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Unet architectures are being investigated for automatic image segmentation of bones in CT
scans because of their ability to address size-varying anatomies and pathological
deformations. Nonetheless, changes in mineral density, narrowing of joint spaces and
formation of largely irregular osteophytes may easily disrupt automatism requiring
extensive manual refinement. A novel Unet variant, called CEL-Unet, is presented to
boost the segmentation quality of the femur and tibia in the osteoarthritic knee joint. The
neural network embeds region-aware and two contour-aware branches in the decoding
path. The paper features three main technical novelties: 1) directed connections between
contour and region branches progressively at different decoding scales; 2) pyramidal edge
extraction in the contour branch to perform multi-resolution edge processing; 3) distance-
weighted cross-entropy loss function to increase delineation quality at the sharp edges of
the shapes. A set of 700 knee CT scans was used to train themodel and test segmentation
performance. Qualitatively CEL-Unet correctly segmented cases where the state-of-the-
art architectures failed. Quantitatively, the Jaccard indexes of femur and tibia segmentation
were 0.98 and 0.97, with median 3D reconstruction errors less than 0.80 and 0.60 mm,
overcoming competitive Unet models. The results were evaluated against knee
arthroplasty planning based on personalized surgical instruments (PSI). Excellent
agreement with reference data was found for femoral (0.11°) and tibial (0.05°)
alignments of the distal and proximal cuts computed on the reconstructed surfaces.
The bone segmentation was effective for large pathological deformations and
osteophytes, making the techniques potentially usable in PSI-based surgical planning,
where the reconstruction accuracy of the bony shapes is one of the main critical factors for
the success of the operation.
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1 INTRODUCTION

Biomedical image segmentation has lately undergone an unprecedented push forward thanks to the
rapid accumulation of evidences about the promising performance of a novel generation of deep
convolutional neural networks (Litjens et al., 2017; Isensee et al., 2021). Such networks entail
encoder-decoder (E-D) architectures for processing both two-dimensional (2D) images and three-
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dimensional (3D) volumes, where the function of the decoder
path is to cast the low-resolution encoder feature maps to high-
resolution feature maps for pixel-wise classification. The Unet
(Ronneberger et al., 2015), a particular type of symmetric E-D
network with horizontal skip connections between the encoder
and decoder paths, proved effective in a wide range of medical
domains ranging from orthopaedics (Norman et al., 2018;
Noguchi et al., 2020; Marzorati et al., 2020), oncology (Huang
et al., 2018; Jin et al., 2020; Li et al., 2020), neurology (Gadosey
et al., 2020; McKinley et al., 2021) even up to histology (Falk et al.,
2019; Long, 2020; Zhou et al., 2020). In the wake traced by these
researches and aiming at addressing general purpose biomedical
image segmentation tasks, there has been recently a remarkable
attempt to gather and consolidate most of the earlier Unet
developments into a unique computational framework called
nnUnet (Isensee et al., 2021). Despite such a network
outperformed most of the earlier proposals in the literature to
a large extent, across many international challenges (D12
PROMISE12, D16 CHAOS, MICCAI 2019, MICCAI 2020,
D20-D23 Cell Tracking Challenge, just to cite few), the
ambition of the work was partially mitigated, recognizing
some fundamental aspects worth of further investigations.
Authors argued actually that: 1) very similar architectures may
lead to very varying results across datasets; 2) specific tasks may
require tailored loss function and highly domain-specific target
metrics as well; 3) none of the commonly used architectural
modifications, such as for instance batch normalization, residual
connections, and attention layers, may ensure a necessary
condition for reliable performance. In general, how to exploit
task-dependent knowledge for combining network hyper-
parameters, training setups, and loss functions remained
elusive. All these considerations have definitely wiped out the
idea that a single architecture, in a one-fits-all mode, can address
all segmentation applications. Concerning the osseous shape
segmentation from X-ray and CT images, 2D and 3D Unet
models have been investigated for musculoskeletal analysis
(e.g., bone age assessment), computer-assisted diagnostics, and
therapy purposes (e.g., joint replacement planning and bone
tumor resection). Weak bone boundaries, narrowness of joint
space, variability in bone density, size and shape were
acknowledged to be the main barriers to automatic bone
delineation (Ambellan et al., 2019; Chang et al., 2019). In
order to account for hand bone scale variations during growth
in children, 2D Unet, applied to X-ray images, was tailored by
leveraging multi-resolution with different filter sizes (Ding et al.,
2019). Mandibular bones in cranio-facial CT were segmented
using a 2D Unet processing concurrently three orthogonal planes
(Qiu et al., 2019). In order to handle large variations of shape and
density, automatic femur segmentation from CT scans was
addressed by enhancing the Unet with an in-line task-specific
edge detection processor and harnessing fusion of multi-scale
features (Chen et al., 2019). The quality of bone segmentation in
whole-body CT scans was evaluated by comparing three
alternative Unet setups harnessing 2D axial slices only, axial,
sagittal and coronal slices in bundle, and an approach where the
network was pre-trained using an unsupervised technique (Klein
et al., 2019). With a similar purpose, Unet architecture was

