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Single-lead wearable electrocardiographic (ECG) devices for remote monitoring are
emerging as critical components of the viability of long-term continuous health and
wellness monitoring applications. These sensors make it simple to monitor chronically
ill patients and the elderly in long-term care homes, as well as empower users focused on
fitness and wellbeing with timely health and lifestyle information and metrics. This article
addresses the future developments in single-lead electrocardiogram (ECG) wearables,
their design concepts, signal processing, machine learning (ML), and emerging healthcare
applications. A literature review of multiple wearable ECG remote monitoring devices is first
performed; Apple Watch, Kardia, Zio, BioHarness, Bittium Faros and Carnation
Ambulatory Monitor. Zio showed the longest wear time with patients wearing the
patch for 14 days maximum but required users to mail the device to a processing
center for analysis. While the Apple Watch and Kardia showed good quality acquisition
of raw ECG but are not continuous monitoring devices. The design considerations for
single-lead ECG wearable devices could be classified as follows: power needs,
computational complexity, signal quality, and human factors. These dimensions
shadow hardware and software characteristics of ECG wearables and can act as a
checklist for future single-lead ECG wearable designs. Trends in ECG de-noising, signal
processing, feature extraction, compressive sensing (CS), and remote monitoring
applications are later followed to show the emerging opportunities and recent
innovations in single-lead ECG wearables.

Keywords: ECG, wearables, telemedicine, remote monitoring, long-term care

1 INTRODUCTION

As of 2016, the number of wearables in medical application markets was approximately 55 devices
(Athavale and Krishnan 2017). While the lifestyle niche market had many wearables of around 200
devices (Athavale and Krishnan 2017). Both market segments are expanding at a faster rate bringing
in the notion of “prevention is better than cure” through monitoring an individual’s vital signs and
predicting whether their health is impacted (Borysiewicz 2009). The above ideology is what lead to
the development of long-term unobtrusive remote monitoring devices. These devices can collect
many sorts of physiological signals includingg ECG (Lobodzinski and Laks 2012),
Photoplethysmography (PPG) (Elgendi et al, 2019), blood pressure (Park et al, 2014),
respiration rate (Se Dong et al., 2010) and body core temperature (Blank and Sinclair 2011).
Long-term monitoring utilizes a longitudinal study approach where an individual’s signals are
collected for a long period of time amounting to months or even years to determine risk factors and
the chances of disease development (Caruana et al., 2015). This concept is the ultimate goal of long-
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term remote monitoring technology. Long-term remote
monitoring may signify that single-lead ECG devices, such as
the Zio Patch, can continually record unobtrusively or do
frequent recordings, such as the Kardia and Apple Watch. The
primary reason for remote monitoring is to acquire ECG signals
without involving professionals or technicians in the placement
of the sensors on the human body. By predicting/measuring
illness risk variables, preventive interventions can be done to
reduce deaths and disabilities. Additionally, as compared to
curative healthcare, which focuses on treating patients in
hospitals and incurs substantial expenditures for patients and
governmental institutions, the role of preventive healthcare in an
economy and society results in individuals having a higher
income and health stock (Wang, 2018). For example, long-
term ECG monitoring of up to 30 days has shown to be cost-
effective with monitoring cryptogenic strokes of patients with
stroke recurrence risk (Yong et al., 2016). With the advances in
wearables, it is cheaper to implement preventive healthcare by
monitoring people remotely leading to lower costs and burden on
the healthcare system (Pallinet al., 2014; Selvaraj 2014).

