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In this paper, we address the problem of constant-beamwidth beamforming using
nonuniform planar arrays. We propose two techniques for designing planar
beamformers that can maintain different beamwidths in the XZ and YZ planes based
on constant-beamwidth linear arrays. In the first technique, we utilize Kronecker product
beamforming to find the weights, thus eliminating matrix inversion. The second technique
provides a closed-form solution that allows for a tradeoff between white noise gain and
directivity factor. The second technique is applicable even when only a subset of the
sensors is used. Since our techniques are based on linear arrays, we also consider
symmetric linear arrays. We present a method that determines where sensors should be
placed to maximize the directivity and increase the frequency range over which the
beamwidth remains constant, with a minimal number of sensors. Simulations
demonstrate the advantages of the proposed design methods compared to the state-
of-the-art. Specifically, our method yields a 1000-fold faster runtime than the competing
method, while improving the wideband directivity factor by over 8 dB without
compromising the wideband white noise gain in the simulated scenario.

Keywords: broadband beamformer, constant-beamwidth beamformer, microphone array, Kronecker product,
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1 INTRODUCTION

Speech, wireless communications, and radar are among the fields that use broadband beamforming
(Van Veen and Buckley, 1988; Van Trees, 2004; Cohen et al., 2009). A broadband array is desirable
since audible speech covers a wide range of frequencies (Snow, 1931). A constant beamwidth
prevents distortion of the speech signal when the speaker moves away from the center of the
mainlobe. If the beamformer weights are consistent versus frequency, the beamwidth narrows as the
frequency increases (Ward et al., 1995). Therefore, the beamformer weights should be frequency-
dependent to enable control of the beamwidth. Nevertheless, the sensor positions set bounds on the
maximum and minimum frequency that can attain the desired beamwidth. A beamformer’s
directivity is an indicator of its performance in various scenarios, such as reverberant
environments. The purpose of our research is to design, with low computational complexity and
aminimal number of sensors, a beamformer whose weights and positions are chosen tomaximize the
directivity while maintaining a constant beamwidth.

To calculate the weights for a frequency-invariant beamformer, several methods utilized the
inverse Fourier transform (Ward et al., 1995, 2001; Liu and Weiss, 2004; Liu et al., 2007; Liu and
Weiss, 2008; Pal and Vaidyanathan, 2010; Weiss et al., 2017), while others opted to defining an
optimization problem. For simple objectives and constraints, closed form solutions were found
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(Parra, 2006; Zhao et al., 2009; Crocco and Trucco, 2011;
Tourbabin et al., 2012; Zhao and Liu, 2012; Huang et al.,
2020b), while others resorted to using optimization toolboxes
(Gazor and Grenier, 1995; Yan and Ma, 2005; Chan and Chen,
2006; Yan, 2006; Zhao et al., 2008; Yan et al., 2010; Zhu and Wu,
2011; Yin, 2012; Liu et al., 2015; Li et al., 2017; Buchris et al., 2018;
Liu et al., 2018; Yang X. et al., 2019; Liu et al., 2021; Son, 2021) and
even deep learning methods (Aroudi and Braun, 2021;
Ramezanpour et al., 2022). Recently, the Kronecker product
has been utilized for beamforming to decompose the
beamformer design problem into smaller problems (Yang W.
et al., 2019; Benesty et al., 2019; Cohen et al., 2019; Itzhak et al.,
2019; Wang et al., 2019; Huang et al., 2020a; Huang et al., 2020c;
Sharma et al., 2020; Wang et al., 2020; Yang et al., 2020; Itzhak
et al., 2021; Kuhn et al., 2021; Wang et al., 2021), yet it has not
been applied for constant-beamwidth beamforming.

Most frequency-invariant beamformers were designed for
uniform linear arrays (ULA) (Liu and Weiss, 2004; Liu et al.,
2007; Liu andWeiss, 2008; Zhao et al., 2008, 2009; Liu andWeiss,
2010; Haupt andMoosbrugger, 2012; Zhao and Liu, 2012; Li et al.,
2017; Rosen et al., 2017; Weiss et al., 2017; Yang X. et al., 2019;
Long et al., 2019; Huang et al., 2020b; Erokhin et al., 2020; Liu
et al., 2021), yet some were also developed for linear arrays (Ward
et al., 1998; Parra, 2006; Pal and Vaidyanathan, 2010; Crocco and
Trucco, 2011; Liu et al., 2015, 2018; Son, 2021), logarithmically
spaced arrays (Ward et al., 2001), circular arrays (Chan and Chen,
2006; Yan et al., 2010; Buchris et al., 2020; Sharma et al., 2021a;
Sharma et al., 2021b; Kleiman et al., 2021), and arbitrary
geometry arrays (Ward et al., 1995; Yan and Ma, 2005; Yan,
2006; Zhu and Wu, 2011; Tourbabin et al., 2012; Yin, 2012).
Different geometries yield varying performances. Therefore,
choosing where to position the sensors has been addressed in
(Gazor and Grenier, 1995; Liu et al., 2015; Buchris et al., 2018; Liu
et al., 2018; Son, 2021) to maximize performance measures such
as white noise gain (WNG). However, these methods require
intensive computations. To alleviate the complexity of designing
a two-dimensional (2D) array, we show how a constant
beamwidth can be attained based on designing one-
dimensional (1D) arrays. We introduce two different
techniques. The first one utilizes Kronecker product
properties, whereas the second technique uses a matrix
transform to convert the linear array weights into planar array
weights. With the second technique, we can tradeoff between
WNG and directivity even when removing some sensors.

The beamwidth in the XZ plane may differ from the
beamwidth in the YZ plane. This can be accomplished by
designing two linear arrays, each with a different beamwidth.
We position the planar array sensors based on the positions of the
linear array sensors. We transform the weights used for the linear
arrays to get weights for the planar beamformer. The transform
ensures that the beamwidth remains constant in the XZ and YZ
planes. The proposed techniques enable constant-beamwidth
beamforming using planar arrays with many sensors by
designing simpler linear arrays. Our design generalizes the
window-based technique introduced by Long et al. (Long
et al., 2019) for symmetric nonuniform linear arrays. Allowing
nonuniform spacing between sensors generates additional

degrees of freedom, which enables maximizing the directivity
while maintaining a constant beamwidth over a broader range of
frequencies. The beamformer weights are designed to take full
advantage of the nonuniform interelement spacing of the
symmetric array. Compared to existing methods, our
generalization improves the directivity and attains a constant
beamwidth over a broader range of frequencies, even for ULAs.
We present two different procedures for choosing the symmetric
linear array sensor positions. The first procedure is
computationally intensive and involves iteratively updating the
sensor positions. The purpose of this procedure is to find an
upper bound on the achievable performance. Afterward, we
present the second procedure that is computationally simple
while maintaining on-par performance. Simulations
demonstrate the properties, low design complexity, and
superior performance of our design. To facilitate
reproducibility, our code is available online1.