explored by evaluating different data augmentation strategies
to improve bone segmentation on whole-body CT scans
(Noguchi et al., 2020). However, such studies did not
addressed severe pathological bone deformation induced by
osteophytes formation, and disregarded how the effects of
local segmentation errors may impact differently across
clinical applications. In (Marzorati et al., 2020), our group
described one 3D-Unet model tailored to bone segmentation
in knee CT images, with a specific clinical aim towards knee
replacement applications based on personalized surgical
instruments (PSI) (Shih et al., 2020). PSI technique has been
acknowledged to be very demanding as submillimetric shape
reconstruction is fundamental for the success of the knee surgery,
especially at the areas of contact with the PSI of both femur and
tibia (Anderl et al., 2016; Cerveri et al., 2017; Ogura et al., 2019).
Provided that the coupling of the PSI to the true bone geometry
determines the bone resection alignment, uncontrolled
segmentation uncertainty may lead to unexpected angular
deviations away from the surgical planning [clinical acceptance
less than 1° (Gong et al., 2019; Shi et al., 2020)] affecting the
mechanical corrections of the knee joint or even leading to the
withdrawal of the PSI technique in favour of the traditional
invasive surgery based on intra-medullary tools (Ogura et al.,
2019). In (Marzorati et al., 2020) our group showcased (over a
dataset of 200 retrospective CT scans) that the achieved
segmentation quality was substantially good enough to cope
with PSI requirements. However, some severe deformations
and variability of the osseous density were shown to be still
critical affecting the segmentation quality especially at the
boundaries of condylar regions of the femur and tibial plateau.
In the present work, we evolved this Unet model (Marzorati et al.,
2020) into an innovative architecture, based on a two-channel
decoding branch, to simultaneously predict region and contour
masks, and exploit the contour information to improve the
quality of the segmentation at the shape boundaries. In order
to achieve this goal, in the decoding path a contour-aware (CA)
branch was enabled in parallel to the region-aware (RA) branch.
In (Chen et al., 2019), the authors proposed a modified Unet
architecture including an edge-detector path. However, the
information processed by such a path was not explicitly fed
into the region path, but only used to constrain the global loss
function during the training. In the present work, uni-directional
residual connections from CA to RA branch (Figure 1) were
inserted enabling the explicit aggregation of contour features to
region masks at increasing scales. According to some recent
contributions in the literature (Dangi et al., 2019; Ma et al.,
2020), which used the distance maps to constraint the loss
function, we extended such paradigm by implementing a
modification of the cross-entropy loss function embedding the
contribution of the distance-weighted map to increase
delineation quality at the sharp edges of the shapes. The
boundary reconstruction in the CA branch were boosted by
exploiting pyramidal edge extraction. In order to improve the
training quality and extend the generalization results, the dataset
was increased to 700 knees, featuring many different degrees of
bone deformation and osteoarthritis. Specific evaluation metrics
of the segmentation quality were proposed to cope with PSI-based
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surgical planning requirements. In this regard, traditional Dice
index and global 3D reconstruction accuracy do not provide
enough information to the clinical operator about the effects of
the segmentation residuals on the surgical planning. In this paper,
errors in salient regions of the shape were specifically evaluated
and the derived bone cutting alignment error was quantified.

2 METHODOLOGY

2.1 CEL-Unet Model
The developed network, called CEL-Unet, processed a CT volume
of the knee (size:Nx,Ny,Nz) to produce in output a corresponding
labeled volume with the semantically segmented femur and tibia.
According to the Unet architecture, the CEL-Unet embedded an
encoder path for feature extraction at decreasing spatial
resolution, along with a final encoding block, called the
bottleneck of the network. In each encoding processing block

(ePB), convolutional with linear activation, rectified-linear-unit
(Relu) and down-sampling max-pooling layers were embedded.
Taking a cue from ablation test results in the earlier work of our
group (Marzorati et al., 2020), the number of ePB was set to three,
the initial number of feature maps was set to 8 and doubled when
moving from one ePB to the next one. Each feature map was
characterized by a filter size and stride length of 3 × 3 × 3 and 1 ×
1 × 1, respectively. The max-pooling layers featured filter size and
stride length of 2 × 2 × 2 and 2 × 2 × 2, respectively. The
bottleneck featured convolutional (64 feature maps) and Relu
layers only (Figure 1). Unlike the Unet, the decoding path of the
CEL-Unet was split into two parallel branches, one devoted to
region segmentation (RA, region-aware branch) and the other
one addressing edge detection (CA, contour-aware branch).
Likewise the encoder path, increasing spatial resolution was
enabled through upsampling (transpose deconvolution) in
both decoding paths, where the number of convolutional
feature maps, starting from 32, were halved when moving

FIGURE 1 | CEL-Unet architecture featuring three E–D layers. Left part represents the encoding path ending into the bottleneck level. Skip connections (horizontal
blue connections) arise from the encoding path directed towards the two branches of up-sampling decoding path. The upper branch is devoted to the segmentation of
bone regions. The lower decoding branch is devoted to edge detection. In order to enhance the region segmentation, the output (vertical red connections) of each
decoding layer into the edge detection branch aggregates to the region decoding branch to the corresponding scale. Pyramidal edge extraction (PEE) is
implemented in each level of the edge detection branch.

Frontiers in Signal Processing | www.frontiersin.org April 2022 | Volume 2 | Article 8573133

Rossi et al. CT Image Segmentation

https://www.frontiersin.org/journals/signal-processing
www.frontiersin.org
https://www.frontiersin.org/journals/signal-processing#articles


from one decoding processing block (dPB) to the next one.
Likewise the encoder, convolution filter size was 3 × 3 × 3 with
stride length 1 × 1 × 1. Skip connections between the encoder
and the two decoder paths were allowed according to the Unet
architecture. The last layer of the region-aware decoding path
was a 1 × 1 × 1 depth convolution block with three output
channels, representing three classes, namely background, femur
and tibia, respectively, followed by a Softmax activation
featuring a tensor of size Nx × Ny × Nz × 3. Likewise, the
output of the CA branch had the same structure of the RA
branch output. In order to empower region segmentation, two
structural setups were deployed in the contour branch. First,
vertical unidirectional skip connections between the output of
each processing block and the corresponding one in the region
branch were inserted. This enabled the aggregation between
edge and region features at progressively increasing spatial
scales. Second, a devoted processing module, implemented
through the pyramidal edge extraction (PEE) paradigm
(Wang et al., 2020), was concatenated to the corresponding
processing block of the region branch (Figure 2). Being i and xi
the current up-sampling stage and the input to the
corresponding PEE module, an initial depth-convolution
Fi(x), featuring Pi feature maps with a filter size of 1 × 1 × 1,
was computed. The edge features were computed by the
difference between Fi(x) and average pooling avg processors
at increasing scale s as:

F s( )
i � Fi x( ) − avgs Fi x( )( ), s ∈ 1, S{ } (1)

where F(s)
i denotes the edge features of the sth pooling operation

in the ith stage of the contour branch. The obtained pyramid edge
features were first aggregated using concatenation operator C and
then the result underwent a final depth convolution as:

Fi � F C F 1( )
i , F 2( )

i , .., F S( )
i , Fi( );Pi( ) (2)

where S and Fi were the number of pyramid scales, the
convolution parameters and the output feature map of PEE
module at current stage, respectively. This allowed to further
increase the robustness of thin edge detection exploiting multiple
granularity of edge features. Considering the number of feature
maps in each PEEmodule equivalent to that of the corresponding
input, the number of trainable parameters of the CEL-Unet was
558298.

