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Small object tracking in low-resolution remote sensing images presents numerous
challenges. Targets are relatively small compared to the field of view, do not present
distinct features, and are often lost in cluttered environments. In this paper, we propose a
track-by-detection approach to detect and track small moving targets by using a
convolutional neural network and a Bayesian tracker. Our object detection consists of
a two-step process based on motion and a patch-based convolutional neural network
(CNN). The first stage performs a lightweight motion detection operator to obtain rough
target locations. The second stage uses this information combinedwith a CNN to refine the
detection results. In addition, we adopt an online track-by-detection approach by using the
Probability Hypothesis Density (PHD) filter to convert detections into tracks. The PHD filter
offers a robust multi-object Bayesian data-association framework that performs well in
cluttered environments, keeps track of missed detections, and presents remarkable
computational advantages over different Bayesian filters. We test our method across
various cases of a challenging dataset: a low-resolution satellite video comprising
numerous small moving objects. We demonstrate the proposed method outperforms
competing approaches across different scenarios with both object detection and object
tracking metrics.
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INTRODUCTION

In recent years, object detection and tracking in remote sensing videos have become a widely
attractive area of research. Novel satellite and Wide Area Motion Imagery (WAMI) technologies
have created an unprecedented demand for fast and automatic information retrieval. For example,
Airbus’ Zephyr high altitude drones can cover up to 20, ×, 30 km2 of continuous video surveillance,
or the Chinese Jilin-1 satellite captures ground images spanning several kilometers with a 1-m spatial
resolution imaged at 20 Hz.

The generated images contain essential information for civilian and military domains when
ground sensors are not locally available. Sample civilian applications include urban planning
(Wijnands et al., 2021), automatic traffic monitoring (Kaack et al., 2019), driving behavioral
research (Chen et al., 2021), or commerce management with ship monitoring (Cao et al., 2019).
Similarly, object detection and tracking contribute to military applications such as border protection
or abnormal activity monitoring. For example, the work proposed by Kirubarajan et al. (2000)
presents an approach to detect and tracks convoys in different scenarios such as road networks or
open fields.
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While object tracking has dramatically improved during the
last years, a significant amount of approaches solve problems that
contain large training datasets and feature-rich targets, such as
pedestrian tracking in surveillance cameras or city landscapes.
Nevertheless, novel methods need to tackle application-related
challenges such as small object tracking in remote sensing images
and have to overcome challenges such as datasets with scarce and
incomplete annotations.

Particularly, targets in satellite images and high altitude drones
present notable challenges to common detectors and trackers.
First, objects of interest are very small compared to the field of
view. For instance, Figure 1 shows a ground image with a
resolution of 1 m/pixel where vehicles span on average 5 × 6
pixels and resemble white moving blobs. In fact, numerous small
objects appear at subpixel levels such as motorcycles and are not
detectable for common appearance-based object detectors.
Additionally, images show diverse noise sources such as
illumination changes, clouds, shadows and environmental
phenomena such as wind or rain. These noise sources
generate numerous false positives when using motion as the
main feature for object detection. Moreover, satellites and
drones orbit introduce parallax effect noise for object detectors
and motion prediction noise for object trackers.

In this paper, we present improvements and further results of
our work presented by Aguilar et al. (2021) where we detect small
objects using motion and appearance information. We use three
consecutive frames to estimate moving object locations and we
refine the detections using a patch-based Faster RCNN (Ren et al.
(2015)). Specifically, in this paper we improve the patch-based
detection by adding the motion response into the Faster RCNN
input. The combination of motion and appearance information
on extracted patches improves significantly Faster RCNN’s object
detection.

Once we obtain object measurements, we feed the extracted
data to the probability hypothesis density (PHD) filter, proposed
by Mahler (2003). This filter models multi-object states under a
Markovian framework, where the state of each tracked object is

conditionally independent of all but the previous step. This
assumption simplifies the filter and allows it to be
computationally efficient in comparison to other related filters
at the cost of tracking single state instances instead of full target
trajectories. In this paper, we propose an enhanced version of the
PHD filter to propagate labels in time without compromising the
filter’s performance and also to discriminate surviving and
appearing objects in each frame.

This paper is divided into five sections. We discuss popular
object detection and tracking approaches used in satellite images
in Section 2. We discuss the proposed method in Section 3where
we present the object detection and object tracking approaches.
We show results for a challenging dataset in Section 4 and we
discuss the conclusion and future work in Section 5.

RELATED WORK

While object detection and tracking are related, for sake of
simplicity, we divide our literature review into two categories
composed of object detection and tracking applied to satellite
images.

Object Detection
Static Image Object Detection
Static image object detection methods rely on spatial information
to extract features and obtain object segmentation masks or
bounding boxes. Popular approaches include Faster-RCNN,
proposed by Ren et al. (2015), YOLO, proposed by Redmon
et al. (2016), Retina-Net, proposed by Lin et al. (2017). Although
these works obtain remarkable results across several benchmarks,
their performance decreases significantly when tested with small
objects or weakly labeled datasets such as in remote sensing
images. In fact, Acatay et al. (2018) presented a comprehensive
review and the drawbacks from using the base Faster-RCNN,
YOLO, and Single Shot Detectors (SSD) on aerial images. Several
researchers approached satellite object detection with modified

FIGURE 1 | Jilin-1 satellite image with provided annotations. Each colored box represents a target instance.
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appearance-based object detector approach for remote sensing
images. For example, Ren et al. (2018) proposed a modified
Faster-RCNN to detect small objects in satellite images by
modifying the anchor boxes, adding skipped connections, and
including contextual information. However, this method focuses
on capturing relatively large objects such as planes and large
ships. Similarly, Qian et al. (2020) proposed a modified version of
Faster-RCNN with a new architecture, new metric, and loss to
optimize the training of small objects bounding boxes that do not
overlap.

