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Hyperspectral imaging (HSI) is useful in many applications, including healthcare,
geosciences, and remote surveillance. In general, the HSI data set is large. The use of
compressive sensing can reduce these data considerably, provided there is a robust
methodology to reconstruct the full image data with quality. This article proposes a
method, namely, WTL-I, that is mutual information-based wavelet transform learning
for the reconstruction of compressively sensed three-dimensional (3D) hyperspectral
image data. Here, wavelet transform is learned from the compressively sensed HSI
data in 3D by exploiting mutual information across spectral bands and spatial
information within the spectral bands. This learned wavelet basis is subsequently used
as the sparsifying basis for the recovery of full HSI data. Elaborate experiments have been
conducted on three benchmark HSI data sets. In addition to evaluating the quantitative
and qualitative results on the reconstructed HSI data, performance of the proposed
method has also been validated in the application of HSI data classification using a deep
learning classifier.
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reconstruction

1 INTRODUCTION

Hyperspectral imaging (HSI) is an image acquisition method that combines optical spectroscopy and
optical imaging. The HSI image/data set consists of a set of images captured in a large number of
spectral bands. In HSI, radiation intensity measurements are acquired in many spectral bands of the
electromagnetic spectrum as opposed to only three spectral bands of red, green, and blue bands in the
conventional imaging systems. Thus, each pixel in hyperspectral images also contains spectral
information along the third dimension of the data cube (Chang, 2003). Of late, HSI applications have
been extended from remote sensing (Schowengerdt, 2006; Khoshsokhan et al., 2019b; Yu et al., 2022)
to healthcare, astronomy, pharmaceuticals, geosciences (Geladi, 2007), mineralogy (Bajorski, 2012),
agriculture (Xie et al., 2013), military remote surveillance (Chen et al., 2012), and landform
classification (Prasad et al., 2012).

With advances in acquisition techniques in HSI, the amount of hyperspectral data has seen a rapid
surge that poses challenges in data transmission and data storage. This problem has led researchers to
explore solutions for efficient data acquisition and transmission systems, particularly compressive
sensing (CS) methods that work at sub-Nyquist rates. Compressive sensing of data leads to under-
determined set of linear equations that need to be solved to recover the full data. In general,
optimization frameworks are utilized with constraints such as sparsity of the signal in some

Edited by:
Marco Cagnazzo,

Télécom ParisTech, France

Reviewed by:
Hadi Zayyani,

Qom University of Technology, Iran
Ke Gu,

Beijing University of Technology,
China

*Correspondence:
Anubha Gupta

anubha@iiitd.ac.in

Specialty section:
This article was submitted to

Image Processing,
a section of the journal

Frontiers in Signal Processing

Received: 13 January 2022
Accepted: 16 March 2022
Published: 02 May 2022

Citation:
Gehlot S, Ansari N and Gupta A (2022)

WTL-I: Mutual Information-Based
Wavelet Transform Learning for

Hyperspectral Imaging.
Front. Sig. Proc. 2:854207.

doi: 10.3389/frsip.2022.854207

Frontiers in Signal Processing | www.frontiersin.org May 2022 | Volume 2 | Article 8542071

ORIGINAL RESEARCH
published: 02 May 2022

doi: 10.3389/frsip.2022.854207

http://crossmark.crossref.org/dialog/?doi=10.3389/frsip.2022.854207&domain=pdf&date_stamp=2022-05-02
https://www.frontiersin.org/articles/10.3389/frsip.2022.854207/full
https://www.frontiersin.org/articles/10.3389/frsip.2022.854207/full
https://www.frontiersin.org/articles/10.3389/frsip.2022.854207/full
http://creativecommons.org/licenses/by/4.0/
mailto:anubha@iiitd.ac.in
https://doi.org/10.3389/frsip.2022.854207
https://www.frontiersin.org/journals/signal-processing
www.frontiersin.org
https://www.frontiersin.org/journals/signal-processing#articles
https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org/journals/signal-processing#editorial-board
https://doi.org/10.3389/frsip.2022.854207


transform domains to recover a unique solution from infinite
possible solutions of the under-determined set of equations.

For a specific hyperspectral data set, the task may be to
perform classification (Yu et al., 2022), band selection (Shang
et al., 2021), unmixing (Khoshsokhan et al., 2019a; Khoshsokhan
et al., 2019b), or reconstruction. This article proposes a novel
reconstruction framework for the compressively sensed
hyperspectral data set. Optimization frameworks for
compressive sensing-based reconstruction involve
minimization of a loss function under some predefined
constraints on the characteristics of signals. For example, a
loss function involving total variation (TV) and nuclear norm
constraints was minimized by Golbabaee and Vandergheynst
(2012b). These two constraints, respectively, capture the piece-
wise smoothness (due to spatial correlation) and low-rank
structure of the HSI data. However, this approach (Golbabaee
and Vandergheynst, 2012b) ignores the spectral correlation in
HSI. Similarly, the l2,1 norm is optimized by Golbabaee and
Vandergheynst (2012a) to exploit the spectral and spatial
correlation along with the nuclear norm to capture the low-
rank structure in HSI. A downside of this method is the
assumption of same sparsity support for all the bands that
limits the complete utilization of the spectral similarity. To
overcome this limitation, the Manhattan distance-based
function along with TV norm and nuclear norm has been
used in Zhang and Zhang (2018) to capture the spectral
correlation, spatial correlation, and the low-rank property.
There have also been attempts to model the sparsity structure
in the signals that lead to better reconstruction performance
(Chen et al., 2014; Zhang et al., 2015). For example, a re-weighted
Laplace prior is used in Zhang et al. (2015) to learn the structure
of the sparse coefficients. In fact, all the aforementioned methods
(Golbabaee and Vandergheynst, 2012a; Chen et al., 2014; Zhang
et al., 2015; Zhang and Zhang, 2018) utilized a predefined
dictionary as the sparsifying basis. The sparsification level of a
signal depends on the sparsifying bases. One basis can provide
more sparsification than the other, depending on the structure of
the signal. Hence, it is more intuitive to employ a learned
dictionary (Aharon et al., 2006; Ravishankar and Bresler,
2011). In Zhang et al. (2016), a blind dictionary approach is
presented to learn a structured dictionary directly from the
samples obtained through the measurement matrix. This
approach also takes into consideration the sparsity structure of
the data. Again, these methods (Zhang et al., 2015; Zhang et al.,
2016) exploit only the spectral correlation without utilizing the
spatial correlation in the HSI.