2.2 Loss Functions
The formulation of the loss function, based on Dice index and
cross-entropy, leveraged the information conveyed by both
decoding branches thus exploiting both region and contour
labels. Based on the region label, Dice index was considered
and tailored to the multi-class problem. For each class, a
coefficient, proportional to the number of voxels belonging to
the specific class was used to weight the corresponding Dice

FIGURE 2 | Pyramidal edge extraction (PEE) module in one level of the edge decoding branch. For sake of clarity, only two pyramid-edge filters were considered.
The input to the PEE module consists of the set of activation maps (for simplicity here only 2 were depicted), being the output of the previous layer in the contour-aware
decoding branch. Likewise, the module output consists of the set of activation maps (again for simplicity here only 2 were depicted), which are delivered to the next level
of the contour-aware decoding branch (horizontal arrow), and to the same level of the region-aware decoding branch (vertical arrow).
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contribution. This way the different frequencies of voxels for each
class were compensated and the overall loss function re-balanced.
Assuming C classes and N voxels, the Dice formula can be
written as:

D y, ŷ( ) � ∑C
c

kc
2∑Nyc · ŷc∑Nyc · yc + ∑Nŷc · ŷc

( ) (3)

where yc and ŷc are, respectively, the true and predicted
segmented volumes for the label c whose scalar product is
computed over N voxels. The factor kc, the label-dependent
weight, was computed as:

kc � 1
C − 1

1 − Pc

N
( ) (4)

where Pc is the number of voxels belonging to class c, respectively.
In order to fully exploit the mini-batch paradigm in the training,
the kc factors was computed at run-time for each specific batch.
Exploiting contour label, the euclidean distance transform (EDT),
which assigns to each voxel the value of its distance from the closest
voxel belonging to the boundary of the corresponding target label
(Figure 3) was taken into account. In order to correctly scale EDT
as a loss function, the distance weight map (DWM) was computed
by the negative exponential transformation as:

DWMc � 1 + γ · exp −EDTc

σ
( )( ) (5)

where γ and σ are constant factors. The cross-entropy loss was
therefore spatially weighted with DWM to specifically enhance
the importance of contour and near-surface voxels, obtaining the
voxel-wise distance cross-entropy C as:

C y, ŷ( ) � −∑C
c

kc ∑N DWMc · yc · log ŷc( )( )( ) (6)

Similarly, reversed distance cross-entropy was considered as:

Ĉ y, ŷ( ) � −∑C
c

kc ∑N DWMc · 1 − yc( ) · log 1 − ŷc( )( )( ) (7)

Summarizing, two losses were designed, one for region branch
Lr and the other one for edge branchLe, as a function ofD, C and
Ĉ, as:

Lr � 1 − α ·D + 1 − α( ) · C( )
Le � 1 − β · C + 1 − β( ) · Ĉ( ) (8)

where C in Lr loss was computed using region label while C and Ĉ
in Le loss used edge label.

2.3 Image Dataset and Data Preprocessing
700 axial knee CT scans of patients who underwent PSI-based
total knee replacement (TKR) surgery, between 2015 and 2020,
were retrospectively available in anonymized form by Medacta
International SA (Castel San Pietro, Switzerland). At diagnosis
time, the patients reported knee instability and local knee pain.
Clinical findings were advanced osteoarthritis with different
degrees of cartilage defects, femoral osteophytes and shape
abnormalities mainly at the condylar regions of the distal
femur and at the tibial plateau. Corresponding deviation of the
clinical axis alignment from normality was confirmed by
radiological assessment (Table 1). CT scans were acquired
with different imaging equipment, mostly at 512 × 512 pixels
and 600 slices on average, with variable pixel size, ranging from
0.3 to 0.4 mm, and axial slicing ranging from 0.3 to 1.0 mm.
Along with the CT images, the dataset entailed distal femur and
proximal tibia segmentation masks. The corresponding
reconstructed surfaces were available and stored in STL
format. Along with the reconstructed surfaces, the dataset
included the corresponding planning surfaces. Surgical
indications were available on planning surfaces in terms of PSI
mask contact points and contact areas, along with planar sections
indicating the planned cuts. Expert radiological operators
manually performed the image segmentation of the osseous
portion of the bones using Mimics software (Materialize,
Belgium). For increasing reliability, each dataset was
segmented by one expert radiologist and revised by the

FIGURE 3 | From left to right. Original CT slice, binary image, euclidean distance transform and distance weight map (DWM). Lighter voxels in the DWM indicate
shorter distances from the bone contour.

TABLE 1 | Patient data: age range, male/female ratio, right/left ratio. Clinical data
reported as mean (SD) value: Hip-knee-ankle (HKA, physiological value: 180°)
angle, femoral varus/valgus (FVV, physiological value: 0°) angle, tibial varus/valgus
(TVV, physiological value: 0°) angle, tibial slope (TS, physiological value: 7°

posteriorly) and external rotation (ER, physiological value: 0°).

Age M/F R/L HKA FVV TVV TS ER

71 (12) 0.68 0.84 177°(7) −3 (3) 3 (9) 8 (9) 2 (4)
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surgeon who later performed the TKR. Because of the imaging
equipment and acquisition protocol variability, no common
segmentation protocol was adopted and no data about
segmentation uncertainty was available. As a function of the
particular centering of the knee joint in the CT scan, the distal
femur was segmented up to 2–4 cm away from the frontal notch
of the trochlear region along the femur shaft. Concurrently, the
length of the tibia segmented shaft was variable across the patient
dataset in a range of about 2–3 cm. For this study, 500 cases, out
of the 700, were randomly selected (203 males and 297
females—272 left against 228 right knees) in the overall set to
be used for training. The remaining 200 cases were used to
independently test the segmentation performance. As
originating from different scanning equipment, the CT scans
underwent preprocessing to make the pixel intensity distribution
consistent and to arrange spatial dimensions to cope with
network input. First, pixels belonging to filling background
and air were automatically identified in the images, according
to information gathered from the DICOM header, and the
corresponding intensity values put both to zero. The
remaining image pixels underwent intensity normalization
taking into account of different intensity scale encoding (e.g.,
Hounsfield units, 12-bit raw pixels, 16-bit raw pixels). Then, each
scan was cropped first in the axial direction to remove the slices
where reference segmentation was not available. Then, a further
crop was attained by a bounding box with a margin of 2 mm
about reference 3D geometries. Finally, all the cropped volumes
where re-sampled to a size of 192 × 192 × 192, corresponding to
an average voxel resolution of 0.45 × 0.45 × 0.85 mm3. In order to
perform analysis of the 3D reconstruction errors, all the surfaces
were re-sampled and smoothed to 30,000 faces and 15,000
vertices.