Motion-Only Object Detection
Motion-based detections consist principally in background
subtraction and frame differencing. A popular approach is to
model backgrounds with Gaussian distributions and parameters
derived from observations. This model has been extensively
expanded such as with the method proposed by Stauffer and
Grimson (2000) to use Gaussian mixture models (GMM) instead
of a single Gaussian distribution, or the work proposed by Han
and Davis (2012) which uses kernel density estimators (KDE) to
estimate background distributions and support vector machines
(SVM) to discriminate objects. Yang et al. (2016) proposed ViBe,
an approach that updates the background estimation persistently
and locally by using random selection. However, background
subtraction methods generate noisy results when dealing with
long sequences of images with a moving imaging system such as a
satellite or drone.

Similarly, frame differencing has shown robustness across
several methods. For example, Teutsch and Grinberg (2016)
proposed to use frame differencing together with numerous
post-processing filters to perform object detection in WAMI
images. Also, Ao et al. (2020) proposed to use frame
differencing together with noise estimation and shape-based
filters to extract objects. These approaches obtain reasonable
results but they rely on complex hand-crafted post-processing
steps that can be hardly adapted to different noise sources.

Motion models are often robust and computationally
lightweight; however, their performance relies heavily on
frame registration. Small errors in frame registration or
illumination changes often lead to large errors in motion-
based object detection.

Spatio-Temporal Convolutional Neural Networks
State-of-the-art methods aim to combine approaches from
both appearance and motion to improve object detection.
Generally, these methods use CNNs that take into account
both motion and appearance information to extract object
locations. For instance, LaLonde et al. (2018) proposed
ClusterNet and FoveaNet, a two-stage approach for
exploiting spatial and temporal data in small object
detection. They use five consecutive frames as input to an
under-sampling network to create clusters of object locations
(ClusterNet), and then they use a region specialized network
(FoveaNet) to refine the outputs of the first network. Also,
Canepa et al. (2021) proposed T-Rex Net, a network that uses
frame differencing as inputs to the network to improve small
object detection performance. Sommer et al. (2021) proposed

an appearance-based and motion-based object detector by
combining two networks, one to estimate moving objects
locations, and one to extract image features. These methods
showed promising results for ultra high resolution datasets
such as the WPAFB 2009 (AFRL (2009)) dataset which
contains a resolution of up to 0.25 cms/pixel; however,
these approaches cannot be directly applied to lower
resolution data such as at 1m/pixel as the target features
are lost and performing undersampling could miss the
small targets.

Object Tracking
Feature Tracking
Common tracking approaches for satellite images include the use
of correlation filters and expansions to this approach. Correlation
filters find similarities between frames to responses to learned
filters and match the coordinates and responses. For example, Du
et al. (2017) employed a correlation filter combined with three
frame difference to track objects in satellite images, and Xuan
et al. (2020) used correlation filters together with linear equations
to track objects even under occlusions. While these methods are
robust for object tracking, they rely on initialization and are
normally adapted to track single objects.

Joint Tracking and Detection
Numerous state-of-the-art tracking methods are deep learning-
based and learn to jointly detect and track objects. For instance
Bergmann et al. (2019) proposed Tracktor++ to use a CNN to
perform both object detection and tracking. Similarly,
Feichtenhofer et al. (2017) proposed Track to Detect and
Detect to Track to regress both bounding boxes for the object
dimensions and for the object temporal displacement. Among
robust CNN tracking approaches are attention-based methods
such as Patchwork, proposed by Chai (2019), which consists in
using an attention mechanism to predict the location of an object
in future frames. Jiao et al. (2021) created a survey of novel
generation deep learning-based techniques used for object
tracking, where methods mostly depend on correlating learned
features in time.

Track by Detection
Tracking by detection approaches include SORT, proposed by
Bewley et al. (2016) and its extension DeepSORT, proposed by
Wojke et al. (2017). SORT consists of an online multiple
object tracker (MOT) that uses multiple Kalman filters for
tracking and the Hungarian algorithm (Kuhn and Yaw
(1955)) for data association, and DeepSORT is an
extension that uses object features similarity to modify the
data association step. These approaches obtain state-of-the-
art results in remarkable computational times; however, due
to their pragmatic approach, they do not process a unified
multi-object data uncertainty model that can model
ambiguous target paths.

Reid (1979) proposed a Bayesian framework named multiple
hypothesis tracking (MHT) and Fortmann et al. (1980) proposed
the joint probabilistic data association (JDPA). These approaches
consider unified probabilistic models and propagate the data
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association combinatoric metrics on time. However, these filters
are often slow due to the complicated data association process
and the exponential increase of complexity with time.

Finally, the random finite set (RFS) framework and random
finite set statistics proposed by Mahler (2007) propose an
attractive track-by-detection paradigm without compromising
the computational time. Among popular trackers are the PHD
filter, proposed by Mahler (2003), the cardinally PHD filter,
presented by Vo et al. (2006), and novel methods such as the
Labelled Multi-Bernoulli Filter, developed by Vo and Vo (2013)
and its computationally efficient version Vo et al. (2017). In our
case, we propose an extended version of PHD filter due to its
robust results and significant computational advantages.

PROPOSED APPROACH

In this paper, we extend the work proposed by Aguilar et al.
(2021) which employs a 3-frame difference algorithm to
approximate target locations and a patch-based CNN to refine
detections. We extend this work by 1) concatenating the frame
difference response to the input for the neural network, 2) by
performing a tile-based patch selection rather than coordinate-
based patch selection. Finally, we use an extended version of the
PHD filter, a Bayesian multi-object tracker, to convert frame-wise
object detections into track hypothesis.