The paper is structured as follows: Section 2 describes the
signal model, performance measures, and the problem
formulation. Section 3 presents beamformers for planar array
geometries based on beamformers designed for linear arrays. In
Section 4, we develop algorithms for finding optimal placements
of the sensors for a symmetric linear array geometry and optimal
design of the beamforming weights. Section 5 contains
simulations and experimental results, and Section 6 concludes.

2 SIGNAL MODEL AND PROBLEM
FORMULATION

2.1 Signal Model
Consider a nonuniform planar array whose sensors are positioned
on anM × N grid where the x-coordinates are {xm}Mm�1 and the y-
coordinates are {yn}Nn�1. The sensor at (m, n) = (1, 1) is referred to
as the reference sensor. We assume a far-field scenario, where a
plane wave propagates in an anechoic environment at the speed of
sound in the air, v = 343 m/s. Its direction of arrival is
parameterized by the azimuth angle φ, 0° ≤ φ ≤ 360°, and
elevation angle θ, 0° ≤ θ ≤ 180°. In the frequency domain, the
observed signal at frequency f can be written in vector form as

y f( ) � a f,φd, θd( )X f( ) + q f( ), (1)
whereX(f) is the source signal arriving from the direction (φd, θd),
q(f) is the additive noise vector of lengthMN, and a (f, φ, θ) is the
steering vector of length MN whose entries are given by

e−J
2πf
v xm cos φ( ) sin θ( ) + yn sin φ( )sin θ( )[ ] ; 1≤m≤M, 1≤ n≤N;

(2)
where J � ��

-1
√

.
The beamformer output is given by

Z f( ) � hH f( )y f( ), (3)

1https://github.com/Ariel12321/Constant_Beamwidth_Beamforming_
Nonuniform
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where h(f) is the beamforming weight vector of lengthMN and H

denotes conjugate transpose. A frequency-invariant gain is
desired in the direction (φd, θd). Therefore, we impose the
common distortionless constraint:

hH f( )a f,φd, θd( ) � 1. (4)
The beampattern expresses the response of the beamformer to a
plane wave and is defined as

B f,φ, θ, h f( )( ) � aH f,φ, θ( )h f( ). (5)
To improve readability, we sometimes use amore concise notation for
the steering vector, a, beamforming weight vector, h, and
beampattern, B(h), by omitting the variables f, φ, and θ.

2.2 Performance Measures
We now develop wideband performance measures to quantify the
WNG and directivity over a frequency band. The narrowband
and wideband input signal-to-noise ratios (SNR) are

iSNR f( ) � ϕX f( )
ϕQ0

f( ) (6)

and

iSNR �
∫
f
ϕX f( )df∫

f
ϕQ0

f( )df, (7)

respectively, where ϕX(f) is the variance of X(f) and ϕQ0
(f)

is the variance of the additive noise at the reference sensor.
From (1) and (3), the narrowband and wideband output
SNRs are

oSNR f( ) � ϕX f( ) hH f( )a f,φd, θd( )∣∣∣∣ ∣∣∣∣2
hH f( )Φq f( )h f( )

�
4( )

ϕX f( )
hH f( )Φq f( )h f( ) (8)

and

oSNR �
∫

f
ϕX f( ) hH f( )a f,φd, θd( )∣∣∣∣ ∣∣∣∣2df∫

f
hH f( )Φq f( )h f( )df

�
4( )

∫
f
ϕX f( )df

∫
f
hH f( )Φq f( )h f( )df,

(9)

respectively, where Φq(f) is the correlation matrix of q(f). The
narrowband and wideband array gains are given by

G f( ) � oSNR f( )
iSNR f( ) (10)

and

G � oSNR
iSNR

, (11)

respectively.

When q(f) is spherically isotropic noise, Φq(f) is
given by

Φq f( ) � ϕQ0
f( )Γd f( ), (12)

where the elements of Γd(f) are given by

Γd f( )[ ]r,r′ � sinc
2πf
v

dr,r′( ) ; 1≤ r, r′≤MN; (13)

where dr,r′ is the Euclidean distance between the corresponding
sensors.

The narrowband directivity factor (DF) is defined as the
narrowband array gain in the presence of spherically isotropic
noise (Benesty et al., 2018) and is given by

D f( ) � 1

hH f( )Γd f( )h f( ). (14)

We define the wideband directivity factor over the frequency
band [fL, fH] as the wideband array gain in the presence of
spherically isotropic noise. For scenarios where ϕQ0

(f) is
frequency-invariant, i.e., ϕQ0

(f) ≡ ϕQ0
, a compact expression

for the wideband directivity factor is given by:

D fL ,fH[ ] �
1

1
fH − fL

∫fH

f�fL

hH f( )Γd f( )h f( )df
�
14( )

1
1

fH − fL
∫fH

f�fL

1
D f( ) df.

(15)

From here, we define the wideband directivity index (DI) over the
frequency band [fL, fH] as

DI fL ,fH[ ] � 10 log10D fL ,fH[ ]. (16)
WNG is a commonly used performance measurement that reflects

the robustness of an array to physical imperfections (Benesty et al.,
2018). It is defined as the array gain for white spatial noise,
i.e., Φq(f) � ϕQ0

(f)IMN, where IMN is the MN × MN identity
matrix. For scenarios where ϕQ0

(f) is frequency-invariant, the
narrowband and wideband WNGs are given by the compact
expressions:

W f( ) � 1

hH f( )h f( ) (17)

and

W fL ,fH[ ] �
1

1
fH−fL

∫fH

f�fL

1
W f( ) df

, (18)

respectively.

2.3 Problem Formulation
We assume that the number of sensors, MN, is given. Our
goal is to find optimal placements for the sensors and optimal
beamformer weights that maximize the DI while maintaining
a constant beamwidth and acceptable WNG.
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Let bX and bY denote the half-power beamwidths in the XZ andYZ
planes, respectively. Then, our optimization problem is defined as

maximize
xm, 1≤m≤M
yn, 1≤ n≤N
h f( ), fL ≤f≤fH

DI fL ,fH[ ]

subject to
hH f( )a f,φd, θd( ) � 1, fL ≤f≤fH

bX f( ) � θX, fL ≤f≤fH

bY f( ) � θY, fL ≤f≤fH

W fL ,fH[ ] � ℵ,

(19)

where θX and θY are the desired half-power beamwidths in theXZ and
YZ planes, respectively, and ℵ≥1 for acceptable wideband WNG.

3 PLANAR ARRAY CONSTANT
-BEAMWIDTH BEAMPATTERN DESIGN

This section shows how a constant beamwidth can be developed
for a planar array based on designs of linear arrays. The
beamwidth in the XZ plane may differ from the beamwidth in
the YZ plane. This can be accomplished by designing two linear
arrays, each with a different beamwidth.