The proposed method uses a data-dependent sparsifying basis
that characterizes the spectral and spatial sparsity of the HSI data.
The sparsifying basis required in compressive sensing
applications is actively being learned via transform learning
(TL) or blind dictionary learning (DL) (Ravishankar and
Bresler, 2015) because it adapts to signals of interest and
performs better than discrete cosine transform (DCT) or
discrete wavelet transform (DWT) in CS. However, the
optimization framework of blind compressive sensing with
joint learning of transform basis and its coefficients is
generally non-convex with no closed-form solution. This leads

to computationally expensive solutions. Before the emergence of
dictionary learning approaches (Yaghoobi et al., 2009; Ataee et al.,
2010), wavelets were a preferred choice as the sparsifying basis in
a number of applications. This is due to the availability of a
number of wavelet bases, where one can choose the basis of
interest for an application. Furthermore, the ability to design a
wavelet basis motivated researchers to learn wavelets for signals of
interest (Sweldens, 1996; Gupta et al., 2005a; Gupta et al., 2005b;
Ansari and Gupta, 2015), instead of trying different wavelets in an
application. In the recent past, compactly supported wavelets
have been learned for one-dimensional (1D) signals in the
application of compressively transmitted ECG signals for
telemedicine (Ansari and Gupta, 2019), for natural images
(Ansari and Gupta, 2018b), for the reconstruction of
compressively sensed images (Ansari and Gupta, 2016), and
for non-separable 2-dimensional (2D) wavelet learning (Ansari
et al., 2016). Similarly, a lifting framework of rational wavelet
learning has been proposed (Ansari and Gupta, 2018a). While the
traditional TL or DL requires learning a large number of
parameters, wavelet transform learning (WTL) requires
learning wavelet filter coefficients that are significantly less
than dictionary learning. Thus, a small number of parameters
are required to be learned with wavelet transform learning
compared to the traditional transform learning or dictionary
learning. This leads to computationally efficient learning of the
basis using a small data size. However, so far, to the best of our
knowledge, no work has been done to learn wavelets for
hyperspectral images.

In this study, we applied the wavelet transform learning
(WTL) approach in HSI imaging and proposed closed-form
solutions for WTL from HSI data. We proposed wavelet
transform learning for 3D HSI images, where the method for
2D images (Ansari and Gupta, 2017) is used for transform
learning in the x − y spatial plane and a new information
theory-based method is proposed to learn the wavelet
transform along the spectral direction. Since the partial
canonical sensing identity (PCI) sensing matrix is significantly
simple and time-efficient compared to the Gaussian and
Bernoulli sensing matrices, although with slightly inferior
performance by approximately 2 dB (Ansari and Gupta, 2017),
we used PCI sensing matrix-based HSI data recovery.
Furthermore, we utilized recently proposed multi-level
L-pyramid wavelet decomposition (Ansari and Gupta, 2017)
that provides better performance on images. The salient
contributions of the work are as follows:

1) We proposed an information theory-based method of wavelet
transform learning (WTL) for 3D HSI images that exploits
information of spatial and spectral directions. To the best of
our knowledge, this is the first work on wavelet transform
learning for hyperspectral images.

2) We proposed an integrated framework of data recovery and
wavelet transform learning, where the WTL is learned from
the compressively sensed data.

3) We utilizedmulti-level L-pyramid wavelet decomposition that
yields better performance than the traditional multi-level
wavelet decomposition.
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4) We carried out extensive tests on three benchmark HSI
datasets to evaluate the performance of the proposed
methodology.

5) We also validated the method on the application of deep
learning based classification. The proposed method is
observed to perform better than the two state-of-the-art
CS-based reconstruction methods in HSI.

2 METHODS

The proposed WTL-I method (Figure 1) is a joint data recovery
and wavelet transform learning method for the compressively
sensed 3D HSI data. The work pipeline contains two stages for
wavelet transform learning and the third stage for data recovery.
The performance is assessed in terms of reconstruction accuracy.
Furthermore, the quality of reconstructed images is evaluated in
the application of HSI data classification using deep learning
classifier. Better classification results are obtained on the images
reconstructed via the proposed WTL-I method compared to
those reconstructed via other methods. The complete
workflow of this work is shown in Figure 1.

