackers on this performance against the approximated
reference melodic content (cf. Section 3.2).

With the results of the first part, we select the F0 tracker that
obtains the best performance on the reference unisons for the
second evaluation. In this case, we replace the reference unisons
with the unisons extracted by the source separation methods
described above. Such process enables a fully automated
extraction of the melodic content of one choir section given a
choir mixture as input.

4.5.1 Datasets
For the F0 modeling experiments we select recordings from CSD
and recordings from ECD. As mentioned in Section 2.2, these
datasets have manually corrected annotations for the F0 of each
stem for all the songs. While this manual correction leads to an
F0, that is, closer to the approximated perceived pitch, we
acknowledge that the annotator’s perception might introduce
some bias in the F0 labels.

The number of singers per section is different in both datasets:
four singers per part in CSD and two to five in ECD. For each
song in these datasets, we create the unison mixture for each
SATB section. We evaluate a total of 14 unison performances.

4.5.2 Results
This section presents the results of the F0 modeling experiment.
Table 7 summarizes the results of the evaluation with two
different monophonic F0 trackers to estimate the pitch of

unison performances. While the Raw Pitch Accuracy (RPA)
only measures the proportion of voiced frames for which the
F0 estimation is correct (within half semitone), the Overall
Accuracy (OA) metric also considers the voicing detection: it
represents the proportion of frames which are correct both in
terms of pitch and voicing. We need to consider both aspects
(pitch and voicing) for our task. Hence, we select CREPE for our
further experiments, as it scores a higher OA on average. CREPE
outputs a voicing confidence value along with the F0 predictions.
Consequently, we apply a threshold on the confidence to decide
whether a frame is voiced or unvoiced. We calculate this
threshold as the average of the thresholds that maximize the
OA on an external set of recordings. In particular, we select four
monophonic recordings from Cantoría dataset (Cuesta, 2022)2

and 8 monophonic recordings from DCS. We have manually-
corrected F0 annotations for all 12 recordings, which we consider
as reference in the evaluation. With this process, we obtain an
optimal threshold of 0.7 that we employ in the following
experiments.

Figure 6 displays the results of the second experiment, i.e., the
evaluation of CREPE applied to the unison signals extracted by

TABLE 5 | SIR results frommodelname_CBDE evaluated on ECD songs (13 singers with all the singers in the mix), showing the training with data from the quartet case (left)
and choir case (right).

Model Quartet case: SIR (dB) Choir case: SIR (dB)

Soprano Alto Tenor Bass Avg Soprano Alto Tenor Bass Avg

Wave-U-Net −0.05 ± 5.99 15.07 ± 1.54 −7.54 ± 2.77 13.05 ± 1.34 5.13 −0.68 ± 5.88 15.19 ± 1.49 −9.45 ± 1.83 11.63 ± 1.06 4.17
U-Net 4.82 ± 4.45 17.52 ± 1.38 −3.62 ± 2.34 13.44 ± 1.16 8.04 9.46 ± 4.56 17.57 ± 1.59 −0.99 ± 2.45 13.47 ± 0.78 9.87
Open-Unmix 5.54 ± 7.19 18.91 ± 2.36 −2.34 ± 4.80 11.23 ± 3.09 8.33 7.03 ± 8.72 19.03 ± 3.21 −1.75 ± 4.75 13.21 ± 2.21 9.38
ConvTasNet −6.54 ± 2.43 2.46 ± 1.26 −15.39 ± 1.03 8.56 ± 0.50 −2.72 −6.17 ± 2.66 1.13 ± 1.68 −15.56 ± 1.59 8.17 ± 0.58 −3.10

TABLE 6 | SAR results frommodelname_CBDE evaluated on ECD songs (13 singers with all the singers in the mix), showing the training with data from the quartet case (left)
and choir case (right).