A linear array beampattern is designed such that when the
linear array lays along the x-axis, the beampattern maintains the
distortionless constraint in the broadside direction, i.e., (φd, θd) =
(90°, 90°). Its beamwidth, bφ, is measured in the XY plain. Our
goal is to design a beampattern with a half-power beamwidth of
θX in the XZ plane and θY in the YZ plane. Assume that the two
linear arrays are given (in the next section, we suggest a method
for designing linear arrays, yet the designs in this section are not
limited to that method). The first linear array hasM sensors with
a constant beamwidth of θX. Denote the positions by {xm}Mm�1 and
the frequency-dependent weights by hX(f). The second linear
array has N sensors with a constant beamwidth of θY. Denote the
positions by {yn}Nn�1 and the frequency-dependent weights by
hY(f). To simplify the analysis, we assume that xm = 0 for somem
and that yn = 0 for some n. We position the planar array sensors
based on the positions of the linear array sensors. We transform
the weights used for the linear arrays to get weights for the planar
beamformer. The transform ensures that the beamwidth remains
constant in the XZ and YZ planes. The transform does not depend
on the frequency, only on the physical locations of the sensors.
The transform enables constant-beamwidth beamforming using
planar arrays with many sensors by designing simpler linear
arrays.

First, we show how to use Kronecker product beamforming
(Benesty et al., 2019) for the nonuniform planar array. Then we offer
how the beamwidth can remain constant using fewer sensors; the
proposed method enables a tradeoff between WNG and directivity.

3.1 Kronecker Product Beamforming
From the two given linear arrays, we construct an M × N grid
where the x-coordinates are {xm}Mm�1 and the y-coordinates are
{yn}Nn�1—creating a planar array with a total ofMN sensors. Let aP

(f, φ, θ) denote the steering vector of lengthMN whose entries are
given in (2). Denote by aX (f, φ, θ) and aY (f, φ, θ) the steering
vectors (with respective lengthsM andN) of the subarrays that lay
on the x and y axes whose entries are given by

e−J
2πf
v xm cos(φ) sin(θ) , 1≤m≤M, (20)

and

e−J
2πf
v yn sin(φ) sin(θ) , 1≤ n≤N, (21)

respectively. Notice that

aP � aY ⊗ aX, (22)
where ⊗ denotes the Kronecker product.

The beampatterns of the subarrays are given by

B hX( ) � aX
HhX (23)

and

B hY( ) � aY
HhY. (24)

For a linear array, because it exists along a 1D line, every 2D slice
(that contains the 1D line) of its beampattern is identical. For the
subarray lying on the x-axis (y-axis), every 2D slice (containing
the x-axis (y-axis)) of its beampattern is identical; For example,
the XZ (YZ) and XY planes. Therefore, by the constant-
beamwidth design of the linear arrays:

B hX( )| | �
1 , φ � 90° or θ � 0°,

1�
2

√ , φ, θ( ) � 0°,
1
2
θX( ),⎧⎪⎪⎨⎪⎪⎩

B hY( )| | �
1 , φ � 0°,

1�
2

√ , φ, θ( ) � 90°,
1
2
θY( ).⎧⎪⎪⎨⎪⎪⎩

(25)

Let h3 be a 2D window constructed as the outer product of two
1D windows:

h3 m, n[ ] � h1 m[ ]h2 n[ ] ; 1≤m≤M, 1≤ n≤N; (26)
where h1 and h2 are 1D windows with respective lengthsM and
N. For example, each 1D window can be a Kaiser window—and
then the 2D window is a 2D Kaiser window. By the
construction, h3 is separable in the two variables. Therefore,
if we arrange its values into a vector of lengthMN, the resulting
vector can be formulated as the Kronecker product of the two
1D windows. We design the planar array beamforming weight
vector, hP, as

hP � hY ⊗ hX. (27)
Following the methodology in (Benesty et al., 2019) (while

generalizing for a nonuniformly spaced rectangular array), the
beampattern of the planar array is given by

B hP( ) � aP
H f,φ, θ( )hP f( )

� aY ⊗ aX( )H hY ⊗ hX( )
� aX

HhX( ) aY
HhY( )

� B hX( )B hY( ),
(28)
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where for the third equality we used the Kronecker product
identity

u1 ⊗ u2( )H v1 ⊗ v2( ) � uH
2 v2( ) uH

1 v1( ). (29)
The beamwidth in the XZ and YZ planes is attained by

substituting (25) into (28):

B hP( )| | �

1 , φ, θ( ) � 0°, 0°( ),
1�
2

√ , φ, θ( ) � 0°,
1
2
θX( ),

1�
2

√ , φ, θ( ) � 90°,
1
2
θY( ).

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩ (30)

The resulting beampattern maintains the desired beamwidth in
each plane and satisfies the distortionless constrain. This
shows that we can decompose the 2D problem of designing
a constant-beamwidth beamformer with a planar array to two
1D problems of designing constant-beamwidth beamformers
with linear arrays. The Kronecker product is valid only when
sensors are placed on all the MN grid positions. Next, we
develop a method for attaining a constant-beamwidth
beamformer even when only a subset of the grid positions
have sensors.
Computational Complexity of the Kronecker Beamformer:

In this paper, we consider the computational complexity as
the number of multiplications needed for the method.
Assuming that the two linear arrays are given, the planar
array beamforming weights are calculated with (27),
requiring MN multiplications per frequency. Let F denote
the number of frequency bins. Therefore, the computational
complexity is O(MNF).

3.2 Linear to Planar Weight Transform
This section presents a method that does not require a sensor at
each grid position and can tradeoff betweenWNG and directivity.
From the two linear arrays, we construct theM × N grid, but this
time choose only S out of the possible MN positions to place a
total of S sensors. Conditions regarding where to place the sensors
are discussed later.

The beampattern is given by

B f,φ, θ, hP f( )( ) � ∑
m

∑
n

aP* m, n[ ]hP m, n[ ], (31)

where the summation is only over S values (only the index pairs
where there is a sensor) and * denotes complex conjugate. Here,
hP [m, n] is the beamformer weight at the sensor positioned at
(xm, yn). The other expressions in this section with square braces
are similarly defined.

Let us examine the beampattern in the XZ plane. At
elevation θ � 1

2θX:

B f,φ � 0, θ � 1
2
θX, hP f( )( ) � ∑

m

∑
n

eJ
2πf
v xm sin 1

2θX( )hP m, n[ ]

� ∑
m

eJ
2πf
v xm sin 1

2θX( )∑
n

hP m, n[ ].

(32)

We desire that the absolute value of (32) will be equal to 1/
�
2

√
,

which is precisely the amplitude of the linear array beampattern
at 1

2θX (25):

B hX( )| | � ∑
m

eJ
2πf
v xm sin 1

2θX( )hX m[ ]
∣∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣∣ � 1�

2
√ . (33)

Therefore, we require:

∑
m

eJ
2πf
v xm sin 1

2θX( )∑
n

hP m, n[ ]
∣∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣∣ � ∑

m

eJ
2πf
v xm sin 1

2θX( )hX m[ ]
∣∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣∣. (34)

To attain (34), it is enough to require:∑
n

hP m, n[ ] � hX m[ ] , 1≤m≤M. (35)

Similarly, to attain the desired beamwidth in the YZ plane, we
require: ∑

m

hP m, n[ ] � hY n[ ] , 1≤ n≤N. (36)

Altogether, (35) holdsM constraints and (36) holds N constraints.
Therefore, we have to solve a linear system ofM +N equations with
S parameters (the weights for the sensors, hP). In matrix notation:

ChP � hL, (37)
where C is an (M + N) × S matrix, hL^( hXT, hY

T )T, and T

denotes transpose.We only need to calculateC once; notice that it
is not a function of frequency—all the values of C are 0 or 1.