One of the most significant physiological signals that health-tech
wearables focus on acquiring is PPG. PPG is used to measure the
blood flow of the heart by measuring the difference between blood
volume changes on the skin through non-invasive light optical
sensors. A pulse-oximeter is an example of a PPG device that
obtains blood circulation information by measuring blood
volumes changes at the tip of your fingers (Jubran 2015). This
technology is used in many consumer applications for obtaining
heart rate (HR) and monitoring overall health of individuals. Health-
consumer based PPG devices include; iHeart, Apple Watch (Falter
et al., 2019), Fitbit (Benedetto et al., 2018) and smartphones such as
Samsung’s Galaxy smartphone with a dedicated PPG sensor
(Askarian et al.,, 2019). Wearable technology companies focus on
PPG for activity tracking and HR measurements due to its low cost
(Blasco and Peris-Lopez 2018), mediocre accuracy (Castaneda et al,,
2018), and high user-comfortability (Kuncoro et al., 2020). However,
PPG lacks consistency and accuracy when compared to acquisition
of other physiological signals such as ECG that offer HR, heart rate
variability (HRV), and achieve long-term monitoring goals. PPG
potential inaccuracies include; motion artifacts, diverse skin tones,
and signal crossover (Bent et al., 2020). It is evident that even a 30%
increase in human activity from its resting stage can cause probable
inaccuracies in a PPG signal (Bent et al, 2020). Some of these
inaccuracies can be mitigated through appropriate pre-processing
and post-processing software techniques with a significant
computational cost if performed through a small wearable device
such as using Discrete Wavelet Transform (DWT) or complex
demodulation algorithms for motion artifact cancellation (Bashar
et al,, 2018; Pollreisz and TaheriNejad 2019).

On the other hand, using ECG instead of PPG may alleviate some
pain points revolving around accuracy and its suitability for long-
term remote monitoring. ECG measures the electrical activity of the
heart, defining it as the gold-standard for obtaining HR and using its
information for medical decision making. Some pre-processing and
post-processing techniques for ECG are computationally inexpensive
which can be implemented on small wearable devices. A good
example of a HR detection algorithm that uses ECG and has a
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high accuracy, robustness, and reliability in the clinical domain is the
Pan-Tompkins algorithm (Liu et al, 2018). The Pan-Tompkins
algorithm can be implemented through hardware making it an
efficient algorithm for long-term remote monitoring that may
need low-power device requirements (Pavlatos et al, 2003).
However, other issues with ECG that cannot be mitigated easily
such as the lack of user-comfortability and the presence of skin rash
caused by using wet-electrodes for extended periods of time.
Currently, there are dry electrode solutions for this problem and
can overcome it easily without hampering signal quality (Meziane
et al,, 2013; Chlaihawi et al., 2018; Arquilla et al. 2020). ECG has a
significant potential to be applied for long-term remote monitoring
solutions (Lobodzinski 2013; Guo et al., 2016; Health Quality Ontario
2017). From using heart rate variability (HRV) metrics to predict
mortality of patients after heart attacks, to detecting arrythmias post-
surgery for stroke and elder patients, ECG can be a viable tool for
preventive medicine through remote monitoring. Also, ECG can be
used through wearable technology to accurately obtain HR and
monitor overall health of health-oriented consumers to assist
them in lifestyle-based decisions (Wilson and Laing 2018).

Single-Lead ECG

ECG measurements are well established and needs minimal
training for first-time wusers. The electrical waveform
propagates from one end of the heart to the other. This signal
can be measured using electrical conductive electrodes that are
placed in appropriate positions on the skin. The electrical current
that travels throughout the heart can be detected on the skin non-
invasively because the human body contains fluids with ions that
allow for electrical conduction. The heart’s electrical signal may
show small amplitude values in the range of microVolts. The
graphical representation waveform of ECG is produced by
computing the electrical potential difference between two
electrodes. Therefore, electrode placement is an important
factor in measuring ECG where different placements can yield
different waveforms and shapes of the same signal. For example, a
3-lead system yields 3 different waveforms, identified as channels,
representing the same electrical activity of the heart. Lead-I
measures from the top right side of the body to the left,
horizontally. Lead-II measures from the right side, at the same
point as Lead-I, diagonally to the left side abdomen of the body.
While Lead-IIT measures vertically between the upper left side
downwards to the lower left side of the body. Each lead produces a
different waveform containing variable electrophysiological
information in each channel. Lead-II and III offer information
pertaining to the inferior surface of the heart. While Lead-I offers
lateral information (Meek and Morris 2002). The above described
3-lead system is identified as Einthoven’s triangle, named after
William Einthoven, a physiologist and physicist who developed
the first ECG machine. This work led to future improvements in
detecting the electrical activity of the body.

