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Light Field (LF) cameras capture spatial and angular information of a scene,

generating a high-dimensional data that brings several challenges to

compression, transmission, and reconstruction algorithms. One research

area that has been attracting a lot of attention is the design of Light Field

images quality assessment (LF-IQA) methods. In this paper, we propose a No-

Reference (NR) LF-IQAmethod that is based on reference-free distortionmaps.

With this goal, we first generate a synthetically distorted dataset of 2D images.

Then, we compute SSIM distortionmaps of these images and use thesemaps as

ground error maps. We train a GAN architecture using these SSIM distortion

maps as quality labels. This trained model is used to generate reference-free

distortion maps of sub-aperture images of LF contents. Finally, the quality

prediction is obtained performing the following steps: 1) perform a non-linear

dimensionality reduction with a isometric mapping of the generated distortion

maps to obtain the LFI feature vectors and 2) perform a regression using a

Random Forest Regressor (RFR) algorithm to obtain the LF quality estimates.

Results show that the proposed method is robust and accurate, outperforming

several state-of-the-art LF-IQA methods.
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1 Introduction

Unlike conventional cameras, Light Field (LF) camera captures spatial and angular

information of scene, which is represented by a scalar function L(u, v, s, t), where (u, v)

and (s, t) depict the angular and spatial domains, respectively. The 4D light field can be

described as a 2D projection of sub-aperture images (SAIs). Figure 1 illustrates a grid of

10 × 10 sub-aperture images of LFI (ArtGallery3) from the MPI dataset (Adhikarla et al.,

2017). SAIs are generated from micro-lens images, with an operation known as raw data

decoding. LF images (LFI) carry rich information that is widely used for refocusing

(Hahne et al., 2018) and 3-Dimensional (3D) reconstruction. However, the high-

dimensionality of LFIs creates several challenges to the area of communications,

requiring the development of specific compression (Hou et al., 2019), transmission,

and reconstruction techniques. Unfortunately, these techniques inevitably distort the

perceived quality of LFIs (Paudyal et al., 2017). In order to monitor the visual quality and
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quantify the amount of visual distortion in LF contents, we must

develop efficient LFI Quality Assessment (LF-IQA) methods.

The visual quality of images can be assessed (IQA)

subjectively or objectively. Subjective quality assessment

methods are experimental methodologies in which human

observers are asked to estimate one or more features of the

stimuli (e.g., the overall quality of a video). The data collected in

these experiments are statistically analyzed, often generating

Mean Opinion Scores (MOS) for each of the test stimuli.

Although subjective quality assessment methods are

considered as the most reliable ways of estimating quality,

these methods are time-consuming and cannot be

implemented in real-time systems. Objective quality

assessment methods (also known as quality metrics) are

algorithms that automatically assess the quality of a content

by measuring the physical signal. Based on the available reference

information, objective quality assessment methods are divided

into the full-reference (FR), reduced-reference (RR) and blind/

no-reference (NR) methods. To estimate the performance of

objective quality methods, we compare their output scores with

MOS values obtained using subjective methods.

As mentioned before, LFIs contain not only spatial

information, but also angular information. Therefore, classical

2D image quality assessment methods cannot be directly used for

LFI quality assessment. In the past few years, efforts have been

devoted to develop LF-IQA methods. For example, Tian et al.

(Tian et al., 2018) proposed a FR LF-IQA metric that uses a

multi-order derivative feature-based method (MDFM), which

extracts detailed features with different degrees with a discrete

derivative filter. Paudyal et al. (Paudyal et al., 2019) proposed a

RR LF-IQA that uses two IQA methods - SSIM (Wang et al.,

2004) and PSNR - to process the depth maps. Fang et al. (Fang

et al., 2018) presented a FR LF-IQA method that uses local and

global features to predict quality. The local features are extracted

from reference and test LFIs using a gradient magnitude

operator, while the global features are extracted from the

epipolar-plane images (EPIs) of reference and test LFIs using

the same operator. Tian et al. (Tian et al., 2020b) proposed a FR

LF-IQA method that uses symmetry information, which are

extracted using Gabor filters (Field, 1987), and depth features

computed from EPIs of the reference and test LFIs. Meng et al.