Model Quartet case: SAR (dB) Choir case: SAR (dB)

Soprano Alto Tenor Bass Avg Soprano Alto Tenor Bass Avg

Wave-U-Net 2.63 ± 0.28 10.26 ± 1.26 −0.75 ± 0.82 6.51 ± 0.83 4.66 2.45 ± 0.32 9.69 ± 1.00 −0.13 ± 0.70 5.88 ± 0.96 4.47
U-Net 1.17 ± 2.16 10.69 ± 0.87 0.76 ± 0.14 8.58 ± 0.79 5.30 3.73 ± 2.35 11.41 ± 1.06 1.27 ± 0.32 9.10 ± 0.95 6.37
Open-Unmix 2.12 ± 2.94 11.52 ± 3.78 −1.99 ± 1.69 10.34 ± 0.77 5.49 3.18 ± 3.70 11.61 ± 3.94 −1.03 ± 0.73 9.82 ± 1.79 5.89
ConvTasNet 8.55 ± 1.55 8.76 ± 2.06 10.96 ± 2.43 8.05 ± 0.06 9.08 7.55 ± 1.96 7.02 ± 2.32 6.88 ± 1.85 6.25 ± 0.79 6.92

TABLE 7 | Results of the evaluation of monophonic F0 trackers on the ground
truth unison mixtures. We use the reference melodic content as described in
Section 3.2. The results are averaged across songs and voice parts. Standard
deviation is shown in parentheses.

F0 tracker Raw pitch accuracy (%) Overall accuracy (%)

pYIN 76.8 (18.3) 68.7 (16.9)
CREPE 70.0 (18.3) 71.7 (14.7)

2Cantoría dataset comprises multi-track recordings of an SATB quartet and is
available here: https://zenodo.org/record/5851069
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Open-Unmix, grouped by song. We present the results for
Quartet case (Figure 6A, model trained with one singer per
part), and for Choir case (Figure 6B, model trained with multiple
singers per part). Let us recall that the inputs are recordings of a
choir, i.e., multiple singers per part.

We obtain a higher OA on CSD songs that were used for
training the source separation models than on ECD songs that
were excluded from training. These results show that CREPE can
be used to effectively approximate the perceived pitch of the
unison signal extracted from the source separation models, even
for songs that are not used for training the source separation
models.

4.5.3 Cross-Section Evaluation
A qualitative inspection of a small subset of the source separation
results suggested some confusion between contiguous voice parts.
To assess this phenomenon quantitatively, we conduct a brief
cross-section evaluation, i.e., we repeat the F0 estimation
evaluation using the F0 from another voice section as
reference. These evaluations reveal some confusion especially
between alto and tenor (up to a RPA of 56%), and soprano
and alto (up to 58%). In both scenarios, the confusion happens
from the higher pitch voice to the lower one, i.e., the algorithm
extracts the alto voice instead of the soprano, and not vice-versa.
Furthermore, we found that all confusions with an RPA above
40% belong to songs from ECD collection and not CSD. These
results confirm the limitations we detect in the source separation
numerical evaluation, where alto and tenor voices obtain worse
performances.

4.6 Perceptual Evaluation
We use subjective listening tests to conduct a perceptual
evaluation of the results of the proposed methods. We

evaluate three outcomes of this work: the source separation,
the solo singing synthesis, and the cleaning process of ECD.
For the source separation, we focus on the following criteria:
audio quality, melodic content similarity, and separation quality,
i.e., level of bleeding from other voices. In terms of the solo
singing synthesis, we aim to validate our approximation to the F0
of a unison as the weighted average of the individual F0
contributions. Hence, we focus on the melodic similarity
between the synthesis and the original unison. Finally, we
evaluate the process of cleaning the stems from ECD, in an
attempt to remove bleed from other singers.

4.6.1 Perceptual Evaluation Methodology
For the subjective listening tests related to separation, the
participants were provided three examples from each of the
soprano, alto, tenor, and bass parts separated using the Open-
Unmix model trained with the three variants of the datasets.
The participants were also provided the mixture as a reference
and the ground truth part as an anchor and were asked to rate
each of the examples in terms of isolation of the target part
from the rest of the parts on a scale of [0−5]. For the questions
related to quality, similar examples were provided to the
participants, but they were asked to rate these examples in
terms of the audio quality of the output, taking into account
the artefacts and other distortions that may have been added
during the separation process. For these listening tests, we used
the separated outputs from Open-Unmix model, i.e., UMXC,
UMXCB, and UMXCBDE.