2.4 Network Training and Evaluation
Metrics
The training was optimized with ADAM (Adaptive Moment
Estimation) with a learning rate of 10−4. Parameters γ and σ in
Eq. 5 were set to 1 and 0.5, respectively. Parameter α in Eq. 8
was set to 1 and decreased by a factor of 0.005 each iteration up
to α = 0.5. α reached a value of 0.5 at the 100-th iteration, and
from that iteration on, it was kept constant. This schedule was
conceived to allow dice loss to constrain weight learning at the
beginning and progressively introducing the effect of cross-
entropy based on distance weighted map reducing
progressively the role of the dice loss component. Parameter
β in Eq. 8 was set to the ratio between the number of shape
boundary voxels and the total number of voxels in the batch to
balance the two contributions in Le. In order to reduce
overfitting, the training was stopped by monitoring the loss
function on the validation set (10% of the samples in the
training set), with a patient value of 25 iterations. In order to
avoid premature convergence, at least 50 iterations were
enabled. All training trials and evaluations were carried out
in a Google Cloud Vertex AI Cuda-enabled environment,
equipped with a 8-core CPU, 30 GB RAM, and NVIDIA
Tesla P100 GPU with 16 GB RAM. One training of the

CEL-Unet, performed on the 500 volume samples, took on
average about 4 days. Once trained, one single segmentation
took about 10 s on the same machine. For each segmented
volume, the corresponding 3D surfaces were reconstructed
automatically by a custom method based on marching cubes
algorithm (Cerveri et al., 2017). In order to evaluate the
segmentation quality for both femur and tibia on the test
set (200 samples), recall, sensitive to under-segmentation,
and precision, sensitive to over-segmentation, were
appraised. In addition, Jaccard index, corresponding to
intersection over union, was taken into account as an
overall accuracy measure. Likewise, 3D reconstruction
accuracy was assessed on the femur and tibia surfaces in
terms of root mean squared error (RMSE) distance between
the reference and the predicted surfaces. Local analysis was
performed as well on the femur at both condylar and trochlear
levels where osteophytes were located the most. Likewise, for
the reconstructed tibia shape, 3D errors were computed at the
plateau area. In addition, region patches in the femur and tibia
shapes, which included PSI contact areas, were considered as
well to measure the matching error and alignment planning
deviations. In detail, the condylar femur and the tibial plateau
areas were both split in 4 patches, namely posterior/lateral,
posterior/medial, anterior/lateral and anterior/medial.
Statistical tests were performed using non-parametric
Kruskal–Wallis technique, including Tukey-kramer post-hoc
comparison. The p-values < .05 were considered as statistically
significant.

2.5 Quantification of PSI-Based Surgical
Planning Feasibility
The quality of femoral and tibial segmentation was evaluated in
terms of clinical impact on the surgical planning in the total knee
replacement based on MyKnee technology by Medacta. The
planning feasibility, verified on a subset of 20 samples
(randomly selected in the test set), was evaluated in terms of
the angular error alignment with respect to the distal cutting
plane for the femur and the proximal cutting plane of the tibia.
These two cuts represent the main surgical resections which
determine the recovery of the physiological mechanical axis
alignment of the lower limb. Error alignment was computed
in both frontal and sagittal projection planes. As earlier
mentioned, the dataset used in this work included the
corresponding planning surfaces embedding the planes of
resection. In order to compute the corresponding resection
planes on the reconstructed surfaces, four landmarks were
picked in the reference planning surface, along the resection
sulcus, two frontally and two posteriorly (Figure 4). The
corresponding landmarks in the reconstructed surface were
computed by minimal distance. For each bone, the normal
direction of the plane fit to the four points was computed in
the planning and reconstructed surfaces and the in-between
angular deviation was projected on both frontal and sagittal
anatomical planes, obtaining the two clinically relevant
measures (Cerveri et al., 2010; Pietsch et al., 2013; Gong et al.,
2019).
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3 EXPERIMENTS AND RESULTS

3.1 Ablation Analysis
The ablation study was carried out using the CEL-Unet trained
using the loss function reported in Eq. 8. Hyper-parameter effects
on the segmentation accuracy were evaluated by two independent
tests about the PEE role and the number of encoding/decoding
layers, respectively. In the first test, the number of pyramid-edge
feature maps was varied from zero (no PEE), two, three and four,
using (3, 5), (3, 5, 7), and (3, 5, 7, 9) as filter sizes, respectively.
Three layers in all encoding and decoding paths were considered.
Results (median Jaccard error) proved the beneficial effect of
using PEE with two (0.97 against 0.95) and three (0.98 against

0.95) filters (Table 2). Using four filters did not provide
improvement in the segmentation accuracy. Minimal
additional computational effort was measured during training
when using PEE (less than 2 s per iteration). In the second test,
the convolutional layers were either inserted or removed
symmetrically in the encoding path and in the two decoding
paths, setting consequently the bottleneck layer. According to the
results of the previous ablation test, three pyramid-edge feature
maps (filter sizes: 3, 5, 7) were considered in the PEE modules.
Four (8-16-32-64-128-64-32-16-8), three (8-16-32-64-32-16-8)
and two (8-16-32-16-8) layers were taken into account. The
results, reported in Table 3, showcased that changing the
number of convolutional layers produced very small changes
in the Jaccard metrics for both femur and tibia, with a full range in
the interval of the median value equal to 0.95–0.98, with the first
architecture providing slightly poorer results. No statistically

FIGURE 4 | Left: Femoral and tibial PSI of MyKnee system (courtesy of Medacta International SA) with the contact areas highlighted in light blue. As it can be
appreciated, the main contact femur areas are at distal condylar level. Likewise, tibial contact areas are located at the plateau mainly. Right: Planning surfaces for case
#184 with distal femoral and proximal tibial cutting planes. Four yellow landmarks, taken on the cutting profiles (blue curves) of the two planning surfaces, were mapped
on the reconstructed surfaces for estimating the corresponding cutting planes and compute angular deviations.