A solution to (37) exists when the rank of (C, hL ) equals rank
{C}. When S = MN, then rank{C} = M + N − 1 (the rows of C are
linearly dependent because the sum of the first M rows equals the
sum of the last N rows). The sum of the elements in hX equals the
sum of the elements in hY and equals 1 to fulfill the distortionless
constraint. It follows that rank{(C, hL )} � M +N − 1.
Therefore, when considering removing a sensor, we must ensure
that without the corresponding column, the rank ofC remainsM +
N−1. The beamformer weights are found following the
methodology in (Benesty et al., 2018).

The following optimization problem maximizes the WNG
under constraint (37):

hW
P � argmin

h
hHh s.t. Ch � hL. (38)

Its solution is given by:

hW
P � CH CCH( )−1hL, (39)

which is also the least-squares solution to (37). The following
optimization problem maximizes the directivity under
constraint (37):

hD
P � argmin

h
hHΓh s.t. Ch � hL, (40)

where the elements of Γ are given by

Γ f( )[ ]s,s′ � sinc
2πf
v

ds,s′( ) ; 1≤ s, s′≤ S; (41)
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where ds,s′ is the Euclidean distance between the sensors
corresponding to the columns s and s′ of C. Its solution is
given by:

hD
P � Γ−1CH CΓ−1CH( )−1hL. (42)

A tradeoff between maximizing the WNG and directivity can be
attained with weights given by

hα
P � Γ−1

α CH CΓ−1α CH( )−1hL, (43)
where Γα = (1 − α)Γ + αIS for 0 ≤ α ≤ 1. Selecting α controls the
tradeoff between WNG and directivity: a bigger α increases the
WNG while a smaller α increases the directivity. We can set α to
be frequency-dependent.
Computational Complexity of the Tradeoff Beamformers:

We assume that the two linear arrays are given. First, we
analyze the computational complexity of the maximum
WNG beamformer (39). Recall that C is not a function of
frequency. Therefore, CH(CCH)−1 can be calculated once
with O(S(M2 +N2) +M3 +N3) operations. As S ≥ M +
N − 1 for a viable solution, the complexity can be written
in a more compact form: O(S(M2 +N2)). Afterward,
multiplying by hL requires S(M +N) multiplications per
frequency. Therefore, the total computational complexity
is O(S(M +N)(M +N + F)).

Next, we analyze the computational complexity of the
maximum directivity beamformer (42) and tradeoff
beamformer (43). The matrix multiplications and inversions
require O(S3) computations per frequency. Therefore, the
total computational complexity is O(S3F).

4 LINEAR ARRAY
CONSTANT-BEAMWIDTH BEAMPATTERN
DESIGN
This section presents a method for obtaining beamforming
weights for a symmetric nonuniform linear array, assuming
that the sensor positions are given. Then we show how to
choose the sensor positions optimally.

Consider a symmetric linear array with M = 2L + 1 sensors.
We use a symmetric array so that the array phase center is
frequency invariant (Ward et al., 2001) and so that we can simply
generalize the window-based technique. The sensor positions are
denoted by xl, − L ≤ l ≤ L. Due to the symmetry of the array,

xl � 0 , l � 0,
x−l � −xl , 1≤ l≤ L.{ (44)

4.1 Beamforming Weight Vector Design
In this section, we assume that the sensor positions are given. Our
goal is to design the beamformer weights for maximum DI while
maintaining a constant beamwidth of φB. Formally,

maximize
h f( ), fL ≤f≤fH

DI fL ,fH[ ]
subject to
hH f( )a f,φd, θd( ) � 1, fL ≤f≤fH

bφ � φB, fL ≤f≤fH.

(45)

A simple method for constant-beamwidth beamforming is to
constrain the beamformer weights to equal the taps of a window.
The window has a parameter that is tuned so that the
beamwidth is as desired. This method was introduced by
Long et al. in (Long et al., 2019) for ULAs. This method
compromises between approximating the desired
beampattern and computational complexity. We generalize
this method for symmetric linear arrays while using the
Kaiser window. Compared to the existing form, our
generalization improves the DI. It enables maintaining the
desired beamwidth over a broader range of frequencies, even
for ULAs, as is shown in the results.

The Kaiser window depends on one parameter, the window
shape factor, β. For each frequency, β(f) is chosen so that the
beamwidth is as desired. Due to the inverse relationship between
the window width and the beamformer width (Ward et al., 1995),
increasing β widens the beampattern. This inverse relationship
can be intuitively understood from (5) by noticing that the
beampattern is the (nonuniform) discrete Fourier transform of
the beamformer weights. If the weights are frequency
independent, the beampattern narrows as the frequency
increases. Therefore, higher values of β are used at higher
frequencies to widen the beampattern so that the beamwidth
remains constant.

We do not limit the array to be uniform; therefore, we sample
the continuous Kaiser window at the sensor positions. The
continuous Kaiser window (Kaiser and Schafer, 1980) is given by

wK x( ) �
I0 β

����������
1 − x

W/2
( )2

√⎡⎢⎣ ⎤⎥⎦
I0 β[ ] , x| |≤W/2,

0 , x| |>W/2,
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ (46)

where I0(x) is the zeroth-order modified Bessel function of the
first kind, and W is the window support. The Kaiser window (of
length R + 1) used for digital signal processing is given by

w R( )
ULA l[ ] � wK x � W

R
l( )

�
I0 β

����������
1 − l

R/2
( )2

√√⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
I0 β[ ] , l| |≤R/2,

0 , l| |>R/2,
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(47)

where R + 1 = M. We suggest sampling the continuous Kaiser
window at the sensor positions, i.e.,
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wLA l[ ] � wK x � xl( )

�
I0 β

����������
1 − xl

W/2
( )2

√⎡⎢⎣ ⎤⎥⎦
I0 β[ ] , xl| |≤W/2,

0 , xl| |>W/2.
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ (48)

By choosing the window support to equalW = 2xL (as done in
(Long et al., 2019)), we are left with a single parameter to tune, β.
We increase the degrees of freedom of the problem by
optimizing over the parameter W. We consider multiple
values of W (per frequency), and for each W, tune β so that
the beamwidth is as desired. Then, per frequency, we select the
W that achieves the highest DF. To reduce the number of
possible values of W we limit the window support to the set
Wi{ }Li�1 of size L whereWi = 2xi. Here,Wi corresponds to having
only the 2i + 1 center sensors having nonzero weights. We refer
to these sensors as active sensors. In the results, we show that the
performance improvement of not limiting the values of W to
this set is negligible. Therefore, we limit the values of W to this
set to reduce the computational complexity of finding the
weights. Notice that W is optimized per frequency,
i.e., W = W(f).