To evaluate the adherence to the melody of the weighted
average F0 or the approximated perceived used to model the
perceived single pitch of the unison, participants were asked to
rate the similarity of the melody of a single singing voice
synthesized with the weighted average of the individual voices

FIGURE 6 |Overall accuracy obtained with CREPE on the output of Open-Unmix. (A) Results forQuartet case (model trained with one singer per part). (B) Results
forChoir case (model trained withmultiple singers per part). Song labels beginning with SC and SG refer to songs from ECDwhile song labels beginning with CSD refer to
songs from CSD.
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in the unison given a reference of a unison recording. This
synthesis was done using the UTS system proposed in
(Chandna et al., 2020). In addition, participants were asked to
rate the unison part separated from amixture for the same criteria
on a scale of [0−5]. One question was provided for each of the
SATB parts. Finally, to evaluate the cleaning of ECD individual
stems, we asked participants to rate the original and cleaned
versions of the parts given an example of the same part from the
clean CSD dataset.

4.6.2 Perceptual Evaluation Results
The results of the subjective listening tests are shown in Tables
8, 9. There were 12 participants in our evaluation, most of whom
had prior musical training. Table 8 shows the results of the
listening tests on the quality and separation criteria. The rating
for each of the questions was normalized by dividing by the
rating given for the reference part in the question. It can be
observed that the separation for the alto and tenor parts was
rated higher than the soprano and bass parts, contrary to the
observations in the objective evaluation. It can also be observed
that the rating for separation for the model trained with just
CSD was higher than the models trained with data
augmentation. This is also contrary to the results of the
objective evaluation. A similar trend is seen for the quality
criteria, with the soprano part being rated lower than the alto,
tenor and bass parts.

The results for listening test questions pertaining to the
adherence to melody of the unison criteria and the cleaning
process of the ECD dataset are shown in Table 9. We observe
that the cleaned signal was rated higher than the original signal
for the soprano and alto parts while the opposite was true for
the tenor and bass parts. We believe that the lower ratings
given to the cleaned signal for the later parts was due to the
artefacts introduced to the signal during the separation
process. We also observe that single singing voice signal
synthesized using the weighted mean of the individual
singers in the unison was rated higher than the separated
part in terms of adherence to melody for the unison signal.
This supports our hypothesis that the weighted mean can be
used as an effective representation of the single pitch perceived
while listening to a unison recording.

5 APPLICATIONS

The analyses presented in the previous sections can be combined
for several applications related to SATB choir analysis and
synthesis. Once separated, the unison stems can be remixed to
emphasise a particular part of the choir, or to remove one for
individual choral practice, e.g., one singer may want to remove
their part from the mixture and sing along the other parts.
Similarly, the analysis of the F0 of the separated unison signals
can be used along with the Unison-to-Solo (UTS) and Solo-to-
Unison (STU) networks presented in our previous work
(Chandna et al., 2020) to generate material for individual or
collective choir practice. As illustrated in Figure 7B, the UTS
model extracts linguistic content, ẑv, for each of the unison stems,
v ∈ {S, A, T, B}, and uses this information along with the extracted
F0, F̂0v, to synthesize a single singing voice signal, yv, representing
the perceived content of the unison signal. Synthesizing such a
signal can be interesting in itself, especially for transcription
purposes, using an automatic lyrics transcription system
(Demirel et al., 2020). Before the synthesis step, further audio
transformations such as pitch-shifting and time-stretching can be
applied to the estimated content, so that the user can obtain a
modified signal for their practice.

We also proposed an STUmodel to generate a unison mixture
from a single a cappella singing voice signal (Figure 7C). This
model uses voice conversion to generate various clones of the
input signal and adds timing and pitch deviations to create a
unison effect. Such a model can be used to create modified
remixes of an SATB choir recording, yc, as shown in
Figure 7D. An additional application of this part is the
generation of a full choir recording with multiple singers per
voice, given a quartet recording as input.

For this study, we test the effectiveness of our model for
transposition and remixing of a full choir recording. As shown in
Figure 7, we first use one of the source separation models from
Section 3.1, e.g., UMXCBDE, to separate the soprano, alto, tenor,
and bass unison parts from a full choir mixture. This is followed
by content extraction and re-synthesis to generate individual
single voice signals for each part. We apply transpositions of ±1
semitone for the parts in this step, which corresponds to the UTS
model. We then employ the STU model to create unison signals
for each of the transformed parts, which are then remixed
together.

Furthermore, we present some audio examples on the
accompanying website.