2.1 Stage 1: Coarser HSI Data Recovery
In this stage, we recovered a coarser estimate of the HSI data from
compressively (partially) sensed measurement data. The HSI data
is a 3D data, as shown in Figure 6. Separable orthogonal
Daubechies wavelet transform (namely, dB4 with filter length
8) is used as the sparsifying transform for each spectral band of
the HSI data set for the recovery of compressively sensed data.
Thus, each spectral band of HSI data is recovered separately. For
example, compressively sensed data of the kth spectral band is
represented in the vector form as xk =Φkyk, where yk denotes the
original data required to be recovered andΦk denotes the sensing
matrix. The partial canonical identity (PCI) sensing matrixΦk, as
suggested by Ansari and Gupta (2017), is constructed separately
for each of the kth band as follows. First, Φk is initialized to an
identity matrix. Next, rows of Φk, which correspond to pixel
positions not available in xk, are dropped. For example, let us say

that the pixel at the second position of yk is not sensed and hence
is not available in xk. Then the second row of the identity matrix
will be dropped. Next, the basis pursuit (BP) optimization
method is used to recover the signal ~yk, as follows:

~sk � min
sk

‖sk‖1 subject to : xk � ΦΨsk � Φyk, (1)

where Ψ corresponds to any standard wavelet. We used
orthogonal dB4 wavelet in stage 1. The coarser approximation
of the signal is obtained as ~yk � Ψ~sk. We solved the
aforementioned optimization problem using SPGL1 (Berg and
Friedlander, 2008; Berg and Friedlander, 2015). This is repeated
for all k spectral bands.

2.2 Stage-2:Wavelet Transform Learning for
Individual Spectral Bands
We used the signal reconstructed in the previous step to learn
wavelet for each of the spectral band using the method presented
in Ansari and Gupta (2017). For the sake of completeness, the
method is presented in brief.

First, we converted a given kth spectral band image into two
1D signals: one with column-wise scanning and another with
row-wise scanning (refer to Figure 2). Next, wavelet is learned for
row space and column space separately using the two signals
constructed before. Thus, we learned a separable wavelet
transform for each of the spectral bands. To illustrate the
process of learning, let us first consider column-wise vector for
any spectral band. We required learning a 2-channel wavelet
system, as shown in Figure 3.

This is done by using the lifting framework, as shown in
Figure 4. First, the analysis wavelet filter is learned in the predict
stage, followed by the synthesis wavelet filter in the update stage,
as follows:

1) Predict Stage: The filters are initialized with F0(z) = 1, F1(z) =
z,G0(z) = 1, and G1(z) = z−1, in Figure 3. This is called the lazy
wavelet. Next, the predict stage filter P(z) is required to be
learned. For this, the coarser version of original signal ~yk

FIGURE 1 |Complete workflow. The proposed method consists of three steps: 1) reconstruction of coarser HSI data with conventional sparsifying basis, 2) learning of
the sparsifying basis from this coarser HSI data, and 3) using the learned sparsifying basis to reconstruct the HSI data. Finally, the quality of reconstructed HSI data is
evaluated via standard reconstruction metrics and via an application.
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estimated in stage 1 is applied as input to the filter bank, and we
obtained even and odd sampled streams ~ye(n) and ~yo(n),
respectively, as shown in Figure 4A. We passed even indexed
samples ~ye(n) through the predict stage filter andwrote the output
of the lower subband signal, shown in Figure 4A, as follows:

~v−1 n[ ] � ~yo n[ ] − ~ye n[ ]pp n[ ]
� ~yo n[ ] − ∑

Lp−1

k�0
p k[ ]~ye n − k[ ],

� ~yk 2n + 1[ ] − ∑
Lp−1

k�0
p k[ ]~ye n − k[ ],

(2)

where * is the convolution operator and Lp is the length of the
predict stage filter p[n] with its Z-transform given by P(z) = Z{p
[n]}. For good prediction, a sample (here, odd indexed) should be
predicted from its immediate past and immediate future
neighbors that requires a careful choice on the predict stage
filter provided by Theorem 1 of Ansari and Gupta (2017). Here,
the signal ~v−1 is considered as being obtained by passing the
original signal y through any (non-matched to input signal)
wavelet system and hence is viewed as the noisy version of the
detail coefficients v−1 that could have been obtained from a 2-
channel wavelet system that is matched to this signal. Thus, (2) is
re-written in the matrix form as follows:

~v−1 � Ap + ζ , (3)
where A is the convolution matrix consisting of even and odd
indexed samples of ~y and p denotes the vectorized form of predict
stage filter p[n] or P(z). We solved for p in (3) using the least
squares method with the closed-form solution as follows:

p � A′A( )−1A′~v−1, (4)

where ′ denotes the transpose operation. We substituted (4) in (5)
and (6) to update the analysis high-pass and synthesis low-pass
filters and obtain new filters Fnew

1 (z) and Gnew
0 (z), respectively, as

follows:

Fnew
1 z( ) � F1 z( ) − F0 z( )P z2( ), (5)

Gnew
0 z( ) � G0 z( ) + G1 z( )P z2( ). (6)

Thus, we notice that the predict step modifies the high-pass
filter of the analysis end and low-pass filter of the synthesis end.