Motion Aware CNN for Object Detection
Motion Detector
We estimate object motion by finding differences between
consecutive frames and adding their responses to create a
likelihood 3FDk (i, j), where (i, j) ∈ R2 are the pixel
coordinates and k ∈ N is the time index. This process is
summarized in the equations:

ΔIk i, j( ) � Ik i, j( ) − Ik−1 i, j( ) (1)
3FDk i, j( ) � |ΔIk i, j( )| + |ΔIk+1 i, j( )| (2)

Sequentially, we binarize the 3FDk (i.j) response with a frame-
adaptive threshold to obtain rough object location estimates by
applying the formulas:

G i, j( ) � 1 3FDk i, j( )>Tk

0 otherwise
{ (3)

Tk � cpmax 3FDk i, j( )( ) (4)
Where c ∈ (0, 1) is a percentage-based threshold hyper-

parameter and is used to remove noisy 3-frame difference
responses. We chose c by performing grid search and choosing
values of c that would favor higher detection rates, in particular
we set c = 15% for all the experiments shown in Section 4. The 3-
frame difference approach yields good object location estimates
but it fails to perform shape regularization, detect low contrast
objects, and detect slow-moving targets. Therefore, we
complement the frame difference response with Faster RCNN
(Ren et al. (2015)). This addition helped to filter false positives,
discriminate nearby objects, and increase the detection rate.

We use the frame difference for two objectives: to reduce the
target search space and to feed this information to the neural
network. We begin by tiling the image starting at the origin and
using the response G (i, j) to find patches with moving objects.
The patch-based approach rather than full image-based approach
presents significant advantages: it contributes to focusing on
relevant areas rather than the whole image space, and it
contributes to training a network with scarce data because one
image can yield several training patches. We extract patches that
contain object hypothesis (given by the frame difference
response) and refine the detections using Faster RCNN.

We modify the inputs to the traditional Faster RCNN by
including three consecutive frames (shown in Figure 2B) and
by concatenating these images to the frame difference
response (shown in Figure 2C). This step is different from
our previous approach Aguilar et al. (2021) where we used
only one patch as input for the CNN. Using three frames
together with the frame-difference response provides an
additional cue for the network to detect moving objects
(denoted by cyan and yellow colors in the concatenated
inputs in Figure 2D. Figure 2E shows that our approach
detects very small moving objects such as motorcycles that
would have been missed by using only one frame as input. The
addition of motion information improves detection rates for
small moving objects and also reduces false positives of
vehicle-looking static objects. Section 4.3 shows further
details in the effect of using three frames and frame
difference as opposed to one frame.

Finally, we merge the patch results by performing global non-
maximum suppression and applying the respective offset to the
patch-based detections. The whole object detection process is
summarized in Figure 3.

Object Tracking With the GM-PHD Filter
Motion and Measurement Modeling
We define the state vector for the jth target at time k as xjk �[px, py, vx, vy, w, h]T where px, py ∈ R denote the target x and y
position, vx, vy ∈ R denote the target velocity components, andw,
h denote the target width and height respectively. We assume the
target motion is linear and adopt the constant velocity (CV)
model with Gaussian noise. Hence we assume the targets evolve
according to the equation: fk|k−1(xjk|xjk−1) � N(xjk;Fkx

j
k−1, Qk−1)

where Qk is the motion covariance and Fk is the transition matrix
defined as:

Fk �

1 0 τ 0 0 0
0 1 0 τ 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5)

Where τ is a hyperparameter related to the sampling
frequency. Similarly, we define the ith measurement at time k
as zik � [px, py, w, h]T, where px, py, w, h ∈ R denote the x, y
coordinates, width and height respectively. We assume the noisy
and Gaussian measurements in the form of
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gk(zik|xk) � N (zik;Hkxk, Rk), where Rk is the measurement noise
covariance and Hk denotes the measurement matrix defined as:

Hk �
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (6)

PHD Filter
We aim to estimate the multi-target states from a sequence of
possibly noisy or cluttered measurements. We approach this task

by using the random finite set (RFS) statistics defined by Mahler
(2007). This setup provides a Bayesian formulation for modeling
objects and observations as set-valued random variables.
Specifically, the collection of targets state at time k is defined
by Xk � {x1k, x2k, . . . xNk

k }, where xjk denotes the jth target state
vector at time k, andNk denotes the cardinally ofXk. Similarly, the
measurements at frame k are defined by the RFS
Zk � {z1k, z2k, . . . , zMk

k }, where Mk denotes the cardinality for the
measurement RFS at time k. Our objective is to model the multi-
target state posterior of Xk given all the previous measurements
Z1,2, . . . ,k, namely we aim to find pk|1:k (Xk|Z1:k).

FIGURE 2 |Modified input for Faster RCNN to incorporate motion information. (A) Sample input patch sequence. (B)Grayscale 3 frame concatenation. (C) Patch 3
frame difference response. (D) Concatenation of (C) and (B). (E) Sample object detector output.

FIGURE 3 | Object detection block diagram.
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The PHD filter provides an approximation to the optimal
multi-target filter by modeling the posterior pk|1:k (Xk|Z1:k) as a
Poisson random finite set and by recursively propagating its first-
order statistical moment, called probability hypothesis density
(PHD) function. The PHD filter achieves this task by iteratively
performing a two step process: the prediction step and the
update step.

The prediction step consists on estimating the PHD function
Dk|1:k−1 (Xk|Z1:k−1) at time k given only previous measurements,
abbreviated as Dk|k−1(x). The update step consists on estimating
the posterior PHD Dk|1:k (Xk|Z1:k) using the predicted
information and the new measurement obtained at time k and
is abbreviated to Dk|k(x).