To reflect that some sensors are closely spaced, we use the
trapezoidal integration technique (TIT), i.e., we multiply each
weight by Δl � xl+1−xl−1

2 as was done in (Ward et al., 2001). We
multiply the weight of the outermost sensors by ΔL = Δ−L = xL −
xL−1. Altogether,

Δl �
xl+1 − xl−1

2
, l| |< L,

xL − xL−1 , l| | � L.

⎧⎪⎨⎪⎩ (49)

By using the TIT at frequencies where all of the sensors are used
(W = 2xL), the center sensors that are close together have less
influence. This enables maintaining the desired beamwidth at low
frequencies.

Last, we normalize the weights to fulfill (4). To conclude, the
beamformer weights are:

FIGURE 1 | Configurations of the arrays: proposed (triangles), Son
(circles), Long (squares), and Ward (diamonds).

Algorithm 1 | Algorithm for calculating the beamformer weights.

FIGURE 2 | Continuous Kaiser window parameters, (A) the window
shape factor, and (B) the index of the window support from the set 2xi{ }5i�1, as
a function of frequency: proposed (solid line) and Long (dashed line).
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h l[ ] � ΔlwK xl( )∑L
l′�−LΔl′wK xl′( ) , −L≤ l≤ L. (50)

After the weights are found for each frequency, the DI can be
evaluated. Algorithm 1 summarizes the process. The resulting
beamformer weights, ĥ(f), satisfy the constraints in (45). So, we
proceed with determining where to place the sensors.
Computational Complexity of Algorithm 1:

Calculating the weights with (50) requires M multiplications
for computing the products ΔlwK(xl), − L ≤ l ≤ L. Because we
begin with the largest β, the beamwidth is initially wider than
desired, and thus the absolute value of the beampattern at
azimuth φ � φd + 1

2φB is greater than 1/
�
2

√
. Therefore, to

check whether bφ > φB, it is sufficient to evaluate the absolute
value of the beampattern at azimuth φ � φd + 1

2φB and check
whether it is greater than 1/

�
2

√
, requiringMmultiplications. Let B

denote the number of window shape factor options. The
beampattern is evaluated up to F + B times per window support
option, thus evaluated for up to a total of (F + B)L times. Altogether,
the first part of the algorithm requires O(M2(F + B))
computations.

In the second part of the algorithm, calculating the DF requires
M multiplications for calculating the weights and M2 + M
multiplications for the matrix multiplications, per frequency
and window support option. Therefore, requires O(M3F)
computations.

In total, Algorithm 1 requires O(M2(MF + B)) computations.

4.2 Symmetric Linear Array Sensor
Positioning
Our goal is to find where to position the sensors such that the DI
is maximized while using the weight design proposed in the
previous subsection. Formally,

maximize
xl, −L≤ l≤L

DI fL ,fH[ ], (51)

where the weights are attained using Algorithm 1; these weights
fulfill the constraints in (45). A brute force search over all possible
positions is infeasible. So, we first present an iterative algorithm
for determining the sensor positions. The resulting performance
is an upper bound on the DI (using the weight design proposed in
the previous section). Afterward, we present a simpler algorithm
that achieves competitive performance.

4.2.1 Iterative Algorithm
The sensor positions are iteratively updated to maximize the DI
using the Nelder-Mead simplex algorithm (Lagarias et al., 1998).
A set of L variables represent the sensor positions xl{ }Ll�1. The
DI[fL ,fH] is evaluated in each iteration by constructing the
symmetric array by (44), finding the beamformer’s weights
according to Algorithm 1, and finally calculating the DI with
(16). The algorithm is initialized multiple times with different
starting points to ensure that a global maximum is found.
Therefore, the resulting DI is an upper bound on the DI
(using the weight design proposed in the previous section).

FIGURE 3 | The left subplots (A) illustrate the weight values of the arrays: (1) proposed, (2) Son, (3) Long, and (4)Ward. For each array, the weights are given per
sensor as a function of frequency. The right subplots (B) illustrate the beampatterns. The overlayed dashed line is the half-power contour of the mainlobe.
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4.2.2 Non-Iterative Algorithm
In this section, we outline steps to achieve a constant beamwidth
over a maximum range of frequencies. Afterward, we modify one
of the steps to improve the DI at the expense of reducing the
frequency range.

The algorithm is initialized with a symmetric linear array with
M0 = 2L0 + 1 (<M) sensors. When these sensors are active, the
lowest frequency that can maintain the desired beamwidth is
attained using the widest window (β = 0). Denote this frequency
by f(L0)

min . We add a pair of sensors with symmetric positions.
Denote by d(L0+1) the interelement spacing between the new
sensor to the previously outermost sensor. It is desirable for
d(L0+1) to be large so that the array can support low frequencies.
However, if it is too large, the beamwidth at higher frequencies
(specifically, at f(L0)

min ) is too narrow. So, d
(L0+1) is chosen such that

above f(L0)
min the new pair of sensors are inactive and below f(L0)

min
the new pair of sensors are active. Therefore, we increase d(L0+1)
so long as the array can maintain the desired beamwidth at f(L0)

min .
Because f(L0)

min is the highest frequency that the new sensors are
active at, the desired beamwidth is attained there with the
narrowest window: β = βmax (= 10). The process of adding a
pair of sensors is repeated until the array consists of M sensors.

As displayed in the results, the sidelobes are high for low values
of β: decreasing the DI. Therefore, we limit the widest window to

β = βmin > 0. This modification improves the DI but reduces the
frequency range because the beampattern cannot be as narrow as
when β = 0. We need to initialize with M0 = 5 sensors because
three cannot attain a narrow enough beamwidth at fH = 8 kHz
without exhibiting high sidelobes. An option how to choose the

Algorithm 2 | Algorithm for computing the optimal sensor positions.

FIGURE 4 | (A) Beamwidth, (B) WNG, and (C) narrowband directivity
factor as a function of frequency: proposed (solid line), Son (dashed line), Long
(dash-dot line), and Ward (dotted line). The obtained W[350 Hz, 8 kHz] are
respectively 7.8, 7.6, 9.5, and 9.2 dB. The obtained DI[350 Hz, 8 kHz] are
respectively 8.1, 6.7, 6.5, and 6.3 dB.

FIGURE 5 |Configurations of the arrays: iterative (triangles), non-iterative
with βmin = 0 (asterisks), and non-iterative with βmin = 1.36 (crosses).
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initial M0 sensors: a ULA with M0 sensors whose interelement
spacing is determined to maximize the DF at fH. The steps are
detailed in Algorithm 2.