2) Update Stage: In the update stage, update polynomial Q(z) is
learned. To achieve this, we wrote the output of the upper
subband signal using the lower subband signal, ~v−1[n] (refer to
Figure 4), as follows:

~u−1 n[ ] � ~ye n[ ] + ~v−1 n[ ]pq n[ ], (7)
where q[n] is the time domain description of the update stage
filter Q(z). Filter q[n] is chosen such that the elements of the
upper branch are updated using its nearest neighbors. The
corresponding structure for q[n] is provided by Theorem 2 of
Ansari and Gupta (2017). This subband signal ~u−1[n] is passed
through a 2-fold upsampler, yielding signal ~y1u[n] that is then
passed through the synthesis low-pass filter gnew

0 [n] updated in
the predict stage mentioned earlier. This provides us the signal
~y1[n] (refer to Figure 3) reconstructed from the upper subband
and is given as follows:

~y1 n[ ] � ~y1u n[ ]pgnew
0 n[ ]. (8)

With the assumption that the variations in horizontal or the
vertical direction of any spectral band image are slow, signal
~y1[n] reconstructed in the upper subband would be in close
approximation to the input signal ~y. This assumption helps in
solving for the update stage filter, as follows:

q̂ � min
q

∑
n

~y1 n[ ] − ~y n[ ]( )2. (9)

From (7) and (8), it is clear that ~y1 can be written in terms of
update stage filter q[n] that can be obtained on solving (9)
using the least squares method. Correspondingly, the analysis
low-pass filter F0(z) and the synthesis high-pass filter G1(z) are
updated to Fnew

0 (z) and Gnew
1 (z) using (10) and (11),

respectively, as follows:

FIGURE 2 | (A) Column-wise serpentine scanning. (B) Row-wise serpentine scanning as proposed in Ansari and Gupta (2017).

FIGURE 3 | Two-channel bi-orthogonal wavelet system.
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Fnew
0 z( ) � F0 z( ) + F1 z( )Q z2( ), (10)

Gnew
1 z( ) � G1 z( ) − G0 z( )Q z2( ). (11)

Thus, we learned the wavelet for one of the directions of the
kth spectral band. The aforementioned method of learning
wavelet for 1D signals is applied on row-scanned and column-
scanned signal of the kth spectral band image and corresponding
wavelet is learned for the row space and the column space
separately. This process is repeated to learn two-dimensional
separable wavelet for each of the spectral band image.

2.3 Stage 3: Learning Wavelet for the
Spectral Direction Using the Mutual
Information of Spectral Band Images
The mutual information (MI) measures the mutual dependence
between two random variables. It is a quantitative measure to
ascertain the amount of information that can be obtained about
one random variable by observing the other random variable. The
concept can be extended to 1D signals or images and is computed
using the entropy of a random variable as explained next.

The entropy represents the expected randomness or the
information contained in a random variable X as follows:

H X( ) � −∑
x

p x( )log p x( )( ). (12)

Similarly, the joint entropy between two random variables X
and Y is represented as follows:

H X,Y( ) � −∑
,y

x, y( )log p x, y( )( ). (13)

The mutual information (MI) between two random variables
X and Y is given as follows:

I X;Y( ) � H X( ) +H Y( ) −H X,Y( ). (14)
For two images, A and B, (14) can be represented as follows

(Pluim et al., 2003):

I A,B( ) � ∑
a,b

p a, b( )log p a, b( )
p a( )p b( ), (15)

where p(a), p(b), and p(a, b) are the probabilities of random
variables of images A and B and can be estimated with histogram
method. MI represents the information that A contains about B
and can be used to measure the similarity between two images
(Viola and Wells, 1995; Wells et al., 1996; Russakoff et al., 2004).

For hyperspectral images, mutual information finds application
in band selection (Amankwah, 2015), classification (Champa
et al., 2020), segmentation (Lin and Zhang, 2020), and features
reduction (Islam et al., 2020).

In this work, we proposed to utilize mutual information
between spectral bands of an HSI image to learn a sparsifying
wavelet for the spectral direction. Similar to the theory of learning
a sparsifying basis for the spatial direction, a basis is required to be
learned for the spectral dimension. It requires to capture the best/
compact representation of the information contained in all the
bands of the HSI image. MI between the bands can efficiently help
to design such as basis because it captures the inter-band
information. To the best of our knowledge, this is the first
work to propose the use of an inter-band MI matrix for
learning the wavelet sparsifying basis for the spectral direction.

Consider a data cubeYm×n×l. We created a mutual information
matrix ρl×l such that (i, j) entry records the mutual information
between the ith and the jth band. Specifically, ith row of ρl×l has
mutual information of ith band with all the bands. In this way, we
obtained a symmetric matrix with diagonal containing the mutual
information between the same bands. This matrix is able to
capture the similarity between the bands. We used this matrix
as an image and learn the sparsifying basis for the spectral
direction using the method outlined in Subsections 2.1 and
2.2. Since the matrix is symmetric, both the row-scanned and
the column-scanned signals yield the same wavelet. Figure 5
shows the coefficients of dB4 wavelet, DCT, and the learned
wavelet for a single pixel’s intensities along different spectral
bands. It is evident that the learned wavelet provides better
sparsity than both DCT and a standard wavelet dB4.