TABLE 2 | Results (median and IQR values) of the ablation test performed on the
CEL-Unet about the effect of PEE module. The additional computational effort
(seconds per iteration), with respect to the removal of the PEE module, were
reported.

PEE Jaccard s per iteration

Femur Tibia

No 0.95 (0.93–0.96) 0.95 (0.93–0.96) na
2 filters 0.97 (0.97–0.98) 0.97 (0.97–0.98) 1.5
3 filters 0.98 (0.97–0.98) 0.97 (0.97–0.98) 1.6
4 filters 0.98 (0.97–0.98) 0.97 (0.97–0.98) 1.8

TABLE 3 | Results (median and IQR values) of the ablation test performed on the
CEL-Unet and a different number of convolutional layers.

Layers Jaccard

Femur Tibia

2 0.95 (0.94–0.96) 0.95 (0.93–0.96)
3 0.98 (0.97–0.98) 0.97 (0.97–0.98)
4 0.98 (0.97–0.98) 0.97 (0.97–0.98)
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significant difference (p > 0.01) was found when comparing the
Jaccard values for both femur and tibia using the second (three
layers) and third (four layers) architectures. As a consequence the
CEL-Unet with three layers was selected for the following
analysis.

3.2 Segmentation Accuracy
The training convergence of the proposed CEL-Unet was
achieved after 100 epochs with similar metrics results in both
training and validation sets, this supporting the view that the
network was appropriately trained avoiding over-fitting. Without
loss of generality, the evolution of the Jaccard index was depicted
in (Figure 5), computed for both femur and tibia and split on a
coronal, sagittal and axial planes for one case in the training set
and one case in the validation set. As expected initial accuracy was
very poor, while training approached high accuracy after 20
epochs. Despite some rare periods of failure (see the peaks
after epoch 50 in Figure 5), the training reached a
progressively stable convergence without overfitting, with the
metric on validation data consistent with the metric on training
data. These results were valid for both the tibia and the femur and
for all three orthogonal slices. The test of the segmentation quality
was carried out by comparing the proposed model with the state-
of-the-art Unet architecture and with the network proposed in

(Chen et al., 2019), herewith termed Chen-Unet, (Table 4), which
was adapted to process 3D scans in input. For the traditional
Unet, hyper-parameters were set according to the extensive
results of the ablation tests previously performed by our group
and reported in (Marzorati et al., 2020). Namely, three
convolutional layers in both encoding and decoding paths
were considered. The number of feature maps were 8, 16, 32
(32, 16, 8) for the encoder (decoder) path. The bottle-neck had 64
feature maps. Each processing block embedded a convolution
with linear activation, a Relu layer and a max-pooling layer. The
filter size was 3 × 3 × 3 in all the convolutional processing.
Globally, this model featured 351435 trainable parameters and
was trained using three different cost functions, namely Dice
(D-Unet), Focal (Shi et al., 2020) (F-Unet) and distance-weighted
cross-entropy (DCE-Unet) losses. According to the literature, the
Chen-Unet featured two parallel branches in the decoding path,
one for region segmentation and the other one for contour
delineation, while disregarding vertical skip connections
between the two branches, featuring 482894 trainable
parameters. Cross-entropy loss was used in the training with
the contribution of both region and edge outputs (Chen et al.,
2019). The comparative analysis was performed over the 200 CT
samples in the test set. As a main result, all the median values of
Jaccard, recall, and precision indexes were all larger than 0.95 and

FIGURE 5 | Evolution of Jaccard index, measured on coronal, sagittal, and axial slices, for case #2 (training set) and case #199 (validation set) over 120 epochs for
CEL-UNet model during training.

TABLE 4 | Comparison pf the proposed solution with literature Unet models and different loss functions.

Model Decoder Loss function Vertical skip

D-Unet Marzorati et al. (2020) region Dice (Eq. 3) n/a
F-Unet Marzorati et al. (2020) region Focal n/a
DCE-Unet Ma et al. (2020) region wDCE (Eq. 6) n/a
Chen-Unet Chen et al. (2019) region/contour Dice/CE no
CEL-Unet region/contour Dice/wDCE (Eq. 8) yes
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FIGURE 6 | Boxplots of Jaccard, Recall, and Precision values obtained on the test set with the five different network architectures described in Table 4 for femur
(blue) and tibia (red).

TABLE 5 | Segmentation results as median and inter-quartile range across the five tested models.

Model Jaccard Recall Precision

Femur Tibia Femur Tibia Femur Tibia

D-Unet 0.96 (0.95–0.97) 0.95 (0.94–0.96) 0.98 (0.97–0.99) 0.98 (0.97–0.99) 0.98 (0.97–0.99) 0.97 (0.96–0.98)
F-Unet 0.96 (0.94–0.97) 0.93 (0.84–0.95) 0.97 (0.95–0.98) 0.94 (0.85–0.97) 0.99 (0.99–0.99) 0.99 (0.98–0.99)
DCE-Unet 0.97 (0.95–0.97) 0.96 (0.95–0.97) 0.98 (0.96–0.99) 0.98 (0.97–0.99) 0.99 (0.98–0.99) 0.98 (0.97–0.99)
Chen-Unet 0.97 (0.97–0.98) 0.97 (0.96–0.98) 0.99 (0.99–1.00) 0.99 (0.98–1.00) 0.98 (0.98–0.99) 0.98 (0.97–0.99)
CEL-Unet 0.98 (0.97–0.98) 0.97 (0.97–0.98) 0.99 (0.99–1.00) 0.99 (0.98–0.99) 0.98 (0.98–0.99) 0.98 (0.98–0.99)

TABLE 6 | Statistical results (p values) about comparison of the five segmentation networks. Asterisk means statistical difference at 5%.