The GM-PHD Filter
The Gaussian Mixture PHD Filter (GM-PHD), proposed by Vo
and Ma (2006), is a close form solution to the PHD recursion and
its convergence properties are analyzed by Clark and Vo (2007).
The GM-PHD relies on the assumptions of linear Gaussian
motion and measurement models explained in Section 3.2.1.
Additionally, the GM-PHD assumes the form of the posterior at
the previous time frame, Dk−1|k−1(x), has the form of a Gaussian
mixture given by:

Dk−1|k−1 x( ) � ∑Jk−1|k−1
j�1

wj
k−1|k−1N x;mj

k−1|k−1,P
j
k−1|k−1( ) (7)

Where Jk−1|k−1 is the number of Gaussian components and
ωj
k−1|k−1, m

j
k−1|k−1, P

j
k−1|k−1 are the weight, mean, and covariance

for each GM component in the posterior distribution at
time k − 1.

The GM-PHD filter estimates the predicted Dk|k−1(x) and
updated Dk|k(x) PHDs with Gaussian mixtures. The closed
form solution for the GM-PHD prediction step is given by the
equation:

Dk|k−1 x( ) � λ x( )

+ ps ∑Jk|k−1
j�1

ωk|k−1N x;Fk m
j
k−1|k−1, Q + Fk P

j
k−1|k−1 F

T
k( )
(8)

Where Fk and Q are respectively the transition and motion
covariance matrices defined in Section 3.2.1, ps is the survival
probability, and λ(x) is the birth RFS intensity which will be
described in Section 3.2.4. Finally, we update the GM-PHD
posterior following the equation:

Dk|k x( ) � 1 − pD( )Dk|k−1 x( ) + ∑
z∈Zk

× ∑Jk|k
j�1

ωj
k|k z( )N x; mj

k|k z( ),Pj
k|k( ) (9)

Where Dk|k−1(x) denotes the predicted GM components and
pD is the probability of detection. The terms mj

k|k(z) and Pj
k|k

represent the updated component mean and covariance and are
defined as:

mj
k|k z( ) � mj

k|k−1 + Kj
k z −Hk m

j
k|k−1[ ] (10)

Pj
k|k � I − Kj

kHk[ ]Pj
k|k−1 (11)

Kj
k � Pj

k|k−1H
T
k Hk Pj

k|k−1H
T
k + R[ ]−1 (12)

The updated component weight ωj
k|k(z) is defined as:

ωj
k|k z( ) � pD ωj

k|k−1l
j
k z( )

κk z( ) + pD∑Jk|k−1
i�1 wi

k|k−1l
i
k z( ) (13)

Where κk(z) denotes the clutter process intensity (modeled
with a Poisson Random Finite Set) and ljk(z) denotes the target-
measurement association likelihood defined as:

ljk z( ) � N zj, Hk m
j
k|k−1, S

j
k( ) (14)

Sjk � Rk + HkP
j
k|k−1H

T
k[ ] (15)

We estimate the filter’s inference cardinality by adding all the
weights in the posterior PHD and we apply merging and pruning
for components with very small weights in order to preserve the
computational advantages of the PHD filter.

PHD Filter Enhancements
We use a measurement-driven approach to estimate the birth
λ(x) intensity. Specifically, we use an adapted measurement
classification similar to Fu et al. (2018) to discriminate
measurements into surviving measurements, Zs

k and birth
measurements Zb

k. During each iteration, we use the
Hungarian algorithm to find the optimal matching between
the new measurement set, Zk, and the set of spatial
components of the predicted GM-PHD: {Hmj

k|k−1}j�1,2,...,Jk|k−1.
If the distance between a measurement and a predicted
component mean is less than a threshold, we classify the
target as surviving measurement, otherwise, all the unassigned
measurements are classified as a birth-proposal.

We implement the label preserving structure proposed by
Panta et al. (2009) as the original GM-PHD filter does not
account for target labels or past trajectories. This extension
initializes a label for every Gaussian mixture component and
propagates the label in time without affecting the filter
performance. Each birth step initializes new labels for each
birth component and the labels are tracked during the
prediction and the data association step. These advantages
contribute to keeping track of possible target trajectories
without compromising the filter computational load.

RESULTS

Evaluation Metrics
We evaluate our methods by using object detection and object
tracking metrics. We use ground truth annotations in the form of
ok = {o1, o2, . . . , oN}, where k is the frame number and oi = (px, py,
l) is a single annotated object at coordinates (px, py) with
associated label l. We let an estimated target be ôi � (p̂x, p̂y, l̂),
where p̂x, p̂y are the location components from the GM-PHD
filter inferred object state, and l̂ is the inferred associated label. At
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every frame, we match the set of detected targets with the set of
ground truth objects, we label an estimated target ôi as true
positive (TP) if is within five pixels away from an unmatched
ground truth object, otherwise, we label the object as a false
positive (FP). Similarly, we label any ground truth target that has
not been matched to an estimated target as a false negative (FN).
Finally, we call a track an identity switch (IDS) if its object track
hypothesis is associated with more than one ground truth label l.

Object Detection Metrics
For object detection, we report the F1 score which is a widely
accepted evaluation metric to evaluate the quality of the detector.
The F1 score is defined as:

F1 � 2p
PrecisionpRecall

Precision + Recall
(16)

Where precision denotes the ratio of relevant hypothesis
proposed by the object detector and is defined as:

Precision � TP

TP + FP
(17)

Recall denotes the percent of correctly detected objects in
comparison to the total number of available objects and is
defined as:

Recall � TP

TP + FN
(18)

We report these metrics as percentages, where the best score is of
100 and the worst score is 0. Additionally, we present a precision-
recall curve to show the robustness of the proposed approach over
the possible parameter ranges and to show its improved
performance over possible competing approaches. We use
these tests to choose the parameters for running the F1 score
for each listed method.