(Meng et al., 2020) presented a FR LF-IQA method that

computes the spatial LFI quality using the structural similarity

index metric (SSIM) of the Difference of Gaussian (DoG)

features of central SAIs and computes the angular LFI quality

using the SSIM of refocused images.

Tian et al. (Tian et al., 2020a) presented a FR LF-IQAmethod

in which the salient features are extracted from reference and test

EPIs and SAIs using single-scale and multi-scale log-Gabor

operators. The NR LFQA method proposed by Shi et al. (Shi

et al., 2019a) predicts quality using EPI information and natural

statistics. The NR LF-IQA method proposed by Luo et al. (Luo

et al., 2019) employs the spatial information from SAIs and the

angular information from the micro-lens images. Jiang et al.

(Jiang et al., 2018) proposed a FR LF-IQA method that uses the

entropy information and the gradient magnitude features to

extract spacial features from the SAIs. To extract the angular

features from SAIs, dense distortion curves are generated and the

best fitting features are chosen. Wei Zhou et al. (Shi et al., 2019b;

Zhou et al., 2019) proposed NR LF-IQA methods (BELIF and

Tensor-NLFQ, respectively) that are based on tensor theory,

employing SAIs view stacks along horizontal, vertical, left

diagonal, and right diagonal orientations. The local spatial

quality features are extracted using local frequency

FIGURE 1
A grid of 10 × 10 sub-aperture images of a Light Field image (ArtGallery3) from MPI dataset (Adhikarla et al., 2017).
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distribution, while the global spatial quality features are extracted

using the naturalness distribution of individual color channels.

Ak et al. (Ak et al., 2020) proposed a NR LF-IQA method based

on the structural representations of EPIs, by training a

convolutional sparse coding codebook and a Bag Of World

dictionary on EPIs. Shan et al. (Shan et al., 2019) designed a

NR LF-IQA method that is based on 2D (from SAIs) and 3D

(from EPIs) LFI features. Xiang et al. (Xiang et al., 2020)

presented a NR LF-IQA method (VBLFI) based on the mean

difference image and on curvelet-transform characteristics

of LFIs.

Despite of the work mentioned above, there is a lot of room

for improvement in terms of prediction accuracy, robustness,

computational complexities, and generality of NR LF-IQA

methods. In this paper, we propose a NR LF-IQA method

that is based on reference-free distortion maps. Considering

FIGURE 2
Block Diagram of the proposed no-reference light field image quality assessment method. (A) computation of SSIM distortion maps
corresponding to the original and test images, (B) training the GAN network using the SSIM distortion maps as labels, (C) testing the trained GAN
network to generate reference-free distortion maps of sub-aperture images of test LFIs, (D) computation of ISOMAP to generate feature vectors for
distortion maps generated in (C), and (E) training Random Forest Regressor with 1000 simulations for quality predictions.
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that pixel distortions are affected by neighboring pixels, we have

focused on designing a blind deep learning quality model using

pixel-by-pixel distortion maps. In summary, we present two

main contributions: 1) generation of reference-free distortion

maps, and 2) NR LF-IQA method that is derived from the

generated distortion maps.

To generate LF reference-free distortion maps, we have used

a deep-learning architecture called Generative Adversarial

Network (GAN) network (Goodfellow et al., 2014) that can

learn from synthetically generated distorted images and their

corresponding ground truth distortion maps. Since ground truth

distortion maps are not available in any of the existing IQA

datasets (Sheikh et al., 2006), we use distortion maps generated

by SSIM (Wang et al., 2004) as ground-truth distortion maps to

train the GAN. Specifically, first we generate a synthetically

distorted dataset of 2D images (because the sub-aperture

images are 2D representation of LFIs) and, then, we compute

SSIM distortion maps corresponding to the original and test

images, as shown in Figure 2A. Then, we train the GAN network

using the SSIM distortion maps as labels, as shown in Figure 2B.