Single-lead ECG systems use two electrodes to detect a single
ECG signal. The placement of the electrodes is still important to
determine the type of information that will be obtained from the
system. For example, a single-lead, Lead-I, placed between the
right and left arms of the body horizontally will show a different
waveform shape of ECG signal when compared to a Lead-II ECG
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signal. Lead-II shows a higher R-peak than Lead-I making it more
suitable for R-R interval detection and HR calculation. But both
Lead I and II offer an upright P-wave that can be used in detection
of certain cardiac illnesses (Meek and Morris 2002). On the other
hand, signal amplitude can help assess other cardiac functions
because it is related to myocardial mass, and the varying
properties of the cardiac tissues (Meek and Morris 2002). The
main advantages of single-lead ECGs are low-cost and increased
user comfortability. A single-lead uses less hardware components
than a 12-lead system. While the patient has an increase in
comfort and motion because a single-lead system does not
require many cumbersome attachments to the body. The
patient will be able to move and function normally without
the hassle of wires when a wireless patch of a single-lead ECG
system is used. However, the significant disadvantage of single-
lead ECGs is the lack of wholesome information in the medical
diagnoses of heart illnesses. Some heart diseases cannot be
detected by a single-lead, requiring more information from
multiple angles of the heart which is offered in a 12-lead
system. However, research has shown that the single-lead
systems have great potential in becoming medically relevant
with the advancements in microelectronics, biosensors, and
optimized software algorithms (Samol et al., 2019b; Steinberg
et al., 2019). Himmelreich et al. concluded that a smartphone-
operated 1-lead ECG device, Kardia, had excellent accuracies in
the detection of atrial fibrillation (AF) and moderate diagnostic
accuracies for other arrhythmias in primary care populations, as
shown in their work (Himmelreich et al., 2019).

The rest of the paper is structured as follows. Section 2
provides an in-depth look into some single-lead ECG
wearables, Apple Watch, Zio by iRythm, Kardia by AliveCor
and BioHarness by Zephyr. While Section 3 briefly offers the
desirable characteristics of single-lead ECG devices for long-term
remote monitoring. As for Section 4 the different single-lead
ECG design consideration themes is discussed in-depth. Section
5 discusses the different trends in ECG denoising and filtering
techniques in research and industry. Section 6 discusses the
current and future progress in compressive sensing for single-
lead ECG. While Section 7 goes in-depth in the current and
future trends in single-lead ECG feature extraction techniques.
Section 8 briefly show the future of machine learning algorithms
in cardiac disorders classification applications. Sections 9 and 10
discuss the future trends and opportunities of remote single-lead
ECG devices in clinical and wellness applications, respectively. In
Section 11 the conclusion is presented. The goal of this paper is to
take the reader through a journey from the device level in single-
lead ECG to data processing and analysis that are used in decision
making whether in clinical or wellness applications. The current
shortcomings and the future trends are discussed in-depth to
allow for a full picture of this research field.

2 SINGLE-LEAD
ELECTROCARDIOGRAPHIC WEARABLES

There are many devices in the single-lead ECG category, the
following subsections cover the state-of-the-art wearables and
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their intended applications. It is important to note that these
devices are not an exhaustive list of all wearables that are
currently researched and developed but a shortlist of those
that have already shown success and feasibility in real-world
contexts as shown in Table 1. Other devices not included
ECG247, QuardiaCore, Max-ECG Monitor and Frontier X.

Apple Watch

The Apple Watch series 4 contains stainless steel electrodes
placed at the bottom and side of the watch. These metal
points act as the 2 electrodes used in single-lead ECGs. Samol
et al. in their work explore the use of an Apple Watch as a viable
diagnostic tool used by clinicians in medical decision making
(Samol et al., 2019b). The study shows that the quality of a single-
lead ECG from a smartwatch can be medically relevant, making
the Apple Watch a suitable device for patients to self-measure
their ECGs remotely. Their results revealed the robustness of the
Apple Watch’s ECG software in removing noise, such as EMG
and power-line interference, and amplifying the ECG signal for
clear detection and recording.

However, the Apple Watch can only record up to 30 s of ECG
and can send the data wirelessly to the physician using WiFi. This
short recording period is not suitable for post-surgery long term
(<24 h) ECG monitoring. Other single-lead ECGs uptake this role
of post-operation remote monitoring by offering long-term
continuous ECG recordings lasting more than 24 h such as
Holter monitors, and Zio, the wireless ECG patch (Barrett
et al, 2014, 24). The apple-watch may also require patient
pre-training to be used appropriately in placing the electrodes
in the optimum positions for single-lead detection as specified by
Samol et al. for Wilson-like leads (Samol et al., 2019b).