2.4 HSI Data Reconstruction Using Learned
Wavelet
The workflow of the proposed WTL-I method is shown in
Figure 1. First, the coarser version of full HSI data is
constructed from the compressively sensed data using a
standard wavelet. Next, from this coarser signal, sparsifying
basis {Wr

i }1≤ i≤ l with Wr
i ∈ Rm×m, {Wc

i }1≤ i≤ l with Wc
i ∈ Rn×n

and Ws ∈ Rl×l are learned for spatial and spectral dimensions,
using the method discussed in Subsections 2.1, 2.2, 2.3. Each of
these matrices {Wr

i }1≤ i ≤ l and {Wc
i }1≤ i≤ l are learned from the ith

spectral band of the HSI data set Ym×n×l, whereas W
s is learned

from the mutual information matrix of the spectral band images.
These learned wavelets are used to recover the compressively
sensed HSI data set, where xk×1 = Φk×mnlymnl×1 with k ≪ mnl is
the vectorized form of compressively sensed signal ymnl×1 and

FIGURE 4 | Steps of lifting: split, predict, and update. (A) Wavelet decomposition; (B) wavelet reconstruction as proposed in Ansari and Gupta (2017).
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Φk×mnl is the sensing matrix. The following optimization problem
is used:

min
u

‖x −ΦLu‖22 + λ‖u‖1( ), (16)

where ~y � Lu is the coarser HSI data and λ is a regularization
parameter. Here, L is an operator that applies sparsifying basis
{Wc

i }1≤ i≤ l, {Wr
i }1≤ i≤ l and Ws. {Wc

i }1≤ i≤ l and {Wr
i }1≤ i ≤ l are

utilized on the ith spectral band using (16) and each of these
bands is recovered independently. Finally, Ws is applied on the
spectral dimension of the 3D matrix obtained by stacking the
wavelet coefficient planes of each spectral band. Again, u is
estimated by minimizing (16) and ~y is estimated as ~y � Lu,
which is then reshaped to recover the full 3D HSI data set ~Y.

3 MATERIALS

We have used three hyperspectral images for experiment
purpose. As a preprocessing step, we removed noisy channels
from all the HSI. We assumed a channel to be noisy if its pixels
contain noisy or no information about the underlying material.
Salinas (Salinas Dataset, 2019) scene is captured by AVIRIS over
Salinas Valley, California. It has 224 bands and 512 × 217 pixels.
We removed the noisy channels and crop the image to obtain a
final image of size 200 × 200 × 184. Urban (Urban Dataset, 2019)
scene has 307 × 307 pixels with each pixel corresponding to 2 ×
2-m2 area and 210 bands in 400–2500 nm wavelength range.
This image is preprocessed to remove the noisy channels and
finally cropped to have a size of 200 × 200 × 160. Jasper Ridge
(Jasper Ridge Dataset, 2019) scene has 512 × 614 pixels with 224
channels in 380–2500 nm wavelength range. A simpler version
of this data set with size 100 × 100 × 198 is also available. A
cropped version of this image with size 96 × 96 × 192 is

considered for experiments. The sample band for these data
sets is shown in Figure 6.

4 RESULTS AND DISCUSSION

Experiments are carried out to validate the proposed method.
Results are obtained by using different sparsifying basis to
optimize (16). The notations of different sparsifying basis used
in this work are as follows:

• db-D: Daubechies orthogonal (“db4”) wavelet along the
spatial dimensions and DCT along the spectral dimension.

• db-db: “db4” along all the dimensions.
• D-D: DCT along all the dimensions.
• WTL-D: learned wavelet transform along the spatial
dimensions and DCT along the spectral dimension.

• WTL-I: learned wavelet transform along all the dimensions,
where the spectral dimension’s wavelet is learned using
mutual information of spectral bands.

The multi-level L-pyramid wavelet decomposition strategy
(Ansari and Gupta, 2017), as shown in Figure 7 is used for
each of the kth spectral band.

4.1 Performance Metrics
To evaluate the quality of reconstructed images, the peak
signal-to-noise ratio (PSNR) (Peng et al., 2014) and spectral
angle mapper (SAM) (Peng et al., 2014) are used as the
performance metrics. the PSNR is expressed in decibels and
is used to measure the quality of the reconstructed image based
on mean squared error. It is defined as the ratio of the
maximum power of the signal to the power of noise
corrupting the signal.

FIGURE 5 | (A)Mutual information (MI) matrix for the data set “Urban”: a symmetric matrix with highest value along the diagonal that represents MI between same
bands. The proposed WTL-I framework utilizes the MI matrix for the spectral direction. (B) Sparsification with DCT and the learned wavelet. A sparser signal has faster
decaying coefficients such that themajority of total energy is accumulated in a fewer number of coefficients. The normalized coefficients are obtained by normalizing each
coefficient with the maximum-value coefficient. Wavelet transform learning (WTL) with the MI matrix for the spectral direction provides more sparsification than the
fixed DCT and db4 basis. Results are shown for a single pixel along the spectral direction.
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SAM represents the average angle between spectral
vectors of the reconstructed image and reference image at
each spatial position. PSNR increases, while SAM decreases
as a reconstructed image approaches closer to the
original image.

4.2 Impact of Sensing Matrices
Traditionally, Gaussian and Bernoulli measurement matrices are
used in hyperspectral compressed sensing. However, due to their
unstructured nature, they have high computational complexity (Do
et al., 2012). To overcome this, we used partial canonical identity
(PCI) sensingmatrix as suggested in Ansari and Gupta (2017). The
PCI sensing matrix is used for each of the kth spectral band.