Compared models Femur Tibia

Jaccard Recall Precision Jaccard Recall Precision

D-Unet F-Unet 0.99 0.000 1 (*) 0.000 1 (*) 0.000 1 (*) 0.000 1 (*) 0.000 1 (*)
D-Unet DCE-Unet 0.001 (*) 0.051 0.000 1 (*) 0.052 0.97 0.000 5 (*)
D-Unet Chen-Unet 0.000 1 (*) 0.000 1 (*) 0.13 0.000 1 (*) 0.000 1 (*) 0.002 (*)
D-Unet CEL-Unet 0.000 1 (*) 0.000 1 (*) 0.005 (*) 0.000 1 (*) 0.000 1 (*) 0.000 1 (*)
F-Unet DCE-Unet 0.000 8 (*) 0.000 1 (*) 0.002 (*) 0.000 1 (*) 0.000 1 (*) 0.000 1 (*)
F-Unet Chen-Unet 0.000 1 (*) 0.000 1 (*) 0.000 1 (*) 0.000 1 (*) 0.000 1 (*) 0.000 1 (*)
F-Unet CEL-Unet 0.000 1 (*) 0.000 1 (*) 0.000 1 (*) 0.000 1 (*) 0.000 1 (*) 0.000 1 (*)
DCE-Unet Chen-Unet 0.000 1 (*) 0.000 1 (*) 0.000 1 (*) 0.000 1 (*) 0.000 1 (*) 0.99
DCE-Unet CEL-Unet 0.000 1 (*) 0.000 1 (*) 0.000 1 (*) 0.000 1 (*) 0.000 1 (*) 0.000 1 (*)
Chen-Unet CEL-Unet 0.001 (*) 0.03 (*) 0.80 0.07 0.087 0.000 1 (*)
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0.92 for femur and tibia, respectively (Figure 6). Specifically,
Chen-Unet and CEL-Unet outperformed the traditional Unet,
trained with Dice and Focal losses (Table 5), while DCE-Unet
attained similar results. F-Unet provided the poorest recall index
for the tibia (median value: 0.94, IQR: 0.85–0.97). The statistical
comparison supported the superiority of the CEL-Unet with
respect to the traditional Unet and the Chen-Unet as well
(Table 6). Specifically, CEL-Unet, with respect to the Chen-
Unet, showed greater accuracy in the femur featuring
statistical difference for Jaccard index (p = 0.001) and recall (p
= 0.03), while the precision was very similar (p = 0.80). Despite
the difference in the tibial Jaccard index was not significant (p =
0.07), the precision gained by the CEL-Unet was superior to that
provided by the Chen-Unet. According to the results, we can
summarize that CEL-Unet provided slightly better recall than
precision values. However, the difference in between was very
small, which allowed to conclude that the proposed model was
able to ensure high accuracy reducing under- and over-
segmentation altogether. The visual inspection (Figure 7) of
some critical cases confirmed lower accuracy of the F-Unet
and DCE-Unet testified by mainly under-segmentation (cases
#11 and #62) and partial label confusion (cases #11, #62 and
#194). D-Unet provided slightly better results, despite affected by
over-segmentation (case #176). Chen-Unet showed label
confusion in the femoral shaft (cases #176 and #194) and
partial under-segmentation of the tibial plateau in the case #11

(axial slice 62) and #194. On the contrary, CEL-Unet was able to
correctly separate tibia from the femur with nice agreement with
the reference segmentation. The analysis of narrow interface
segmentation between femur and patella, and osteophytes,
showed the ability of the CEL-Unet to correctly delineate the
femoral profile of the trochlear sulcus avoiding both over- and
under-segmentation (Figure 8), showing conversely the Chen-
Unet under-segmentation, especially in the trochlear anterior
boundary for case #15 and in the lateral condyle for case #181.

3.3 3D Reconstruction Errors
In order to analyse the global RMS error distributions, each
reconstructed surface in the test set was matched to the
corresponding reference surface. All the five error distributions
were synthesized again in terms of median value and IRQ
(Figure 9). The median values were all less than 1 mm, with
higher accuracy for the reconstructed tibia shapes. According to
the segmentation results, the three traditional Unet models
showed poorer median values than both Chen-Unet and CEL-
Unet, featuring larger variability as well. Overall, CEL-Unet
obtained IRQ ranges less than 0.25 mm for both shapes. The
statistical analysis revealed significant difference (p = 0.008) for
femur shape in favour of CEL-Unet, whilst for the tibia no
difference was detected (p = 0.20). Considering the
comparison between femur and tibia, significant differences
were found (p = 0.0001) in favor of tibia reconstruction

FIGURE 7 |Qualitative comparison of the segmentation of femur (purple) and tibia (light brown) in 4 critical cases (case #176 coronal slice: 44; case #11, axial slice:
62; case #11, coronal slice 78; case #194, coronal slice 82).
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accuracy in all the models except the F-Unet. The 3D Hausdorff
distance errors on the femur (median/IRQ) for Chen-Unet and
CEL-Unet were 4.79 mm (4.07,5.75) and 4.44 mm (3.88,5.31),
respectively, featuring a statistical difference (p = 0.003). As for
the tibia, the 3D Hausdorff distance errors were 5.32 mm
(4.13,6.50) and 4.34 mm (3.61,5.42), respectively, featuring a
statistical difference (p = 0.0001). Visual representation of the
reconstructed surfaces (patients #15, #29, #69 and #181), with
superimposed distance map with respect to the corresponding
reference shapes, supported the above quantitative results
(Figure 10). As it can be noticed, especially for patient #69,
the proposed model achieved better results in the intercondylar
space and on the tibial plateau.

3.4 Local Shape Analysis and Feasibility of
Surgical Planning
In order to study the segmentation accuracy at areas, strategic for
PSI-based surgical planning, of the two shapes, a surface
processing procedure was designed and developed to
automatically split the two femur condylar regions and the
tibial plateau in four parts, respectively. For the femur, lateral
and medial parts in both posterior and anterior condylar areas
were attained. Likewise for the tibia, lateral and medial parts in
both posterior and anterior plateau areas were attained. Without
lack of generality, in the analysis of local errors, D-Unet and
F-Unet models were disregarded. Results showed similar
accuracy across the four areas, for both femur (median range:
1 mm) and tibia (median range: 0.5 mm) as reported in
Figure 11, being such a difference expected due to much
relevant condylar deterioration at femur level. The computed

alignment errors showed on average very high accuracy for both
Chen-Unet and CEL-Unet (Table 7). All the median values were
less than 0.15° for both femoral and tibial alignments. No
statistical difference (p > 0.25) was found between the two
models, although in few cases (e.g., #69) the frontal alignment
errors in the Chen-Unet model for the femur and tibia were
greater than 2°.