The Apple Watch has a small form factor and its ECG software
is currently FDA-cleared as a class II medical device for the
detection of AF for persons above the age of 22 (Kruger 2018).
The Apple Watch’s ECG sampling frequency and bit resolution
information are not readily available acting as a limitation to this
study review. The device also cannot be used for the detection of a
recurrent AF in patients, it can only be used in the recognition of
the first AF of a person (Kruger 2018).

AliveCor Kardia

AliveCor’s Kardia mobile application and hardware single-lead
ECG, with stainless steel electrodes, brought significant attention
to the viability of single-lead ECGs in telemedicine. It requires the
person to place his left- and right-hand fingers on the conductive
pads and wait for 30 s. This process measures Lead-I ECGs. The
hardware must be placed close to a Bluetooth-enabled device and
the recording is initiated through the Kardia app. The signal can
be seen in real-time. After the recording is complete, the app
analyzes the 30 s ECG recording for AF and provides the filtered
signal, HR in BPM, and the overall results to the individual. Lua
et al. in their work uses the Kardia device and app to detect silent
AFs remotely in patients with a previous history of strokes in the
Netherlands (Lau et al, 2013). Kardia became part of a
community screening program for stroke prevention by early
detection of AF (Selder et al., 2019). The researchers conclude
that a single-lead ECG placed with a smart phone is suitable for
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TABLE 1 | Comparison of single-lead ECG monitoring devices.

Device factors Apple watch Kardia Zio patch
Connectivity Bluetooth Bluetooth No Connectivity
ECG Recording Duration 30 Seconds 30 Seconds 14-days Continuous
ECG Resolution N/A 16-bit 10-bit
Sampling Rate N/A 300 Hz 200 Hz
FDA-Status Cleared Cleared Approved
Power 6h 200 h 14 days (336 h)
Prescription vs. Over the OoTC OoTC Prescription
Counter (OTC)
Type of Outcome Raw ECG Raw ECG PDF
and PDF and PDF
Intended Applications AF and activity AF Arrhythmia and
Tracking symptom detection

community screenings remotely due to the abundance and
widespread of smartphones. This research exemplifies the
significant potential of Kardia to be used by the medical
community for the detection of AFs using Lead-I ECG
measurements.

Another journal article by Marinucci et al. examines the
quality of Kardia-based ECG recordings and its feasibility in
the implementation of an artificial neural network (ANN) for AF
detection (Marinucci et al.,, 2020). Their results are significant
because an ANN can be seen a potential tool for reliable AF
detection from short-duration ECG recordings acquired by
Kardia. This work shows the promising future of Kardia as a
reliable single-lead ECG data acquisition module with high SNR
ECG signals that can be used by medical artificial intelligence and
in clinical diagnosis.

Kardia is an FDA-cleared small hand-held device that can fit in
a pocket. The device features a battery life for 200 h of
operational time, a lightweight of 18g, 16-bit ECG
resolution and a 300 Hz sampling rate for data acquisition.
While the software utilizes edge computing, which analyses
the patient’s 30 s ECG data using the smartphone’s processor.
Edge computing is described as computations performed on
an access point rather than in the cloud (Qureshi and
Krishnan 2018). The results of the ECG recordings are
transmitted to a secure server on the cloud for physicians
to access. Kardia’s disadvantage include the short recording
time of ECGs of 30s which is not suitable for long-term
continuous monitoring, and the usage of a separate hardware
module. Also, Kardia requires the user to relax and record
their ECG signals in a steady and seated position. This
process is unsuitable for active individuals who want to
monitor their HR during and after physical activities.
Nevertheless, Kardia can be used by laypersons to monitor
their heart health. It is evident that the intended purpose of
this device is focused on patients with heart problems that
can be detected using a single-lead ECG such as AF. It is
important to note that Kardia also offers a 6-lead hardware,
KardiaMobile 6L, that has 3 electrodes and obtains Lead
LILIII, aVF, aVR, and aVL. The third electrode can be
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BioHarness Bittium faros Carnation ambulatory

360 monitor

Bluetooth and WPAN Bluetooth Bluetooth

24 h Continuous 7-days Continuous 14-days Continuous

10 or 12-bit 24-bit

250 Hz 1,000 Hz 171 Hz

Cleared Cleared Cleared

24 h 7 days (168 h) 14 days (336 h)