The trained model is used to generate reference-free distortion

maps of sub-aperture images of test LFIs, as shown in Figure 2C.

The generated distortionmaps (GDMs) are used as measurement

maps for describing the test LFIs. Results show that the proposed

method outperforms other state-of-the-art LF-IQA methods.

The rest of the paper is organized as follows. Section 2

describes the proposed LF-IQA method. Section 3 describes

the experimental results. Finally, Section 5 presents our

conclusion.

2 Proposed methodology

Generative Adversarial Networks (GAN) consists of a pair of

competing network structures called generator (G) and discriminator

(D) respectively, which can learn deep features with sufficient labeled

training data. In this work, to learn the features of distorted images,

we use the Pix2PixGAN architecture (Isola et al., 2017) for the GAN

architecture because of its strong fitting capability. The Pix2PixGAN

is composed of promising approach for many image-to-image

translation tasks, especially those involving highly structured

graphical outputs. Most importantly, the Pix2PixGAN is general-

purpose, i.e., it learns a loss adapted to the task and data at hand,

which makes it feasible in a wide variety of settings.

Since a GAN architecture requires a large number of training

samples and LF-IQA datasets do not have a large number of

samples, we use the COCO-Stuff dataset (Caesar et al., 2018) to

generate a synthetically distorted dataset. The COCO-Stuff

dataset is derived from the COCO dataset (Lin et al., 2014).

This dataset has 1.2 million images captured from diverse scenes,

with a total of 182 semantic classes. Sample images of COCO-

Stuff dataset are shown in Figure 3.

To generate synthetic distorted versions of 1.2 million images,

we used the Albumentation library (Buslaev et al., 2020). In total,

FIGURE 3
Sample images taken from COCO-Stuff dataset (Caesar et al., 2018).
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we used 29 augmentation functions with pre-set parameters, which

are depicted in Table 1. In total, we generated a dataset with

3.57 million synthetically distorted images, which we named

cocostuffv2. Then, we computed SSIM distortion maps between

each reference and test images in the cocostuffv2 dataset. For

training the Pix2PixGAN architecture, we prepared an input tuple

imgAB of size 512 × 256, which consists of a concatenation of the

test image A and the SSIM distortion map B. Figure 4 shows some

examples of input tuples imgAB.

For training the Pix2PixGAN network, we divided the

cocstuffv2 dataset into two content-independent training and

validation subsets, i.e. distorted images generated from one

reference in the test subset are not present in the training

subset and vice-versa. We define a group of scenes as a group

containing the reference LFI and its corresponding test versions.

Then, 80% of the groups were randomly selected for training and

the remaining 20% were used for validation. It is worth

mentioning that we trained the Pix2PixGAN network from

scratch (instead of using pre-trained model) with 50 epochs.

Next, the trained Pix2PixGAN network is used to generate

reference-free distortion maps of the sub-aperture images of

corresponding test LFIs. Figure 5 illustrates examples of

generated distortion maps of central LF SAIs taken from the

MPI dataset (Adhikarla et al., 2017). Even though we have not

used any of LFIs in the training process, the Pix2PixGAN

network is able to localize distortions in test SAIs. As

TABLE 1 Distortions used from Albumentation Library.