The algorithm can be used to determine howmany sensors are
necessary to maintain a constant beamwidth over the frequency
band [fL, fH]. Once f ≤ fL, we can finish adding new pairs of
sensors. Once the positions are found with Algorithm 2, the
beamformer weights are obtained with Algorithm 1.
Computational Complexity of Algorithm 2:

As detailed in the complexity analysis of Algorithm 1, O(M)
operations suffice for checking whether bφ > φB. Let D denote the
number of position options. D is derived from the maximum
permissible array aperture and the resolution in which d(l) is
increased in each iteration. The beampattern is evaluated up to D
times in the part Find where to place the next pair of sensors, and
up to F times in the part Find lowest frequency that maintains the
desired beamwidth. Altogether, the beampattern is evaluated up
to D + F times. Therefore, Algorithm 2 requires O(M(D + F))
computations.

5 EXPERIMENTAL RESULTS

In this section, we examine the performance of our proposed
approach and compare it to existing methods. We first
examine linear arrays and compare our proposed iterative
and non-iterative algorithms to existing methods. Next, we
design planar arrays using the Kronecker and tradeoff
beamformers.

5.1 Comparison of Linear Array With
Previous Methods
In this section, we examine the performance of our proposed approach
and compare it to previous approaches using M = 11 sensors. The
desired half-power beamwidth is arbitrarily chosen to be φB = 15°. We
compare our design method to three other methods: the sparse array
design of Son (Son, 2021), the ULA design of Long et al. (Long et al.,
2019), and the logarithmically spaced array design ofWard et al. (Ward
et al., 2001). The array layouts are displayed in Figure 1.

Using the iterative algorithm proposed in the previous section,
the resulting sensor positions of the symmetric linear array (for
l ≥ 1) were [3.8, 7.9, 14.3, 29.2, 74.8] cm. To reproduce the array of
Son (Son, 2021), we set the reference beampattern to equal

sinc
φ − π

2

0.2955
( ), (52)

which has a half-power beamwidth of 15°. We also checked other
reference beampatterns, yet they resulted in similar performances

FIGURE 6 | Continuous Kaiser window parameters, (A) the window
shape factor, and (B) the index of the window support from the set 2xi{ }5i�1, as
a function of frequency: iterative (solid line), non-iterative with βmin =0 (dashed
line), and non-iterative with βmin =1.36 (dash-dot line).

FIGURE 7 | (A) Beamwidth, (B) WNG, and (C) narrowband directivity
factor as a function of frequency: iterative (solid line), non-iterative with βmin = 0
(dashed line), and non-iterative with βmin = 1.36 (dash-dot line). The obtained
W[0, 8 kHz] are respectively 7.8, 7.5, and 7.8 dB. The obtained
DI[0, 8 kHz] are respectively 7.6, 7.3, and 7.4 dB.
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as using (52). An initial sensor with the highest spanning energy
was chosen from a ULA with 2001 sensors and an interelement
spacing of 0.1 cm. The remaining 2000 sensors were divided into
five groups. From each group, two sensors closest to the group
centroid were chosen. Finally, the sparse array was created with
the 11 chosen sensors. Next, the weights were found. The
mainlobe error tolerances were 0.006E1 for φ ∈ [82.5°, 97.5°].
The sidelobe error tolerances were 0.028E2 for φ ∈ [0°, 82.5°) ∪
(97.5°, 180°]. Here, E1 = 31 and E2 = 330 were the number of
azimuth angles sampled (the resolution was 0.5°). To ensure that
the beamwidth was as desired, we added two constraints: that the
error tolerances were 0.0001 for φ ∈ {82.5°, 97.5°}. The resulting
sparse array was a symmetric linear array with real weights. The
ULA weights used by Long et al. (Long et al., 2019) were
reproduced using Algorithm 1, where the window support
was limited to only equal the support of the array, i.e., W ≡
2xL. For the comparison, we used an interelement spacing of
2.8 cm because it resulted in the largest DI[0, 8 kHz] while
attaining a beamwidth of at least 15° at all frequencies. To
reproduce the array of Ward et al. (Ward et al., 2001), we set
the reference beampattern to equal (52). We used a logarithmic
ratio of 3 (denoted byQ in (Ward et al., 2001)) because it resulted
in the highest DI.

The optimal window parameters (β andW for our array and β
for Long) were calculated using Algorithm 1 and are plotted in
Figure 2 as a function of frequency. As expected, for frequencies

with the same number of active sensors, β increases as the
frequency increases. This is necessary to counteract the
narrowing of the beampattern as the frequency increases.
Increasing β narrows the Kaiser window, which in turn
widens the beamwidth due to the inverse relationship between
the window width and the beamformer width. We also observe
that the number of active sensors (2i + 1) decreases as the
frequency increases. Reducing the number of active sensors
narrows the window, yielding an effect similar to increasing β.

The beamformer weights (computed by (50) for our array and
by (47) followed by normalization to fulfill (4) for Long) are
illustrated in Figure 3. For the proposed and Ward arrays, the
inner sensors are effectively inactive at low frequencies due to the
TIT (the TIT does not affect ULAs due to their uniform
interelement spacing). The outer sensors are given greater
weight due to their greater distance between adjacent sensors
(49). This enables maintaining the desired beamwidth at low
frequencies by effectively widening the window. With these
weights, the beampatterns were constructed according to (5)
and are illustrated in Figure 3. The beamwidth, WNG, and
DF are plotted in Figure 4 as a function of frequency. Son’s
method performance is only reported at frequencies where the
WNG is at least 0 dB (f ≥ 350 Hz). Our array maintained the
desired beamwidth down to 620 Hz, while Long could not hold
the desired beamwidth below 3.77 kHz. Ward’s array does not
exhibit a constant beamwidth; Ward needed more sensors to

FIGURE 8 | (A) Configurations of the arrays: proposed planar (triangles) and proposed star (squares). (B) Configuration of Son’s array (circles).

Frontiers in Signal Processing | www.frontiersin.org May 2022 | Volume 2 | Article 82946311

Frank and Cohen Constant-Beamwidth Beamforming

https://www.frontiersin.org/journals/signal-processing
www.frontiersin.org
https://www.frontiersin.org/journals/signal-processing#articles


succeed. Son’s array maintained the desired beamwidth down to
350 Hz but had lower WNG and DI than ours. Son’s and ours
arrays’ WNG was lower than Long’s and Ward’s due to fewer
active sensors at each frequency, as shown in Figure 3A.

From the DF, the DI was calculated using (16). The
DI[0, 8 kHz] of the proposed, Long, and Ward arrays are 7.6,
5.9, and 5.7 dB, respectively; the DI[350 Hz, 8 kHz] of the proposed
array is 1.4 dB better than Son’s. This demonstrates the advantage
of our proposed design.

5.2 Beamformer Weights Design
In this section, we discuss the properties of the proposed weight
design. We report the degradation in performance of the
proposed configuration when one of the design steps is omitted.

The TIT improved the DI[0, 8 kHz] by 0.6 dB and enabled
maintaining the desired beamwidth at lower frequencies (an extra
410 Hz), proving the technique’s added value. The TIT gives
larger weight to the outer sensors because of their greater distance
between adjacent sensors (49). This enables maintaining the
desired beamwidth at low frequencies by effectively widening
the window.