For reconstruction with the PCI sensing matrix, we required
sensing only few pixel positions, unlike Gaussian and Bernoulli
matrices, where a linear combination of all pixels is captured, and
hence, all the pixels are required to be sensed. Thus, PCI reduces
the time complexity as well as the memory requirement of the
algorithm. To validate this point, we used the PCI sensing matrix
as a measurement matrix and compared its performance with
Gaussian and Bernoulli measurement matrices in terms of
reconstruction accuracy and time complexity, as shown in
Figure 8.

Results in Figure 8 indicate that the reconstruction accuracy
with the PCI sensing matrix lags behind performance with
Gaussian and Bernoulli sensing matrices only by ≤ 3db for
sampling ratio (SR) ≥ 20%. This lag in performance can be
easily bridged with the proposed wavelet learning based
reconstruction as seen in the next Subsection. However,
Figure 8 reveals that the time complexity with the PCI
sensing matrix is very low at all SR as compared to other two
measurement matrices. This makes the PCI sensing matrix ideal
for real-time applications. In fact, the PCI sensing matrix has
considerably reduced time complexity and memory requirement

FIGURE 6 | Hyperspectral images used in experiments. (A) Urban, (B) Jasper Ridge, (C) Salinas, (E) 90th band of Urban, (F) 30th band of Jasper Ridge, and (G)
40th band of Salinas.

FIGURE 7 |Multi-level wavelet decomposition of image using the 3-level
L-pyramid wavelet decomposition as proposed in Ansari and Gupta (2017)
Notations: (A) denotes Highpass filtering and (B) denotes lowpass filtering.

FIGURE 8 | Reconstruction accuracy (A) and time complexity (B) with different measurement matrices for the data set “Urban.” db-D is used as the sparsifying
basis to generate these results. Reported values are obtained by averaging values across all the bands. PCI provides similar SNR but with significantly reduced time
complexity.
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with eventually no loss of performance in the reconstruction
accuracy when used with the learned wavelet. Henceforth, the
PCI sensing matrix is used in all the experiments.

4.3 Comparison of Different Methods
The proposed WTL-I method or the learned sparsifying basis is
compared in a number of ways in terms of reconstruction
accuracy. First, we compared the proposed WTL-D and WTL-
I methods with db-db, db-D, and D-D sparsifying basis. We also
compared the performance of WTL-D and WTL-I with two
existing state-of-the-art methods: 1) re-weighted Laplace prior-
based hyperspectral compressive sensing (RLPHCS) (Zhang et al.,
2015) and 2) structured sparsity-based blind compressive sensing
(SSHBCS) (Zhang et al., 2016).

4.3.1 Reconstruction With Different Sparsifying Basis
We compared the reconstruction performance of different
methods mentioned before at different sampling ratios (SR).
The range is chosen to emphasize the reconstruction accuracy
at lower sampling ratios.

Table 1 presents the PSNR of the reconstructed images with
different methods at different SR. TheWTL-D andWTL-I lead at
lower SR as well as higher SR, where the performance margin is
higher at lower SR. This is due to the exploitation of the
underlying signal structure by the learned sparsifying basis.

TABLE 1 | PSNR of reconstructed HSI with different sparsifying basis at different
sampling ratios and 20 db SNR (best results are highlighted).

Urban

SR db-db db-D D-D WTL-D WTL-I

1 13.44 20.10 17.80 20.93 23.20
5 21.04 24.52 23.77 24.04 26.57
10 23.72 26.73 26.51 27.20 29.37
20 27.57 31.51 29.83 30.85 32.75
30 30.09 32.48 32.56 32.66 34.56

Jasper Ridge

SR db-db db-D D-D WTL-D WTL-I

1 11.51 17.85 15.61 21.27 20.72
5 21.36 22.41 21.06 24.24 27.02
10 23.98 24.55 25.20 26.90 30.90
20 26.83 27.95 28.15 30.17 33.15
30 27.57 30.04 30.61 32.27 34.59

Salinas

SR db-db db-D D-D WTL-D WTL-I

1 11.51 17.85 15.61 21.27 20.72
5 21.36 22.41 21.06 24.24 27.02
10 23.98 24.55 25.20 26.90 30.90
20 26.83 27.95 28.15 30.17 33.15
30 27.57 30.04 30.61 32.27 34.59

†Best results are indicated in bold.

FIGURE 9 | Reconstruction of 20th band of data set Salinas with different sparsifying basis at 20 db SNR and 5% SR. (A) Original band, (B) db-db, (C) db-D, (D)
D-D, (E) WTL-D, and (F) WTL-I.

FIGURE 10 | PSNR for reconstruction with different sparsifying basis at different noise levels. (A) Urban, (B) Jasper Ridge, and (C) Salinas. Results are shown at
20% SR.
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Also, WTL-I performs best with WTL-D performing second best
at majority of the SRs. This observation proves the advantage of
using learned sparsifying for spatial and spectral directions.

We have also presented visually one of the reconstructed
bands of Salinas data set (band number 20th). The
reconstruction is carried out at 5% SR and 20 db SNR and
resultant image is shown in Figure 9. Even at such low SR,
WTL-D and WTL-I are able to capture a relatively large number
of fine details as compared to those reconstructed with other
wavelets. This result is consistent with the relatively higher PSNR
of WTL-D and WTL-I observed in Table 1.