Number Function Description

1 VerticalFlip Flip the input vertically around the x-axis

2 HorizontalFlip Flip the input horizontally around the y-axis

3 IAAPerspective Apply random four point perspective transformations to images

4 RandomRotate90 Randomly rotate the input by 90°

5 Transpose Transpose the input by swapping rows and columns

6 ShiftScaleRotate Randomly apply affine transforms: translate, scale and rotate the input

7 Blur Blur the input image using a random-sized kernel

8 OpticalDistortion Image magnification decreases with distance from the optical axis. Straight lines appear to bend outwards from the center of the
image

9 GridDistortion Grid-distortion is an image warping technique which is driven by the mapping between equivalent families of curves, arranged in
a grid structure Arad (1998)

10 HueSaturationValue Randomly change hue, saturation and value of the input image

11 IAAAdditiveGaussianNoise Apply additive gaussian noise to the input image

12 GaussNoise Apply gaussian noise to the input image

13 MotionBlur Apply motion blur to the input image using a random-sized kernel

14 MedianBlur Blur the input image using a median filter with a random aperture linear size

15 IAAPiecewiseAffine Place a regular grid of points on each image and then randomly move each point around by 1–5 percent with respect to the image
height and width

16 IAASharpen Sharpen the input image and overlays the result with the original image

17 IAAEmboss Emboss the input image and overlays the result with the original image

18 RandomContrast Adjust the contrast of an image or images by a random factor

19 RandomBrightness Randomly change brightness of the input image

20 Flip Flip the input vertically around the x-axis

21 strong_aug_oneOfs Custom function combined of distortions IAAAdditiveGaussianNoise, GaussNoise, MotionBlur, Blur, OpticalDistortion,
GridDistortion, IAAPiecewiseAffine, CLAHE, IAASharpen, IAAEmboss, RandomContrast, RandomBrightness and
HueSaturationValue

22 augment_flips_color Custom function combined of distortions CLAHE, RandomRotate90, Transpose, ShiftScaleRotate, Blur, OpticalDistortion,
GridDistortion and HueSaturationValue

23 RGBShift Randomly shift values for each channel of the input RGB image

24 JpegCompression Decrease Jpeg compression of an image

25 ToGray Convert the input RGB image to grayscale. If the mean pixel value for the resulting image is greater than 127, invert the resulting
grayscale image

26 RandomGamma Draw samples from a Gamma distribution

27 InvertImg Invert the input image by subtracting pixel values from 255

28 ChannelShuffle Randomly rearrange channels of the input RGB image

29 CLAHE Apply Contrast Limited Adaptive Histogram Equalization to the input image
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FIGURE 4
Random input samples from cocstuffv2 dataset. Distorted image A is obtained by Albumentation library of augmentations, where Distortion
Map B is obtained by SSIM index method.
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FIGURE 5
Examples of generated distortion maps of central SAIs of different test LFIs from MPI dataset (Adhikarla et al., 2017)
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illustrated in Figure 2D, to prepare the feature vectors for test

LFIs, we perform a non-linear dimensionality reduction using an

Isometric Mapping (Tenenbaum et al., 2000) (ISOMAP) on the

generated distortion maps. The ISOMAP algorithm contains

three stages. First, it computes k nearest neighbors. Then, it

searches for and establishes the shortest path graph. Finally, the

Eigen-vectors are computed over the largest Eigen values. The

algorithm outputs feature vectors in a multi-dimensional

Euclidean space that best represent the intrinsic geometry of

the data. As illustrated in Figure 2E, the prepared features vectors

of LFIs are fed to a Random Forest Regressor, which performs a

regression to predict the LF quality. We chose the RFR because in

previous studies it has shown a robust performance (Fern ández-

Delgado et al., 2014; Freitas et al., 2018), when compared to other

machinelearning algorithms (e.g. neural networks, support

vector machines, generalized linear models, etc.).

3 Experimental setup

To train and test the proposed method, we have used the

following four LF image quality datasets. We have chosen these

datasets because of their content diversity, the types of

distortions, and the availability of the corresponding

subjective quality scores.

• TheMPI Light Field image quality dataset (Adhikarla et al.,

2017) contains 13 different scenes with references, 336 test

LFIs, and the corresponding subjective quality scores

(Mean Observer Scores - MOS). This dataset has typical

light field distortions that are specific to transmission,

reconstruction, and display.