OTC Prescription Prescription

Raw ECG Raw ECG PDF

General Physiological
monitoring

General Physiological
monitoring

Arrhythmia and
symptom detection

found at the bottom of the module where it is required to
be placed on your left leg, acting as a reference point similar
to Einthoven’s triangle. The details of this device is beyond
the scope of this paper.

iRhythm’s Zio Patch
Lastly, Zio by iRhythm, a company specializing in
ambulatory cardiac monitoring, is a single-lead ECG
wearable patch that is attached to the body for continuous
unobtrusive ECG monitoring lasting up to 14 days. The Zio
patch measures Lead- II ECGs (Vosslers 2017). Zio is an
FDA-approved Class-II medical device that is prescription
based. The device features 10-bit ECG resolution, 200 Hz
sample rate for data acquisition, a symptom trigger button,
water-resistance, and 2 lithium coin cell batteries for a battery
life of 14 days (Fung et al., 2015). After 14 days, the patient
mails the Zio patch to a processing center where iRhythm
uses proprietary machine-learning algorithms to analyze
ECG recordings for heart symptoms including AF, and
irregular heartbeats. Turakhia et al. also showed how Zio
leads to higher diagnostic yields of detecting arrhythmia
types (Turakhia et al., 2013). The extended continuous
ECG monitoring using Zio offered more medically relevant
information to physicians for medical decision making such
as AF management and treatments than Holter monitors.
iRhythm’s Zio processing service uses a deep neural network
(DNN) for the classification and detection of arrythmia’s in
ambulatory ECGs. Hannun et al. explore Zio’s DNN in
arrhythmia classification (Hannun et al, 2019). The authors
analyzed 91,232 single-lead ECGs from 53,549 patient who
used Zio’s single-lead ECG device (Hannun et al., 2019). Their
algorithm outperformed cardiologists in classifying AF and other
arrhythmias. For AF, the DNN algorithm had a sensitivity of
86.1% compared to the cardiologists’ 71.0%. iRhythm’s DNN
algorithm is FDA-cleared to be used with the Zio patch (Hannun
et al., 2019). The company developed Zio AT, a service product
that uses the DNN algorithm in arrhythmia classifications,
offering faster results than the normal Zio patch service
mentioned above.
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Zephyr’s BioHarness
Zephyr’'s BioHarness is worth mentioning to provide a holistic

image of upcoming single-lead ECG technology present in
multi-purpose wearables. In sports, Zephyr’s BioHarness is
used to monitor activity performance and the physiological
features of athletes during intense workouts. This purpose is
also intended in defense where the system is used in
monitoring overall stress levels of military personnel in
training. On the other hand, this device is used in
ensuring the health and safety of first responders such as
firemen and personnel in coal mine rescue operations.
Zephyr’s BioHarness is a multi-module sensor system that
acquires HR and HRV through ECG, breathing rate through
respiratory signal and posture, activity, peak acceleration,
and impact through accelerometer data. The ECG sampling
rate is 250 Hz with a minimum and maximum bit resolution
of 10 and 12 bits respectively (BioHarness 3.0 User Manual,
2012). The device is attached through a chest strap and has an
active battery life between 2 and 24 h between charges based
on whether the raw signals are transmitted through Bluetooth
to a PC/smartphone or stored internally (BioHarness 3
Medical Data Sheet, 2012).

Zephyr’s BioHarness has shown its reliability in monitoring
healthy individuals in intense physical activity. Nazari et al.
examined the BioHarness and Fitbit charge’s reliability in
obtaining approximate HR values during rest, a fitness test
and recovery (Nazari et al., 2019). The authors concluded that
Zephyr’s BioHarness and Fitbit Charge are reliable wearables in
obtaining consistent and stable HR measurements that can be
cross referenced over a number of sessions in sports monitoring
applications (Nazari et al., 2019). However, in clinical
applications the BioHarness showed disadvantages. Nepi et al.
showed that Zephyr’s BioHarness may not be suitable for clinical
applications due to its unreliable HRV measurements (Nepi et al.,
2016). For sports applications, the authors concluded that mean
HR calculated for each subject is highly correlated to the HR
signal obtained through the BioHarness. While HRV
measurements recorded by BioHarness were found to be
unreliable for clinical applications. Nepi et al. concluded that
the BioHarness may not be suitable for general population
cardiac-risk evaluation but may be complementary to other
clinical ECG acquisition modules in the detection of sudden
cardiac death in high-risk individuals (Nepi et al., 2016). Both
studies show how Zephyr’s BioHarness is suitable for sport
applications, and consumer-like fields rather than clinical
applications involving HRV measurements.