4 DISCUSSION

4.1 Main Findings
Automatic bone segmentation in CT scans is being seemingly
acknowledged to pose fewer obstacles than the segmentation of
other anatomical regions in different image modalities, whereby
tissues feature very similar colorimetric and textural clues.
Nevertheless, pathological conditions affecting mineral density,
leading to cartilage damages and inducing bone deformations
may reduce sensibly the accuracy causing both over- and under-
segmentation (Chang et al., 2019; Yun et al., 2020). It is therefore
required an extensive effort of manual refinement, performed by
expert radiologists. In complicated cases, this activity may easily
take more than half an hour (Ambellan et al., 2019; León-Muñoz
et al., 2019). Thus, research is still ongoing towards the
development of automatic and accurate techniques, especially
in the domain of surgical planning. In PSI-based knee
replacement surgery, the segmentation of femur and tibia
bones is mandatory to obtain the 3D geometries, which are
matched in the planning stage to the designed cutting masks.
However, two main critical issues are to be acknowledged: 1) it is
mandatory to ensure accuracy in specific bony regions in contact
with the cutting mask, which usually are affected by the largest
deformation and osteophytes; 2) cartilage wearing induces
progressing thinning of the articular space between femur and
tibia. In principle, addressing both issues may be conflicting. As
pointed out, the success of such surgical technique demands for
accurate segmentation of femoral condyles especially, coping with
deformations and osteophytes. Over-segmentation may ensure to
capture such specificity but may increase the confusion at the
boundary between femur and tibia. Conversely, under-
segmentation leaves the osseous boundaries less susceptible to
mislabeling at risk however of reducing the quality of osteophyte
segmentation. In this paper, we proposed a novel CNN network,
called CEL-Unet, devoted to the segmentation of femur an tibia

FIGURE 8 | Axial slice detail about the segmentation at the femur-patella
interface for cases #15 and #181. Comparison between Chen-Unet and CEL-
Unet. Under-segmentation (Chen-Unet), highlighted by the green ellipse, at
femur-patellar interface can be appreciated.

FIGURE 9 | Boxplots of global RMS errors (mm) obtained on the test set
with the five different network architectures. Boxplots in blue refer to the femur
class, while boxplots in red refer to the tibial class. FR: Femur RMSE; TR: Tibia
RMSE.
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bones in CT scans, with specific focus on the balance between
over- and under-segmentation. Results on an independent set of
200 cases showcased the excellent quality of the segmentation that
was superior to state-of-the art Unet models (Chen et al., 2019;
Marzorati et al., 2020; Isensee et al., 2021). Along with the
traditional region-aware branch in the decoding path, the
network exploited a contour-aware branch working in parallel,
similar to the Chen-Unet model proposed in (Chen et al., 2019).
Differently to such a model however, progressive skip
connections between contour- and region-aware branches were
introduced. In the Chen model, the information shared by the

two tasks was only related to the encoder path. The CEL-Unet
conversely shared information also in the decoding path.
According to the results in Table 6, the segmentation accuracy
of the femur was statistically in favour of the CEL-Unet, for the
tibia no statistical difference was found between the two models
though. Considering that the femur undergoes greater
deformations than the tibia, this generally increases the
complexity of its segmentation. The obtained results indirectly
supported the view the vertical skip connections in the decoding
path are useful for increasing the segmentation accuracy of the
CEL-Unet. This effect looks likes more relevant in presence of

FIGURE 10 | Reconstructed shapes (frontal and posterior views) with color distance map with respect to the reference shapes for four patients in the test set (#15,
#29, #69, and #181). Red tones mean over-segmentation. Blue tones mean under-segmentation.
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larger deformation and osteophytes (condylar surfaces in the
distal femur). Two additional technical innovations were
adopted, namely the use of distance weight map in the loss
function and the PEE module in the contour-aware branch,
which was then concatenated to corresponding decoding level
in the region-aware branch (cfr. Figure 1). The validity of such
technical advancements was substantiated by quantitative
(Table 2) and qualitative (Figure 7) analysis. It was shown
that statistically CEL-Unet overcome all the competitive
models. Specifically, CEL-Unet showed the ability to accurately
segment critical cases where the traditional models had failed (cfr.
Figure 7), unveiling ability to address narrow femur-patella
interface and osteophytes with superior ability than the
competitive Chen-Unet model (cfr. Table 6 and Figure 10).
The clinical impact of the obtained segmentation highlighted
the valuable span of the proposed work, proved by few tenths of a
degree of error in the calculation of surgical cutting planes (cfr.
Table 7). Segmentation analysis at femoral condyles and tibial
plateau confirmed 3D errors compatible with accurate matching
of the resection mask with the true anatomy.

4.2 Literature Comparison
In the latest few years, deep networks and Unet models for bone
segmentation in X-Ray images, CT and MRI scans addressed
different anatomical regions such as head bones, spine, pelvic
bone, lower limb bones up to hand bones. With the aim of

assisting surgical planning, deep CNN were proposed to segment
skull surface in 20 CT scans reporting 92% of sensitivity and 3D
reconstruction errors in the range of 1.5 mm (Minnema et al.,
2018). 2D Unet for processing the three anatomical planes in
cranio-facial CT was developed to segment mandibular bones
reporting dice index of 93% and surface errors of 1.4 mm (Qiu
et al., 2019). Focusing on the vertebral bodies, CT segmentation of
32 scans using deep CNN provided sensitivity of 97% and 3D
surface errors of 7.4 mm (Vania et al., 2019). Pelvic bone
segmentation in 30 dual energy CT scans was addressed by
the traditional Unet achieving Dice index of about 96%
(González Sánchez et al., 2020). 2D Unet model was
demonstrated to obtain 94% of sensitivity to segment wrist
and finger bones (Ding et al., 2019). 53 low-quality low-dose
whole-body CT scans were segmented using a traditional Unet
model leading to dice index of 95% (Klein et al., 2019). 2D Unet
was applied to multi-label segmentation of 12 different structures
in knee joint by processing 20 MRI scans achieving a mean Dice
index for femur and tibia of about 90% (Zhou et al., 2018).
Basically, despite all these results are in agreement with our
achievements, we highlight that the large number of the
samples available in this work, and the heterogeneity of the
spanned pathological severity, makes the validation of the
segmentation quality robust to a larger extent. Along with the
attained quality, considering that the segmentation of one single
volume takes less than 10 s, the computational time was
compatible with clinical settings. In addition, in main
literature works data were collected using a single CT scan
system. In the present work, the CT images featured different
pixel encoding and were acquired with four different scanners,
namely Philips, CanonMedical Systems, GEMedical Systems and
Toshiba. This variability showcased a larger generality of the
obtained results.