TABLE 8 | Normalized MOS results of the subjective listening tests pertaining to
the separation and quality criteria.

Soprano Alto

Quality Separation Quality Separation

UMX_C 1.01 ± 0.81 3.09 ± 1.42 2.38 ± 0.65 4.32 ± 1.19
UMX_CB 0.74 ± 0.85 2.53 ± 1.59 2.34 ± 0.76 4.02 ± 1.63
UMX_CBDE 0.78 ± 0.50 2.58 ± 1.36 2.36 ± 0.83 4.48 ± 1.12

Tenor Bass

Quality Separation Quality Separation

UMX_C 2.44 ± 0.91 4.73 ± 2.25 2.36 ± 1.15 3.28 ± 0.76
UMX_CB 1.50 ± 0.88 4.89 ± 2.73 2.29 ± 1.59 2.20 ± 1.17
UMX_CBDE 1.97 ± 0.93 4.92 ± 4.49 2.05 ± 0.97 2.61 ± 0.78

TABLE 9 | Normalized MOS results of the subjective listening tests pertaining to
the cleaning of the ECD dataset and the adherance to themelody of the unison
synthesis.

Soprano Alto Tenor Bass

Cleaned 4.23 ± 2.42 2.93 ± 1.28 3.73 ± 2.59 1.76 ± 0.89
Original 3.97 ± 1.66 2.20 ± 2.06 3.92 ± 2.70 2.43 ± 1.31
Separated 3.87 ± 1.23 2.07 ± 1.75 0.91 ± 0.88 1.53 ± 1.33
Weighted 4.68 ± 1.42 3.02 ± 2.65 2.98 ± 0.87 4.37 ± 4.43
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6 CONCLUSION

We have conducted an initial foray into source separation for SATB
choral recordings. We adapt four recently proposed data-driven
source separation models for music and speech to the task of
separating the soprano, alto, tenor, and bass voices from a choral
mixture. For the experiments, we consider some of the recently
published datasets of choral music to train and evaluate source
separation models and find that the models proposed for music
source separation are more suited to this task than those proposed
for speech source separation. We also find that waveform-based
models are just as effective as models using intermediate
representations such as spectrograms, and that quartet based data
can be effectively employed for training models for separating
multiple voices in unison per part. These findings provide the
foundation for future work in this domain as deep-learning based
source separation models move towards end-to-end waveform
separation. Due to the difficulty in recording individual singers in
a choir section, it is likely that future datasets for SATB choir singing
will be in the quartet format and these can be used for augmentation
of data for training source separation models. We note that further
augmentations such as pitch shifting, as used in Cuesta et al. (2020)
for multi-pitch estimation, can also be used for data augmentation,
but were not considered in this study. We also show that models
trained with fewer but clean data can be used for cleaning the inter-
singer leakages that may be present in SATB recordings.

Further, we analyse unison singing within the SATB voices
and through perceptual listening tests, and show that the

perceived melody of a vocal unison performance can be
approximated by the weighted average of the F0s of the
individual singers in a unison. This weighted average can
be estimated by monophonic F0 tracking algorithms, both
data-driven and knowledge-based. Finally, we propose a
separation and remixing system which can be used for
modifying choral recordings for practice and teaching
purposes. The system leverages on research presented in
this paper as well as models developed by us earlier to re-
synthesise individual singing voice signals from separated
parts of the SATB choir. The approximated perceived pitch
is used for this synthesis which also allows for modifications to
the signal. We provide examples of such modifications on the
Supplementary Material. We note that the quality of the
synthesis can be improved through improvements in each of
the constituent components of the framework, including
source separation, monophonic F0 estimation, linguistic
modeling, and synthesis techniques. We also believe that
increased data as well as augmentations such as pitch
shifting can improve the performance of the components.
We hope that through this study we can lay the foundations
for future work in this field.
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FIGURE 7 | Diagram of the full proposed framework. Given an input recording of a multi-singer choral recording, xC, the first part of the paper proposes the use of
(A) source separation techniques to obtain each underlying unison stem, x̂Uv , where v ∈ {S, A, T, B}. The second part of this work focuses on the analysis and synthesis of
unisons, which we present as a set of applications that include (B) unison to solo, with optional audio transformations like pitch-shifting, (C) solo to unison, and (D)
remixing.
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