Object Tracking Metrics
We also report tracking metric ClearMOT, proposed by
Bernardin and Stiefelhagen (2008), as it has become a popular
and robust metric for tracking algorithms. We report the multiple
object tracking accuracy (MOTA) which evaluates the quality of
the recovered tracks. It considers FPs, FNs, and identity switches
(IDSs), The MOTA score is defined as:

MOTA � 1 − ∑N
k�1 FNk + FPk + IDSk( )

∑N
k�1GTk

(19)

Where N refers to the number of frames, and FNk, FPk, IDSk,
GTK refers to the false negatives, false positives, identity
switches and number of ground truth objects at frame k
respectively. The MOTA score has a range in (−∞, 1),
where negative values report poor performances, and one is
the best possible score. In this work, we report the scores as a
percentages to keep consistency with literature. We also
report the multiple object tracking precision (MOTP),
which considers the average distance error between the
detected objects and the ground truth objects. The MOTP
is defined as:

MOTP � ∑N
k�1∑ck

i�1di,k∑N
k ck

(20)

FIGURE 4 | Areas of interest (AoIs) for method evaluation.

TABLE 1 | Ablation studies.

Precision Recall F1

Faster RCNN 56.73 72.76 61.69
Faster RCNN + Motion Information 69.46 73.33 70.05
Patch-Based Faster RCNN 69.06 70.96 69.22
Patch-Based Faster RCNN + Motion Information 78.13 70.40 76.14

TABLE 2 | Average F1 scores for different patch sizes.

Patch Size 32 × 32 64 × 64 128 × 128 256 × 256 512 × 512
(full image)

F1 score 51.66 70.66 76.14 72.66 70.05
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Where ck refers to the number of correctly detected objects at
frame k and di,k denotes the distance between a ground truth
object and the detected hypothesis. The MOTP score is in the
range [0, ∞) where 0 denotes the perfect score and large values
denote worse performances.

Finally, we report track quality measures in a similar format to
Dendorfer et al. (2021).We call a trajectorymostly tracked (MT) if we
can persistently track at least 80% of its path. Similarly, we call a
trajectory mostly lost (ML) is we can track 20% or less of its ground
truth trajectory. We report these scores as percentages where larger
percentages of MT scores denote better performances but larger
percentages of ML scores denote worse performances.

Experiment Set up
For evaluation purposes, we use the CGSTL dataset, available
at https://mall.charmingglobe.com. This dataset contains a

video of the city of Valencia, Spain, recorded on 7 March
2017, by the Jilin-1 satellite. Its spatial resolution is 1 m/pixel
and the video spans 12 kms2, with a size of 3,071 × 4,096 pixels.
The video contains 580 frames and represents 29 s of video
imaged at 20 frames per second. The labels were provided by
Ao et al. (2020) and contain the (x, y) object center
coordinates, the width, and height of the object bounding
boxes. The provided ground truth contains strong labeling
for only moving targets in three areas of interest (AoI) of size
500, ×, 500 pixels (shown in Figure 4). The approximate
coordinate location for each area are AoI 1 [520, 1616], AoI
2 [1074, 1895] and AoI 3 [450, 2810] with respect to the first
frame. Additionally, we performed image stabilization
(ORB(Rublee et al. (2011)) to compensate for the satellite
motion during the recorded video. Finally, only one every
ten frames is labeled (58 total labeled frames), hence, we used
the stabilization procedure and linear interpolation between
frames to fill the label subsampling. The stabilization
procedure has a significant impact on object detection,
object tracking, and score evaluation across all 580 frames
as these methods depend on linear object motion and static
background. It is worth mentioning we improve the
stabilization procedure over our previous work (Aguilar
et al. (2021)) by using the Python OpenCV implementation
of ORB(Rublee et al. (2011)); hence our ‘true positive’ distance
criteria is set to five pixels rather than 20 pixels as in our
previous work.

All of the AoIs contain highways and moving vehicles at
high speed. AoI one contains a roundabout, where objects
reduce their velocity and travel in clusters. AoI two contains a
highway next to farming structures that create numerous false
positives for both motion and appearance-based object
detectors. AoI three contains a highway with objects
moving at high speeds. It is worth mentioning all AoIs
contain numerous motorcycles and very small objects that
are often missed in the ground truth annotations due to the
difficulty of labeling such objects at such low image resolution.
For each AoI, we trained the network using the other two AoIs
as training data due to the ground truth data scarcity. We
trained the networks using extracted patches of size 128 × 128
centered at ground truth objects and we augmented data by
using patch vertical and horizontal flips, and random
translations. We used the Pytorch implementation for
Faster-RCNN using a pre-trained ResNet50 proposed by
He et al. (2016) as backbone for feature extraction. The
networks were trained using an NVIDIA QUADRO using
stochastic gradient descend as optimizer with a learning rate
of lr = 0.005 and a weight decay of 0.0005.

Ablation Studies
We perform ablation studies to investigate the impact of using
patch-based inference and the impact of including motion
information on object detection quality. We report the F1
scores for our method using path-selection only, motion-
information only, and patch-selection and motion-
information combined. We evaluate these scores across all

FIGURE 5 | Sample object detection.

TABLE 3 | Object detection metrics.

AoI Detector Precision Recall F1

1 3 Frame-based, Ao et al. (2020) 85.8 79.3 82.42
ViBe, Yang et al. (2016) 80.9 63.8 71.33
GMM, Wren et al. (1997) 78.9 38.3 51.57
Faster-RCNN, Ren et al. (2015) 80.6 75.1 77.76
Patch-based-CNN, Aguilar et al. (2021) 91.5 76.9 83.57
Proposed Object Detection 90.2 80.9 85.32

2 3 Frame-based, Ao et al. (2020) 70.0 73.1 71.52
ViBe, Yang et al. (2016) 41.1 65.1 50.38
GMM, Wren et al. (1997) 61.0 65.1 62.95
Faster-RCNN, Ren et al. (2015) 27.2 66.9 38.65
Patch-based-CNN, Aguilar et al. (2021) 50.2 70.8 58.76
Proposed Object Detection 71.3 74.5 72.84

3 3 Frame-based, Ao et al. (2020) 62.3 48.7 54.68
ViBe, Yang et al. (2016) 74.4 56.9 64.47
GMM, Wren et al. (1997) 35.9 54.9 43.43
Faster-RCNN, Ren et al. (2015) 62.4 76.3 68.68
Patch-based-CNN, Aguilar et al. (2021) 65.5 65.2 65.33
Proposed Object Detection 72.9 67.8 70.26
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AoIs and report the average precision, recall, and the F1 scores
for each combination.