Sampling the continuous Kaiser window at the element
positions according to (48) led to a modest improvement of
0.05 dB over uniformly sampling the window according to
(47). The DI[0, 8 kHz] improvement when using continuous
values ofW without limitingW to the set 2xi{ }Li�1 was negligible
(0.01 dB), therefore, it is sufficient to limit the window support
to this set. Although, if we were to limit the window support to
only equal the support of the array, i.e., W ≡ 2xL, the
beamwidth would be narrower than 15° at frequencies above
1.63 kHz. This shows the merit of setting a subset of the
sensors to be active to widen the beampattern at higher
frequencies effectively.

FIGURE 9 | Planar arrrays’ beampatterns using the beamformers: (A) proposed Kronecker, (B) proposed tradeoff with α = 0.5, and (C) Son, for several
frequencies: (1) 2 kHz, (2) 5 kHz, and (3) 8 kHz.

FIGURE 10 | Beamwidths in the XZ and YZ planes as a function of
frequency of Son’s and our proposed planar beamformers.
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Last, we examine the performance when we limited the array
configuration to be an M = 11 sensor ULA. To find the ULA’s
optimal configuration, the iterative algorithm proposed in the
previous section optimized one variable that represented the
interelement spacing. The resulting interelement spacing of the
ULA was 4.1 cm and its DI[350 Hz, 8 kHz] was 7.2 dB—still better
than Son, Long, and Ward.

5.3 Non-iterative Algorithm’s Performance
Here we display the properties of our proposed non-iterative
algorithm for determining the sensor positions. We compare the
iterative and non-iterative algorithms. For the iterative algorithm,
we used the same array design as in the previous section. For the
non-iterative algorithm, we initialized with a ULA of M0 = 5
sensors with an interelement spacing of 3.4 cm. We used this
spacing because it maximized the DF at fH = 8 kHz.We initialized
with M0 = 5 sensors because three cannot attain the desired

beamwidth at 8 kHz without exhibiting high sidelobes. We set fH
= 8 kHz, M = 11, βmax = 10, and φB = 15°.

We constructed two arrays using the non-iterative algorithm
(detailed in Algorithm 2). For one array, we set βmin = 0, and for
the other array, we choose βmin = 1.36 so that the minimum
frequency for the desired beamwidth is the same as that obtained
with the iterative algorithm (620 Hz). The resulting sensor
positions are displayed in Figure 5. After the positions were
chosen, the optimal window parameters were found using
Algorithm 1 and are plotted in Figure 6. The beamwidth,
WNG, and DF are plotted in Figure 7 as a function of frequency.

For the array designed with βmin = 0, we see that as the
frequency decreases, right before another sensor is activated, the
window is as wide as possible (β = 0). For the array designed with
βmin = 1.36, we see that the optimal window parameter, β, is
sometimes less than 1.36. This is plausible because βmin was used
only for choosing where to place the sensors. Afterward,
Algorithm 1 may use any value of β.

We see that setting βmin > 0 resulted in improved directivity
compared to βmin = 0. As expected, the iterative algorithm produced
an array with a larger DI than the non-iterative algorithm.
Nevertheless, the DI[0, 8 kHz] obtained with the non-iterative
algorithm was only 0.2 dB smaller. This is beneficial considering
the computational simplicity of the non-iterative algorithm
compared to the iterative algorithm: no optimization toolbox is
needed for the non-iterative algorithm.

5.4 Planar Array
This section compares our proposed techniques for constant-
beamwidth beamforming for planar arrays to Son’s design (Son,
2021) using 99 sensors. The array layouts are displayed in
Figure 8. The desired half-power beamwidths were arbitrarily
chosen to be θX = 15° in the XZ plane and θY = 30° in the YZ plane.

To construct the planar array, we first design two linear arrays. To
find the positions of the sensors, we use the non-iterative algorithm
proposed in the previous section: we design a symmetric linear array
with M = 11 sensors with a constant beamwidth of θX = 15° and
another symmetric linear array with N = 9 sensors with a constant
beamwidth of θY= 30°.We initializewith aULAofM0 = 5 sensorswith
an interelement spacing of 3.4 cm. For thefirst array, we set βmin = 1.36,
and for the second array, we set βmin = 1.00 so that the minimum
frequencies that the beampatterns still maintain the desired
beamwidths are both 620Hz. Fewer sensors are needed in the
second array because the desired beamwidth is wider. We use the
non-iterative algorithm instead of the iterative algorithm because of its
low computational complexity while attaining on-par performance.
The beamformer weights for the two symmetric linear arrays are
computed using Algorithm 1.

Based on the linear arrays’ sensor positions, we construct a
symmetric planar array with a total of MN = 99 sensors. For this
proposed layout, four different beamformer weight vectors are
compared. For Kronecker product beamforming, the weights are
given by the Kronecker product of the linear arrays’ weights (27).
Thebeamformerweights formaximumWNG, tradeoff, andmaximum
directivity are given by (43), where we set α ∈ {1, 0.5, 0.01}, respectively.

FIGURE 11 | (A)WNG, and (B)narrowbanddirectivity factor as a function of
frequency: Kronecker (solid line), max WNG (dashed line), tradeoff (dash-dot line),
max directivity (dotted line), and Son (thick solid line). The obtainedW[890 Hz, 8 kHz]
are respectively 13.5, 15.0, 14.9, 13.0, and 13.1 dB. The obtained
DI[890 Hz, 8 kHz] are respectively 14.4, 15.2, 15.5, 15.8, and 6.1 dB.
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To reproduce the array of Son (Son, 2021), we set the reference
beampattern to equal

sinc
θ

−0.1477 cos 2φ( ) + 0.4432
( ), (53)

which has a half-power beamwidth of 15° in the XZ plane and 30° in
the YZ plane. From a uniform planar array with 201 × 201 sensors
and an interelement spacing of 1 cm, an initial 30 sensors with the
highest spanning energy were chosen. The remaining sensors were
divided into 23 groups. From each group, three sensors closest to the
group centroid were chosen. Finally, the sparse array was created
with the 99 chosen sensors. Next, the weights were found. The
mainlobe error tolerances were 0.006E1 for θ ∈ [0°, 15°]. The sidelobe
error tolerances were 0.028E2 for θ ∈ (15°, 90°]. Here, E1 = 31 × 181
and E2 = 150, ×, 181 were the number of angles sampled (the
azimuth and elevation resolutions were 2° and 0.5°, respectively). To
ensure that the beamwidths were as desired, we added four
constraints: that the error tolerances were 0.0001 for (φ, θ) ∈ {(0°,
7.5°), (90°, 15°), (180°, 7.5°), (270°, 15°)}. The resulting sparse array
was not symmetric and had complex-valued weights.

With these weights, the beampatterns were constructed according
to (5) and illustrated for a few frequencies in Figure 9. The
beamwidths in the XZ and YZ planes of the proposed and Son’s

beamformers are plotted in Figure 10 as a function of frequency. The
beamwidths of the proposed beamformers were the same as the
beamwidths of the linear arrays upon which they were built. For the
Kronecker beamformer, this is due to property (28), and for the other
beamformers, this is due to the constraint (37). Therefore, the
proposed techniques maintained the desired beamwidth down to
620 Hz. Son’s arraymaintained the desired beamwidths at even lower
frequencies.We see in Figure 10 that Son’s beamwidth was narrower
than desired at some frequencies. This was because the beampattern
dipped below 1/

�
2

√
and then peaked back to 1/

�
2

√
at 1

2θY as
constrained.