4.3 Technical Challenges and Work
Limitations
In the available dataset, knee bones featured deformations and
irregularities, particularly close to the intra-articular spaces. Also,
conspicuous osteophytes were detected especially surrounding
condylar and trochlear femur areas. As we have shown,
traditional Dice and cross-entropy loss functions may fail
providing poor segmentation. As far as the addressed clinical
application is concerned, shape profiles are to be fully considered
during preoperative planning and manufacturing of the cutting
guides so as to ensure accurate anatomical matching of the PSI in
the surgical setup. From the general observation that most
segmentation errors are found along the boundaries of the

FIGURE 11 | Boxplots of local RMS errors (mm) at femoral condyle
(blue), and tibial plateau (red) areas. P: posterior, A: anterior, M: medial, L:
lateral.

TABLE 7 | Alignment errors, namely median (IQR) values, of the distal and proximal cuts, for femur and tibia respectively, obtained using reconstructed surface from Chen-
Unet and CEL-Unet segmentations.

Model Femoral alignment Tibial alignment

Frontal Sagittal Frontal Sagittal

Chen-Unet 0.07°(−0.10, 0.18) 0.03°(−0.06, 0.45) 0.07°(−0.07, 0.14) 0.03°(−0.12, 0.27)
CEL-Unet 0.11°(−0.08, 0.20) 0.06°(−0.14, 0.36) 0.05°(−0.05, 0.20) 0.04°(−0.16, 0.18)
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anatomies (Kasten et al., 2020) and in order to cope with the
specific clinical requirements, a new loss function was designed
that specifically focused on edge voxels by exploiting the distance
weighted map. The DWM took its root from the EDT, which
assigns to each voxel the value of its distance from the closest
voxel belonging to the boundary of the target structure. The basic
idea was to use the DWM to constrain the cross-entropy to assign
more importance to segmentation errors occurring at the
boundaries voxels, while providing lower importance to the
ones inside the shape profile. Nonetheless, DCE alone was
proved to bias in some cases the segmentation leading to holes
corresponding to misclassified voxels (cfr. Figure 7). For this
reason, in the CEL-Unet, DCE was combined with the traditional
dice coefficient as defined in Eq. 8 and its contribution was
progressively elicited during training according to the factor α,
which progressively focused the optimizer on shape edges. The
heuristic trade-off (0.5) for α ensured the consistent balance
between region and contour segmentation. As far as the
network architecture is concerned, we developed an contour-
aware decoding path, parallel to the region-aware decoding path,
enabling directed vertical residual connections towards the
region-detector path. This follows the approach pursued in
(Zhou et al., 2020) focusing on enhanced skip connections to
aggregate features of varying semantic scales at the decoder sub-
networks. In this work, we extended such an approach by
allowing pyramidal edge extraction (cfr. Figure 2) to enrich
the edge details to be used in the corresponding decoding level
in the region branch. In this study, we addressed the risk of
overfitting two ways: 1) by hyper-parameter ablation (see par.
3.1); 2) by usage of a large and heterogeneous set of CT volumes of
the knee. In addition, the training was automatically stopped as
soon as the validation loss did no longer decrease with a patience
factor equal to 25. The nice balance between recall and precision
results (cfr. Figure 6) supported the expectation. Finally, a couple
of issues may deserve attention. From a technical point of view, a
batch size of two was chosen for the training in order to ensure
computational feasibility with the allotted memory resources.
Basically, this led to a an input data tensor of size 2 × 192 × 192 ×
192×3, considering three classes namely the background, the
femur and the tibia. Assuming 8 feature maps in the first
convolutional layer, the memory allocation just for the first
processing step was about 340 MB. The role of larger batches
are planned for future analysis. From a clinical point of view, the
work showcased the feasibility of automatic bone segmentation
for knee surgical planning based on personalized instruments. A
system like that is to be still through of as a support to the
radiological analysis assuming that the physicians should provide
a final refinement of the results before acceptance. Due to the use
of the artificial intelligence paradigm, implementation in the
surgical planning arena would require addressing current
questions relevant to the reliability, interpretability and
explainability of the results. This last point is recognized to be
fundamental especially when the result of the segmentation is not
satisfactory. Future activities are planned to address such issues
with an approach the aims to embed into the network additional
automatic tools able to provide information easily readable by the
physician about the overall quality assurance of the results.

5 CONCLUSION

Knee replacement based on PSI has been very recently reported to
improve functional kinematics with respect to traditional surgery,
and it is increasingly recognized as a reliable technique to use in
advanced osteoarthritis conditions especially in case of bone
deformity, which can prevent the intra-medullar alignment.
Nonetheless, digital shape of the bones is mandatory in the
pre-operative planning phase, requiring CT/MRI scan
acquisition and intensive manual delineation of the images.
We have shown that the proposed network is effective for
bone segmentation in knee CT scans. Overall, it delineates
automatically femur and tibia profiles with high accuracy also
in case of large pathological deformations and in presence of
osteophytes. This makes it potentially usable for surgical planning
with particular interest for knee surgery based on personalized
surgical instruments where the reconstruction accuracy of the
bony shapes is one of the main critical factors for the success of
the operation. From the achieved outcomes, we point out that
high-quality segmentation and automatism are both ensured
which brings the use of image data tools, based on intelligent
image processing tools, incrementally closer to clinical
translation.
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