• The VALID Light Field image quality dataset (Viola and

Ebrahimi, 2018) contains five contents, taken from EPFL

(Rerabek and Ebrahimi, 2016) light field image dataset, and

140 test LFIs that are compressed using state-of-the-art

compression algorithms.

The dataset contains both subjective (MOS) and objective

quality scores (PSNR and SSIM).

• The SMART Light Field image quality dataset (Paudyal

et al., 2016, 2017) has 16 original LFIs representing both

indoor and outdoor scenes. The image content

corresponds not only to the scenes with different levels

of colorfulness, spatial information, and texture, but also

LF specific characteristics such as reflection, transparency,

and depth of field. The dataset also contains 256 distorted

sequences obtained using four compression algorithms,

with their corresponding MOS values.

• The Win5-LID Light Field image quality dataset (Shi et al.,

2018) contains six real scenes (captured by a Lytro Illum) and

four synthetic scenes, with a total of 220 test LFIs. The

selected contents carry abundant semantic features, such as

people, nature, and objects. The LFIs have an identical

angular resolution of 9, ×, 9. The real scenes have spatial

resolution equal to 434 × 625, while the synthetic scenes have

a spatial resolution equal to 512 × 512. The distortions are

obtained with compression and interpolation algorithms.

As performance evaluation methods, we used only the

Spearman’s Rank-Order Correlation Coefficient (SROCC) and

the Pearson’s Linear Correlation Coefficient (PLCC) for

simplicity. We compared the proposed NR LF-IQA method

with the following state-of-art LF-IQA methods: MDFM (Tian

et al., 2018), LFIQM (Paudyal et al., 2019), Fang et al. (Fang et al.,

2018), SDFM (Tian et al., 2020b), Meng et al. (Meng et al., 2020),

LGF-LFC (Tian et al., 2020a), NR-LFQA (Shi et al., 2019a), LF-

QMLI (Luo et al., 2019), Jiang et al. (Jiang et al., 2018), BELIF Shi

TABLE 2 Mean SROCC and PLCC values for VALID, SMART, MPI, and
Win5-LID datasets obtained by 1,000 simulations of RFR.

Dataset Distortion Proposed

SROCC PLCC

MPI QD 0.9290 0.9866

Gaussian 0.9886 0.9698

HEVC 0.9581 0.9876

OPT 0.9347 0.9394

Linear 0.9499 0.9960

NN 0.9753 0.9955

ALL 0.9743 0.9878

VALID 10bit_HEVC 0.9275 0.9871

10bit_P3 0.9864 0.9931

10bit_P5 0.9866 0.9843

10bit_VP9 0.9258 0.9797

8bit_HEVC 0.9758 0.9678

8bit_VP9 0.9380 0.9781

ALL 0.9650 0.9388

SMART HEVC 0.9101 0.9463

JPEG 0.9069 0.9501

JPEG2000 0.9529 0.8947

SSDC 0.9050 0.9713

ALL 0.9307 0.9529

Win5-LID HEVC 0.9690 0.9398

JPEG2000 0.9367 0.9752

LN 0.9550 0.9148

NN 0.9324 0.9286

EPICNN 0.9059 0.9383

ALL 0.9441 0.9535
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et al. (2019b), Tensor-NLFQ (Zhou et al., 2019), Ak et al. (Ak

et al., 2020), Shan et al. (Shan et al., 2019) and VBLIF (Xiang

et al., 2020). We also compared the proposed method with the

following 2D image/video quality metrics: PSNR-YUV (Sze et al.,

2014), IW-PSNR (Wang and Li, 2011), FI-PSNR (Lin and Wu,

2014), MW-PSNR (Sandić-Stanković et al., 2016), SSIM (Wang

et al., 2004), IW-SSIM (Wang and Li, 2011), UQI (Zhou and

Bovik, 2002), VIF (Sheikh and Bovik, 2006), MJ3DFR (Chen

et al., 2013), GMSD (Xue et al., 2014), NICE (Rouse and

Hemami, 2009) and STMAD (Vu et al., 2011).