Experiments are also performed to show reconstruction
performance in noisy scenarios (Figure 10). The Gaussian
noise of varying variance is added to the original image to
obtain different SNR (10 − 20 db). It is observed that WTL-I
is leading other sparsifying basis in the reconstruction
performance of images corrupted at all the noise levels
considered. Although WTL-D is also performing better than
the other basis, it is lagging in a few cases. In conclusion,
learned sparsifying basis, specifically, when learned in both
spatial and spectral dimensions perform better at low SR as
well as at high noise levels.

4.3.2 Comparison With Prior-Based Methods
We have already established that learned sparsifying basis provide
better recovery of compressively sensed HSI data than different
combinations of conventional basis. Now, we will compare the
performance of WTL-D and WTL-I with two other methods,
RLPHCS (Zhang et al., 2015) and SSHBCS (Zhang et al., 2016).
We have used the codes provided by (Zhang et al., 2015) and
(Zhang et al., 2016) to generate the results with these methods.
Table 2 shows the PSNR of the reconstructed images at 20 db
SNR. For image Urban, SSHBCS is leading the RLPHCS at almost
all the SR. But, for image Jasper Ridge, RLPHCS is slightly leading
the SSHBCS and for image Salinas, RLPHCS is leading the
SSHBCS by a good margin. For all the images, learned
sparsifying basis based methods are leading the other two
methods by a large margin at lower SR and higher SR. We
also calculated the SAM of the reconstructed images
(Figure 11). The same pattern is observed with SAM, where
WTL-D andWTL-I lead other two methods, particularly at lower
SR. From PSNR and SAM metrics, it is observed that wavelet
transform learning based approach provides better recovery of
compressively sensed HSI data than the state-of-the-art methods
RLPHCS and SSHBCS.

The reconstructed image with these methods is shown in
Figure 12. The reconstruction is carried out at 5% SR and
25 db SNR. For image Urban, SSHBCS and RLPHCS have
suppressed the pixel intensities in the reconstructed image.
WTL-D and WTL-I, on the other hand, have generated an

TABLE 2 | PSNR of reconstructed HSI with WTL-D, WTL-I, SSHBCS, and
RLPHCS (best results are highlighted). The noise level is 20 dB.

Urban

SR RLPHCS SSHBCS WTL-D WTL-I

1 13.32 13.71 20.93 23.2
5 20.85 21.46 24.04 26.57
10 25.74 24.96 27.2 29.37
20 28.35 29.73 30.85 32.75
30 29.65 31.26 32.66 34.56
40 30.09 33.37 34.41 35.86

Jasper Ridge

SR RLPHCS SSHBCS WTL-D WTL-I

1 11.03 11.27 21.08 20.86
5 15.49 16.87 23.05 28.07
10 22.77 18.71 26.46 30.55
20 25.77 26.18 29.72 33.54
30 28.33 28.71 32.92 35.89
40 28.77 29.67 33.38 35.06

Salinas

SR RLPHCS SSHBCS WTL-D WTL-I

1 13.77 13.65 26.85 25.91
5 14.65 15.09 32.61 32.84
10 18.28 17.76 34.85 35.91
20 23.24 21.87 37.10 38.52
30 24.94 22.96 38.20 39.77
40 26.34 23.21 39.06 40.65

†Best results are indicated in bold.

FIGURE 11 | Reconstruction performance comparison of WTL-D, WTL-I, SSHBCS, and RLPHCS in terms of SAM for data sets: (A) Urban, (B) Jasper Ridge, and
(C) Salinas. Results are generated for images corrupted with noise, having an SNR of 20 dB.
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image that resembles the original image considerably. Also,
among WTL-D and WTL-I, WTL-I reconstruct the image
much closer to the original image. Same pattern is observed
for the image “Salinas” with WTL-I performing better than the
other methods. For image Jasper Ridge, the reconstruction is not
satisfactory with either of the methods. We have also computed
the PSNR and SAM of reconstructed images at different noise
levels. These results are shown in Table 3 and Figure 13. Results
indicate that WTL-D and WTL-I lead the other two methods at
all noise levels.

5 VALIDATION OF WTL-I IN THE
APPLICATION OF HSI CLASSIFICATION

Convolutional neural networks (CNNs) (LeCun et al., 2004;
Jarrett et al., 2009; Krizhevsky et al., 2012; Simonyan and
Zisserman, 2015; He et al., 2016; Gehlot et al., 2020a; Gehlot
et al., 2021; Goyal et al., 2021; Gupta et al., 2021) have been
used successfully in various applications to achieve satisfactory
performance (Goswami et al., 2020; Gehlot et al., 2020b; Gupta
et al., 2020; Gehlot and Gupta, 2021). Here, we have used a
CNN-based classifier (Figure 14) to ascertain the quality of

FIGURE 12 | Reconstruction using different methods: (from top to bottom) 110th band of image “Urban,” 55th band of image “Salinas,” and 10th band of image
“Jasper-Ridge.” (A) Original band, (B) SSHBCS, (C) RLPHCS, (D) WTL-D, and (E) WTL-I. Results are shown at 5% SR and 25 dB SNR.

TABLE 3 | PSNR of reconstructed images with SSHBCS, RLPHCS, WTL-D, and
WTL-I at different noise levels and 20% SR (best results are highlighted).