Patch-Based Inference
We test the effect of using a patch-based method by comparing a
full-image and patch-based inference with Faster RCNN.
Table 1 shows that a full-image Faster RCNN obtains a F1
metric of 61.69 but using a patch-based Faster RCNN increased
the F1 score to 69.22. The patch-based approach outperforms
Faster RCNN in the precision score because it reduces the search
space to areas with moving objects and decreases the ratio of
FPs. This result is expected as satellite images contain numerous
blob-looking objects that yield false positives and Faster RCNN
alone would detect the objects as vehicles. These results are
developed further and shown numerically and visually in
Section 4.4. Additionally, we test the effect of varying the
patch size by evaluating average object detection metrics

using patch sizes of 32, 64, 128, 256, and 512 (full image).
The size effects for the patch selection are depicted in Table 2,
were the highest F1 score is obtained for the patch size of 128 ×
128 pixels. During our experiments, we concluded that the patch
size of 128 × 128 focuses the CNN to smaller regions while
preserving contextual information. In fact, a patch size of 64 ×
64 yielded numerous false positives from static objects with
white-blob appearance. On the contrary, large patch sizes such
as 256 × 256 and 512 × 512 obtained large numbers of
misdetections due to the small object size in comparison
with the field of view.

Motion-Based Inference
We investigate the effect of includingmotion information by testing
the full-image Faster RCNN combined with motion information.
We achieve this task by feeding three consecutive frames
concatenated with the three frame difference algorithm to Faster

FIGURE 6 | Sample object detection in sub-region of AoI 1. First row: (A) sample patch . (B) Ground truth bounding boxes. (C) 3-frame difference response.
Second row: (D) Proposed method. (E)Output of patched-based Faster RCNN. (F)Output of Faster RCNN. Third row: (G)Output of ViBe. (H)Output of 3 frame based
detector. (I) Output of GMM detector.
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RCNN. Table 1 shows that including motion information for the
full-image Faster RCNN improves the F1 score from 61.69 to 70.05.
This improvement occurs due to the increase in the precision score,
from 56.73 to 69.46. Our results show that including motion
information also helps Faster RCNN to filter non-moving
objects in a similar fashion to using a patch-based approach.

Motion and Patch-Based Inference
Finally, we test the effects of including motion information and a
patch-based approach to the original Faster RCNN. Table 1 shows
that adding both motion information and patch-based inference
increased the F1 score of the original Faster RCNN by 6 and 7%
respectively. The combined effect of using a patch inference and
including motion information reduced the false-positive ratios

further, thus, increasing the precision score from 69.46 to 69.06 to
78.13. It is worth noting that neither the addition of motion or a
patch-based approach contributed to increasing the recall score. In
fact, full-image Faster RCNN obtains higher recall values than the
proposed approach at the cost of increasing the number of false
detections. These results suggest further development explained in
Section 5.

Object Detection Evaluation
We evaluate the proposed object detector using the F1 metric
mentioned in Section 4.1.1 and we compare its performance with
five competing object detectors: custom 3-frame difference
proposed by Ao et al. (2020), background subtraction using
Gaussian mixture models proposed by Wren et al. (1997),

FIGURE 7 | Sample object detection in sub-region of AoI 2. First row: (A) sample patch . (B) Ground truth bounding boxes. (C) 3-frame difference response.
Second row: (D) Proposed method. (E)Output of patched-based Faster RCNN. (F)Output of Faster RCNN. Third row: (G)Output of ViBe. (H)Output of 3 frame based
detector. (I) Output of GMM detector.
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ViBe, proposed by Yang et al. (2016), Faster RCNN, proposed by
Ren et al. (2015) and the Patch-based object detector presented by
Aguilar et al. (2021). We calibrate each method parameters by
running a precision-recall curve on AoI 1, shown in Figure 5. We
also show visual and numerical results for each AoI by reporting
the precision, recall, and F1 scores for each competing method in
Table 3 and by showing sample object detection results in
Figure 6 and in Figure 7.

We varied the threshold and confidence parameters for 11
points in the range (0, 1) for the methods: 3-frame difference,

GMM, Faster RCNN, Patch-based RCNN, and the proposed
approach. For ViBe, we changed the neighbor radius
parameter: R for 11 points in the range (5, 50). Figure 5
shows that our method is robust to parameter variations: it
obtains better F1 scores across a diverse parameter range as
the combination of appearance and time
information increases true positives and decreases false
negatives.

Figure 6 shows sample results for AoI 1. This area contains
clusters of small moving objects at a roundabout and also presents

TABLE 4 | Tracking Metrics for AoI 1. *Denotes ground truth measurements used for calibration and filter-only testing.