For training and testing the RFR method, we divided each

dataset into two content-independent training and testing

subsets, i.e,. distorted images generated from one reference in

the testing subset are not present in the training subset and vice-

versa. We define a group of scenes as a group containing the

reference LFI and its corresponding distorted versions. Then,

80% of the groups were randomly selected for training and the

remaining 20% were used for testing. The partition was repeated

1,000 times to eliminate the bias caused by data division. We

reported the mean correlation values for the test set over

1,000 simulations.

4 Experimental results

Table 2 shows the correlation values obtained for the VALID,

SMART, MPI, and Win-LID LFI quality datasets. The rows in

this table show the results for each dataset and for each

TABLE 3 SROCC and PLCC values obtained for state-of-the-art LF-IQA methods tested on VALID, SMART, MPI, and Win5-LID datasets.

Category Type Methods Year MPI VALID SMART Win5-LID

SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC

Pre-defined
Functions

FR UQI 2002 0.7400 0.8460 0.9310 0.9550 0.6480 0.7980 0.8252 0.8764

FR SSIM 2004 0.9120 0.9320 0.9500 0.9640 0.7550 0.8010 0.6812 0.7880

FR VIF 2006 0.8600 0.8960 0.9620 0.9790 0.7260 0.8370 0.9347 0.9555

FR NICE 2009 0.5821 0.5122 0.6211 0.6544 0.5214 0.5426 0.4892 0.5002

FR STMAD 2011 0.8650 0.8940 0.7940 0.8020 0.6640 0.8010 0.8489 0.9074

FR IW-SSIM 2011 0.9320 0.9440 0.9650 0.9780 0.8060 0.8850 0.8212 0.8736

FR IW-PSNR 2011 0.9300 0.9160 0.9470 0.9670 0.7840 0.8520 0.8842 0.9022

FR MJ3DFR 2013 0.8720 0.9300 0.9560 0.9700 0.8160 0.8480 0.8836 0.8998

FR GMSD 2014 0.7358 0.7410 0.6821 0.6948 0.7264 0.8000 0.4352 0.5041

FR FI-PSNR 2014 0.8740 0.8510 0.7060 0.7060 0.7730 0.8320 0.6951 0.7419

FR PSNR-YUV 2014 0.9342 0.9452 0.9230 0.9310 0.9102 0.9211 0.9007 0.9215

FR MW-PSNR 2016 0.7251 0.7698 0.6869 0.6904 0.5281 0.5869 0.7582 0.7758

FR MDFM Tian et al. (2018) 2018 0.8346 0.8123 0.7120 0.7198 0.7535 0.7683 0.8157 0.8591

FR Fang et al. (2018) 2018 0.8065 0.7942 — — — — — —

RR LFIQM Paudyal et al. (2019) 2019 0.6815 0.7013 0.3934 0.5001 0.4503 0.4763 0.4503 0.4763

FR SDFM Tian et al. (2020b) 2020 0.8435 0.8423 0.824 0.8542 0.7514 0.7941 0.6742 0.7142

FR Meng et al. (2020) 2020 0.9579 0.9762 — — —

FR LGF-LFC Tian et al. (2020a) 2020 0.8543 0.8476 — — 0.8246 0.8276 — —

DL FR Jiang et al. (2018) 2018 - 0.8954 — — — — — —

NR BELIF Shi et al. (2019a) 2019 0.8854 0.9096 0.8863 0.8950 0.8367 0.8833 0.8719 0.8910

NR NR-LFQA Shi et al. (2019b) 2019 0.9119 0.9155 0.9257 0.9658 0.8803 0.9105 0.9032 0.9206