Urban

SNR RLPHCS SSHBCS WTL-D WTL-I

10 23.95 27.20 24.48 26.71
20 28.57 29.74 30.85 32.66
30 30.37 29.39 31.57 33.58
40 32.38 29.03 31.46 34.37

Jasper Ridge

SNR RLPHCS SSHBCS WTL-D WTL-I

10 23.95 27.20 24.48 26.71
20 28.57 29.74 30.85 32.66
30 30.37 29.39 31.57 33.58
40 32.38 29.03 31.46 34.37

Salinas

SNR RLPHCS SSHBCS WTL-D WTL-I

10 20.78 23.52 27.48 28.65
20 23.01 21.87 37.10 38.52
30 23.33 19.25 38.18 39.74
40 23.70 19.78 38.20 40.01

†Best results are indicated in bold.
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HSI data set reconstructed with different methods. To achieve
this, we performed pixel-wise classification of the original
image and the reconstructed images, and compared these

images with the ground truth. Results for an accurately
reconstructed image must not deviate much from the
ground truth. The image Salinas is used for this purpose
due to availability of its ground truth. This image is
reconstructed at 25 dB SNR and 25% SR. We have used
Salinas data set of size 512 × 216 × 184. This size is chosen
to retain all the classes of the data set as cropping might
remove some classes. Also, for comparison, we chose four
different methods: SSHBCS, RLPHCS, WTL-D, and WTL-I.

5.1 Training Procedure
Figure 14 shows the CNN architecture used for classification.
The stride used is two for convolutional layers and one for

FIGURE 13 | Comparative performance of SSHBCS, RLPHCS, WTL-D, and WTL-I in terms of SAM at different noise levels in CS-based recovery of HSI data: (A)
Urban, (B) Jasper Ridge, (C) Salinas. Results are generated at 20% SR.

FIGURE 14 | CNN architecture for classification.

FIGURE 15 |Classification of image Salinas using the trainedmodel. The images are reconstructed at 20%SR and 20 db SNR (A) ground truth. (B)Classification of
original image. Classification of image reconstructed with (C) SSHBCS, (D) RLPHCS, and (E) WTL-I.

TABLE 4 | Performance of original and reconstructed images. Results are at 20%
SR and 20 dB SNR.

Performance metrics for Salinas data set

Metric Accuracy Recall Precision F1-score

Original image .957 .957 .958 .956
SSHBCS .701 .701 .778 .690
RLPHCS .694 .694 .670 .665
WTL-I .951 .951 .952 .949
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pooling layers. We performed the training using the original data
set. As a preprocessing step, we extracted mean normalized
patches of size 13 × 13 for all the classes which are then given
as an input to the CNN. Adagrad optimizer with learning rate .01
and batch size of 100 is used to train the CNN. The experiments
are carried out using Nvidia GeForce GTX 1080 GPU and
Tensorflow 1.8 deep learning library. Once the model is
trained, we used it to classify the original hyperspectral image
and the reconstructed image. Both qualitative results and
quantitative results are reported to evaluate the classification
performance.

5.2 Results
We performed the classification of original image and
reconstructed image using the trained model (Figure 15). It is
observed that the model is performing well and classification
performance of the original image matched the ground truth
approximately. Some portions of the original image were
classified perfectly, but a few pixels were misclassified in some
regions. It is observed that the images reconstructed using
SSHBCS (Figure 15C) and RLPHBCS (Figure 15D) are
deviating considerably from the ground truth. On the other
hand, the images reconstructed using the learned wavelet
sparsifying basis performs considerably better and yielded
approximately the same results as the original image
(Figure 15E).

We can also verify aforementioned results using the
performance metrics. Table 4 shows the performance metric
results on both the datasets. It is observed that for the data set
Salinas, original image and the image reconstructed byWTL-I has
almost same values for all the metrics, while RLPHBCS and
SSHBCS are lagging by a large margin.

The lower performance of RLPHCS and SSHBCSmight be due
to the fact that they are exploiting only the spatial correlation and
not the spectral correlation. On the contrary, the proposed
approach is able to utilize spatial as well as spectral
correlation. Also, WTL-I performs better that WTL-D. This is
due to the application of learned sparsifying basis in all the three
directions unlike WTL-D, which is using DCT as the sparsifying
basis in the spectral direction instead of learning a basis from the
information in the spectral direction. The leading performance of
WTL-I also highlights the capability of mutual information
matrix to capture the spectral correlation. The sparsifying
basis learned with this matrix is performing better than the

conventional basis (dB4 or DCT). To summarize, learned
sparsifying basis applied in all the directions is able to better
capture the spatial and spectral correlation and hence, performs
better.

6 CONCLUSION

In this article, we proposed and validated wavelet transform
learning based method, namely, WTL-I, for the 3D HSI data
set and used it successfully in an inverse image problem of
compressive sensing-based reconstruction. We learned the
sparsifying basis for the spectral direction using the mutual
information between different spectral bands. We used a
partial canonical identity (PCI) sensing matrix for CS-based
reconstruction of hyperspectral images in place of existing
Gaussian or Bernoulli sensing matrices as former performs
much faster and hence is suitable for real-time time-bound
reconstruction-based applications. Even at as low as 5%
sampling ratio, the quality of recovery of the HSI data is
noteworthy. We also used CNN to perform pixel-wise
classification (leading to segmentation of HSI data) that
demonstrated the superior reconstruction capability of the
WTL-I method.
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