AoI Tracker Detector F1 MOTA MOTP MT ML

1 SORT Ground Truth Detections (Calibration)* 99.4* 99.1* 0.91* 63* 0*
3 Frame-based, Ao et al. (2020) 50.4 27.2 2.75 7 23
ViBe, Yang et al. (2016) 65.4 40.5 2.50 27 19
GMM, Wren et al. (1997) 49.3 30.7 2.57 13 33
Faster-RCNN, Ren et al. (2015) 70.3 48.2 2.94 23 14
Patch-based-CNN, Aguilar et al. (2021) 44.9 19.6 2.93 1 31
Proposed Object Detection 78.8 63.0 2.34 34 11

GLMB Ground Truth Detections (Calibration)* 94.95* 85.1* 1.80* 63* 1*
3 Frame-based, Ao et al. (2020) 71.14 36.3 2.02 35 6
ViBe, Yang et al. (2016) 67.02 37.4 1.53 32 13
GMM, Wren et al. (1997) 49.90 22.1 1.61 15 30
Faster-RCNN, Ren et al. (2015) 66.76 30.8 2.03 29 13
Patch-based-CNN, Aguilar et al. (2021) 73.86 46.9 1.93 33 11
Proposed Object Detection 83.8 66.6 1.19 35 12

GM-PHD Ground Truth Detections (Calibration)* 94.5* 89.7* 0.19* 58* 3*
3 Frame-based, Ao et al. (2020) 69.9 47.2 2.17 24 11
ViBe, Yang et al. (2016) 63.0 35.6 1.92 21 23
GMM, Wren et al. (1997) 48.5 27.0 1.98 14 33
Faster-RCNN, Ren et al. (2015) 71.7 47.7 2.36 31 22
Patch-based-CNN, Aguilar et al. (2021) 76.1 56.7 2.40 31 17
Proposed Object Detection 81.9 64.3 1.49 46 8

TABLE 5 | Tracking Metrics for AoI 2. *Denotes ground truth measurements used for calibration and filter-only testing.

AoI Tracker Detector F1 MOTA MOTP MT ML

2 SORT Ground Truth Detections (Calibration)* 99.6* 99.5* 0.857* 61* 0*
3 Frame-based, Ao et al. (2020) 54.81 26.6 2.14 17 26
ViBe, Yang et al. (2016) 50.50 -18.2 2.32 38 17
GMM, Wren et al. (1997) 74.54 54.1 2.26 35 13
Faster-RCNN, Ren et al. (2015) 53.28 -22.1 2.38 32 18
Patch-based-CNN, Aguilar et al. (2021) 42.33 15.1 2.72 6 22
Proposed Object Detection 82.78 66.4 2.08 47 12

GLMB Ground Truth Detections (Calibration)* 97.94* 93.3* 1.543* 35* 0*
3 Frame-based, Ao et al. (2020) 70.44 31.1 1.99 40 9
ViBe, Yang et al. (2016) 49.69 -34.5 1.49 39 13
GMM, Wren et al. (1997) 65.75 25.7 1.39 37 16
Faster-RCNN, Ren et al. (2015) 72.50 31.8 1.41 50 4
Patch-based-CNN, Aguilar et al. (2021) 57.60 33.3 1.88 39 5
Proposed Object Detection 83.75 65.1 1.21 52 2

GM-PHD Ground Truth Detections (Calibration)* 98.7* 97.7* 0.18* 36* 0*
3 Frame-based, Ao et al. (2020) 69.62 44.5 1.93 30 12
ViBe, Yang et al. (2016) 44.86 -31.6 1.77 23 23
GMM, Wren et al. (1997) 71.14 44.8 1.67 33 15
Faster-RCNN, Ren et al. (2015) 50.00 -51.9 1.87 40 9
Patch-based-CNN, Aguilar et al. (2021) 61.18 40.7 2.40 37 9
Proposed Object Detection 82.61 64.1 1.58 47 3
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numerous small vehicles such as motorcycles or bicycles. Figure 6
shows that ViBe and GMM struggle to detect small and low contrast
targets; hence, their recall values in Table 3 are the lowest for AoI 1.
Similarly, the 3-frame difference approach merges and splits nearby
targets. On the other side, Figure 6 shows that the supervised
approaches detect a large number of relevant objects; thus their

recall score for all these methods is greater than 75%. However, both
Faster RCNNand patch-based RCNN suffer from false positives such
as detecting objects in farms or buildings. These artifacts reduce the
overall F1 score for the detectors.

Figure 7 shows AoI two which contains two high-speed
highways next to buildings with rich textures that generate

TABLE 6 | Tracking Metrics for AoI 2. *Denotes ground truth measurements used for calibration and filter-only testing.

AoI Tracker Detector F1 MOTA MOTP MT ML

3 SORT Ground Truth Detections (Calibration)* 99.2* 98.4* 0.78* 46* 1*
3 Frame-based, Ao et al. (2020) 58.20 39.2 2.46 14 25
ViBe, Yang et al. (2016) 63.81 37.5 2.52 23 20
GMM, Wren et al. (1997) 68.77 47.9 2.54 26 16
Faster-RCNN, Ren et al. (2015) 70.3 48.2 2.94 23 14
Patch-based-CNN, Aguilar et al. (2021) 37.44 14.9 3.39 0 37
Proposed Object Detection 73.49 53.7 1.72 23 13

GLMB Ground Truth Detections (Calibration)* 99.60* 98.9* 1.43* 39* 0*
3 Frame-based, Ao et al. (2020) 54.40 9.70 1.85 22 23
ViBe, Yang et al. (2016) 63.13 33.8 1.70 25 19
GMM, Wren et al. (1997) 41.74 -62.6 1.78 21 18
Faster-RCNN, Ren et al. (2015) 71.59 48.7 1.19 34 7
Patch-based-CNN, Aguilar et al. (2021) 68.13 31.2 1.99 29 8
Proposed Object Detection 78.18 56.0 1.16 34 5

GM-PHD Ground Truth Detections (Calibration)* 99.8* 99.8* 0.12* 46* 1*
3 Frame-based, Ao et al. (2020) 61.80 39.7 2.11 22 24
ViBe, Yang et al. (2016) 60.42 32.3 2.13 19 21
GMM, Wren et al. (1997) 59.74 23.3 2.15 25 16
Faster-RCNN, Ren et al. (2015) 71.7 47.7 2.36 31 22
Patch-based-CNN, Aguilar et al. (2021) 69.44 42.7 2.79 23 12
Proposed Object Detection 77.53 57.1 1.26 32 7

FIGURE 8 | Sample Object Tracking. The square denotes the object current location and the line the object past locations. First column: ground truth marks.
Second Column: Faster RCNN (Ren et al., 2015) and SORT (Bewley et al., 2016). Third column: proposed tracking algorithm.