NR LF-QMLI Luo et al. (2019) 2019 — — 0.9286 0.9683 — — 0.8802 0.9038

NR Shan et al. (2019) 2019 — — — — 0.8917 0.9106 — —

NR Tensor-NLFQ Zhou et al.
(2019)

2019 0.9101 0.9225 0.9326 0.9746 0.8702 0.9028 0.9101 0.9217

NR Ak et al. (2020) 2020 0.8942 0.9005 — — — — — —

NR VBLIF Xiang et al. (2020) 2020 0.9015 0.9158 — — — — 0.9009 0.9232

DL + ML NR Proposed 2020 0.9743 0.9878 0.9650 0.9781 0.9307 0.9529 0.9441 0.9535
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distortion, with the “All” row corresponding to the results

obtained for the complete datasets. The proposed method

performs very well for the MPI dataset obtaining SROCC of

0.97 and PLCC of 0.98, and for the VALID dataset obtaining

SROCC of 0.96 and PLCC of 0.93. For the SMART dataset, the

method obtains SROCC of 0.93 and PLCC of 0.95, while for the

Win5-LID dataset, the method achieves SROCC of 0.94 and

PLCC of 0.95. Across the different distortions, the proposed

method also performed very well, with only a few distortions

showing slightly lower values (e.g. SROCC values of JPEG and

SSDC in SMART dataset, and EPICNN in Win5-LID dataset).

Table 3 illustrates the comparison of the results with other

state-of-the-art LFI-IQA methods. In this table, the NR and FR

LF-IQA methods are classified into three categories, taking into

consideration the models used to map the pooled features into

quality estimates. The categories include methods that use 1) a

pre-defined function, 2) a machine-learning (ML) algorithm, or

3) a deep-learning (DL) approach to obtain the predicted quality

score. Notice that, for simplicity, only the overall performance

(“ALL”) correlation values are reported for each dataset. Also,

since the authors of these LF-IQA methods did not publish their

results for all four datasets, our matrix is incomplete. For VALID

dataset, NR-LFQA (Shi et al., 2019a) and Tensor-NLFQ (Zhou

et al., 2019) methods have reported correlations separately for

8bit and 10bit compressed LF images. For comparison of results

in Table 3, we have shown averaged SROCC and PLCC obtained

by these methods for complete VALID dataset. Notice that the

proposed method has achieved the highest correlation values

among all LF-IQA methods for all of the four datasets. It is also

worth pointing out that the pooling andmapping strategies in the

proposed NR LF-IQA method has achieved significant

improvement in quality predictions and shown higher SROCC

and PLCC than the original SSIM method.

5 Conclusion

In this paper, we have proposed a blind LF-IQA method that

is based on reference-free distortionmaps. To generate reference-

free distortion maps from test LFIs, we have used a GAN deep-

learning architecture, the Pix2PixGAN, which learns from

synthetically generated distorted images and their

corresponding ground truth distortion maps. Since the ground

truth distortionmaps are not available in any of the existing LF or

image quality datasets, we use distortionmaps generated by SSIM

as the ground truth distortion map. Next, we train the

Pix2PixGAN using the synthetically generated dataset. The

proposed LF-IQA method has following five stages: 1)

Generation of a synthetically distorted dataset of 2D images,

2) Pix2PixGAN training to generate 2D distortion maps, using

SSIM distortionmaps as ground truth, 3) generation of distortion

maps of sub-aperture images using the trained Pix2PixGAN, 4)

non-linear reduction of dimensionality through Isometric

Mapping on the generated distortion maps to obtain the LFI

feature vectors, and 5) perform regression using RFR algorithm

to predict LFI quality. The correlation values of the proposed

method computed on four different datasets are higher than what

is obtained by other state-of-the-art LF-IQA methods. As future

work, we plan to explore using different state-of-the-art FR-IQA

metrics to generate the ground truth distortion maps, and train

the Pix2PixGAN architecture. It is worth pointing out that the

proposed method can work as a framework to train for other

types of no-reference LF-IQA methods.
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