The WNG and DF are plotted in Figure 11 as a function of
frequency. Son’s performance is only reported at frequencies where the
WNG is at least 0 dB (f ≥ 890Hz). Formost frequencies, theWNGs of
our design techniques were lower than Son’s. This was expected
because Son’s objective was to maximize the WNG. We also see
that the larger αwas for the proposed techniques, the larger theWNG.

From the DF, the DI was calculated using (16). The
DI[890 Hz, 8 kHz] of the proposed techniques were higher than
achieved by Son. This demonstrates the advantage of the proposed
techniques. We also see that the smaller α was for the proposed
techniques, the larger the DI. It is important to note that the tradeoff
beamformer has greater WNG and DI than the Kronecker

FIGURE 12 | Star array’s beampatterns using the beamformers: (A)maxWNG, (B) tradeoff, and (C)maxdirectivity, for several frequencies: (1) 2 kHz, (2) 5 kHz, and (3) 8 kHz.
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beamformer. The Kronecker beamformer’s performance is inferior
because it obtains the desired beamwidths without solving an
optimization problem.

A major advantage of our technique over Son’s is the
computational complexity. We report the running times on an
Intelⓒ Core™ i7-8550U CPU with 8 GB RAM with the code
implemented in MATLAB. For the tradeoff beamformer, it took
3 s to find the sensor positions for the two linear arrays using the non-
iterative algorithm, 17 s to compute the weights with Algorithm 1
(the resolution of β was 0.01), and 33 s to calculate the beamformer
weights (for all 801 frequencies). In total: less than 1min. On the
other hand, for Son, it took 279 s to choose the positions of the
sensors and 286 s to calculate the beamformer weights for one
frequency. To calculate for all 801 frequencies, Son’s technique
took more than 1,000 times longer than ours.

Last, we examine the performance when limiting the array
configuration to an 11 × 11 planar array with uniform spacing.
We construct two ULAs (each with M = 11 sensors) with an
interelement spacing of 4.2 cm to find the sensor positions. We
use this spacing because it results in the highestDI[0, 8 kHz] while
maintaining a beamwidth at least as wide as desired for all

frequencies. We use Algorithm 1 to find the weights for both
ULAs: for one the desired beamwidth was θX = 15° and for the
other the desired beamwidth was θY = 30°. From these two ULAs,
we construct a planar array (with an interelement spacing of
4.2 cm) where the weights are given by the tradeoff beamformer
(43) with α = 0.01 to maximize the directivity. ItsDI[0, 8 kHz] was
11.2 dB—lower by at least 1.3 dB than our proposed
nonuniformly spaced planar array beamformers, even though
it had 121 sensors. This is similar to what we have seen for the
linear arrays: the nonuniformly spaced array achieves greater DI.

5.5 Planar Array With Missing Sensors
In this section, we simulate a planar array with sensors only at
some of the grid positions. We use the same planar array design
from the previous section. However, we place sensors at only S =
39 out of the MN = 99 grid positions. In addition, we choose to
place the sensors in a way that resembles a star. The selected grid
positions are displayed in Figure 8 and called the star array.
Because only a subset of the grid positions is used, the Kronecker
product beamformer is invalid here. Therefore, we only compare
three different beamformers: the beamformers given by (43) with
α ∈ {1, 0.5, 0.01}, for maximum WNG, tradeoff, and maximum
directivity, respectively. With the beamformers’ weights, the
beampatterns were constructed according to (5) and are
illustrated for a few frequencies in Figure 12. The beamwidths
are shown in Figure 10. Even though we only placed sensors at a
subset of the grid positions, the beamformers still maintain the
desired beamwidth down to 620 Hz. The WNG and DF are
plotted in Figure 13 as a function of frequency. As expected,
the larger is α, the higher is theWNG and the lower is the DI. The
DI[890 Hz, 8 kHz] of the S = 39 sensor star array is still higher than
achieved by Son’s sparse 99 sensor array. This demonstrates the
advantage of the proposed technique.

We compare the performance of the star array to a 7 × 7 planar
array with uniform spacing. To find the positions of the sensors,
we construct two ULAs (each with M = 7 sensors) with an
interelement spacing of 4.3 cm. We use this spacing because it
results in the highest DI[0, 8 kHz] while maintaining beamwidths
that are at least as wide as desired for all frequencies. We use
Algorithm 1 to find the weights for both ULAs: for one the
desired beamwidth is θX = 15°, and for the other the desired
beamwidth is θY = 30°. From these two ULAs, we construct a
uniform planar array (with an interelement spacing of 4.3 cm)
where the weights are given by the tradeoff beamformer (43) with
α = 0.01 to maximize the directivity. Its DI[0, 8 kHz] is
8.7 dB—lower by at least 0.4 dB than our nonuniformly spaced
star array beamformers, even though it has 49 sensors. This once
again shows the value of using a nonuniformly spaced design.

6 CONCLUSION

We have proposed planar beamformers that yield different
beamwidths in the XZ and YZ planes by designing constant-
beamwidth linear arrays. The planar beamwidths equal the
linear array beamwidths for all frequencies. The first technique
involves utilizing Kronecker product properties, whereby no

FIGURE 13 | (A) WNG, and (B) narrowband directivity factor as a
function of frequency for the star array beamformers: max WNG (dashed line),
tradeoff (dash-dot line), and max directivity (dotted line). The obtained
W[890 Hz, 8 kHz] are respectively 10.4, 10.3, and 9.2 dB. The obtained
DI[890 Hz, 8 kHz] are respectively 10.5, 10.8, and 11.0 dB.
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matrix inversion is needed to find the weights. Our second
technique provides a closed-form solution that allows a
tradeoff between WNG and directivity. The second
technique is applicable even when only a subset of the
sensors is used. Further research is needed to choose the
optimal subset of the sensors.

As a building block for the planar beamformer, we proposed a
method to find optimal sensors placements in a symmetric
nonuniform linear array and optimal beamformer to maximize
the DI. The design involves sampling the continuous Kaiser
window, varying the window support, and using the TIT.
Sampling the continuous Kaiser window at the sensor positions
is appropriate given the nonuniform interelement spacing of the
symmetric array. Varying the window support and the window
shape factor enables more control over the effective width of the
window. Using the TIT allows for maintaining the desired
beamwidth at low frequencies. Experimental results have shown
that the proposed techniques yield higher directivity and involve
lower computational complexity than the state-of-the-art.
Additionally, the resulting symmetric nonuniform arrays
outperform uniformly-spaced arrays. Future work will focus on
generalizing the proposed methods to three-dimensional arrays and
addressing the problem of constant-beamwidth steering with
nonuniform arrays.
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