Frontiers in Signal Processing | www.frontiersin.org April 2022 | Volume 2 | Article 82716012

Aguilar et al. Small Object Detection and Tracking

https://www.frontiersin.org/journals/signal-processing
www.frontiersin.org
https://www.frontiersin.org/journals/signal-processing#articles


false positives. For example, Figure 7 shows clusters of moving
objects. Figure 7 shows that both Faster RCNN and the patch-
based RCNN detect false positives in the static background while
our approach can discriminate only moving objects. Table 3
shows that the proposed approach obtains better F1 scores than
all the competing methods, thanks to the better combination of
precision-recall. It detects more relevant objects while reducing
the overall ratio of false positives.

Object Tracking Evaluation
We compare object tracking using the MOTA, MOTP, MT and ML
and F1 scores shown in Tables 4, 5, 6. We compare the proposed
GM-PHD tracker with the SORT tracker, developed by Bewley et al.
(2016) and with the Generalized Labeled Multi-Bernoulli filter
(GLMB), developed by Vo et al. (2017). We test the tracking
outputs applied to each object detector shown in Table 3
combined with all 3 filters.

The rows marked with an asterisk* in Tables 4, 5, 6 show
tracking metrics using ground truth object detections as filter
inputs. These measurements simulate ideal object detectors
and contribute to calibrating the filters’ parameters. Tables 5,
6 show robust performance for all three trackers across AoI
two and AoI 3 (high-speed highways): all three filters obtain
MOTA scores close to 99%. However, Table 4 shows a case
where SORT outperforms the GM-PHD and the GLMB filter
when tracking with ground truth labels. SORT obtains a
MOTA score of 99.4% while the GLMB filter 85.1% and
GM-PHD filter obtains 89.7%. The GM-PHD and GLMB
filter decrease their performance mostly due to the
increased uncertainty and label switches for nearby slow-
moving targets inside the roundabout of AoI 1.

The second to seventh row of Tables 4, 5, 6 show metrics
for tracking results applied to each object detector output.
These detectors present considerable challenges for trackers
due to clutter measurements and numerous misdetections.
Tables 4, 5, 6 show that both the GLMB and GM-PHD filter
outperform the SORT filter for object detectors with high
detection rate. For instance, the GM-PHD filter obtains higher
MOTA scores for 3-frame difference, Faster-RCNN, patch-
based Faster-RCNN, and the proposed method. These results
are reflected in Figure 8 where the GM-PHD recovers most of
the objects moving in the roundabout. On the other hand,
SORT outperforms the GM-PHD and GLMB filters for object
detection with low detection rate such as ViBe and GMM,

where SORT obtains higher MOTA scores than the GM-PHD
filter but lower MOTA scores compared to the proposed
object detection and GM-PHD filter.

During our experiments, we determined that SORT
performs better in tracking cases with linear constant
motions, such as in AoI one and AoI 2. In fact, SORT
obtained better results than the GM-PHD and GLMB filter
for AoI two when applied in our proposed method. However,
SORT presented difficulties adapting to high-speed tracks as
in AoI 3. Figure 8 shows the incomplete track trajectories of
applying SORT to the outputs of Faster RCNN.

Finally, our modified GM-PHD filter presents similar
tracking performances to the GLMB filter. The GLMB
tracker slightly outperforms the modified GM-PHD filter in
most tracking scores in all three AoIs. This is an expected
result as the GLMB tracker shares the RFS framework with
GM-PHD but has been extended to jointly estimate object
states and tracks. Nevertheless, the GLMB filter retrieves
tracks at the cost of a high computational burden. In fact,
the efficient implementation of the GLMB filter (Vo et al.
(2017)) relies on a pre-processing PHD filter lookup step and
a Gibbs sampler step to perform joint prediction and update.
Vo et al. (2017) explain that the efficient GLMB filter has a
complexity of O(P2M), where P denotes the number of
hypothesis and M the number of measurements. On the
other hand, our proposed GM-PHD filter has a linear
complexity of O(PM). Additionally, we present sample
computational times using the default GM-PHD (O(PM))
filter and default GLMB (O(P2M)) filter implemented in
Matlab by Vo et al. (2017). Table 7 shows that the default
GLMB filter is on average 4.77 times slower than the default
GM-PHD filter. While our implementation of the GM-PHD
filter obtains slightly lower tracking scores, it presents a
considerable advantage in terms of computational
demands. This advantage is particularly important for on-
board applications where robusts online tracking algorithms
are preferred.

CONCLUSION AND FUTURE WORK

In this paper, we presented an improved track-by-detection
approach where we use motion information together with
neural networks to detect small moving objects on satellite
images. Additionally, we perform tracking by using a modified
version of the GM-PHD filter. Our version of the GM-PHD
uses a measurement-driven birth intensity approximation and
a label propagation in time. We present results for three AoIs
in a challenging dataset where our approaches do not only
outperform competing detection and tracking algorithms, but
also detect objects not labeled by the ground truth
annotations.

While our method performs detection and tracking, the
method still requires several improvements. For example, our
approach still misses several objects at sub-pixel level that appear
and disappear. This drawback could be improved by including

TABLE 7 | Computing times for modified GM-PHD and GLMB filters.

AoI Tracks Tracker Computing Time(s)

1 64 GLMB 227.02
GM-PHD 45.39

2 47 GLMB 129.06
GM-PHD 27.56

3 22 GLMB 82.26
GM-PHD 19.79
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the tracking information into the object detection in order to
perform a unified track-and-detection approach.
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