Bittium Faros 360

Bittium Faros is a reusable ECG monitor that can operate as a
single-lead or a multi-lead system. The device comprises of a
hardware unit and detachable electrodes. There are 3 types of
hardware units 90, 180, and 360 eMotion Faros. For this study,
the 360 eMotion Faros device will be examined because it
contains all features present in the other two devices and is
the highest grade that Bittium offers for cardiac monitoring. It
can operate as a single-lead or a 3 lead multielectrode
configuration depending on the physician’s recommendations
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for patients. The device is waterproof, wireless through Bluetooth
and can record up to 180 days in memory. However, the system
has a battery life of up to 7 days and requires a 1-h recharging
time. ECG sampling rate can be varied and can be adjusted up to
1,000 Hz with a resolution of 24 bits analog to digital converter
(ADC). Also, it features a 3-axis accelerometer that can have a
sampling rate of up to 100 Hz. It is important to note that Bittium
Faros is an FDA-cleared class-II medical device that is
prescription based.

Bittium Faros has been used in many studies ranging different
research fields. In some recent studies, it is used as the
criterion standard because of its ability to produce high
quality ECG signals. A review study examined the
potential of using the device as a wearable for military
field action operators due to its high resolution and ability
to transmit and store HRV data for later analysis (Hinde
et al., 2021). The authors concluded that when compared to
other ECG and PPG based wearables, Bittium Faros is a likely
candidate for remote monitoring of military personnel
(Hinde et al. 2021). While another study examined the use
of Bittium Faros and other wearables to monitor patients
remotely (Godkin et al., 2021). The study performed in
Sunnybrook Health Sciences Centre, Toronto showed that
subject adherence was high with Bittium Faros and is
achievable in a multi-sensor system for patient remote
monitoring (Godkin et al., 2021).

Bradydx’s Carnation Ambulatory Monitor
CAM is a continuous single-lead ECG wearable patch that is
placed directly on the sternum. The patch can be worn up to
14 days like Zio. This class-II FDA cleared device features an
event recorder button to be pressed when a patient undergoes any
cardiac symptoms. CAM is a water-resistant monitor and should
not be submerged under water. The device is prescribed for
patients with known cardiac problems and is used to monitor
their heart activity remotely. CAM uses a sampling rate of 171 Hz
and examines a filtered signal ranging from 0.67 to 25 Hz. It uses
two electrodes to record the augmented aVF single lead ECG
behavior.

The main difference between CAM and other devices
presented in this study is its P-wave centric approach in
detecting cardiac arrythmias. Generally, P-wave cannot be
characterized clearly in ECG recordings using single-lead
ECG patches due to the short inter-electrode distance
between 2 electrodes. This problem is mitigated in CAM
by increasing the inter-electrode distance to 8.89 cm placed
across the sternum. In a clinical investigation the authors
compared the diagnostic capabilities of CAM to a standard 3-
lead Holter monitor (Smith et al., 2017). CAM showed a high
positive correlation of PR, QRS and QT wave intervals with
Holter intervals with coefficients of 0.93, 0.86, and 0.94,
respectively. The 50 patient study concluded that CAM
yielded more diagnostic quality ECG, was easy to use, and
comfortable to wear, where 86% of subjects preferred CAM
over Holter (Smith et al., 2017). The diagnostic yield showed
that CAM identified arrythmias in 46% of patients that
altered their care management compared to 12% with
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TABLE 2 | Single-lead ECG monitoring design considerations checklist.

Power requirements
Components

device oscillating frequency

battery size and weight
device sampling rate (in hz)

Computational Complexity
e Big O Notation

Quality of Signals Signal Resolution (in bits)

Signal Sampling Rate (in Hz)

Human Factors User-Compliance

Material Biocompatibility
Device Weight

Holter (Smith et al., 2017). Some studies compared CAM to
other single-lead ECG patches such as Zio XT to show the
benefits of P-wave and its role in improving signal quality
(Rho et al., 2018). The study explored the difference in ECG
signal clarity and showed CAM to detect more distinct
arrythmias than Zio XT. However this study was limited
to the small sample size of 30 patients with a mean age of
73 years old (Rho et al., 2018). Also, it is important to note
that P-wave based arrythmia detection still requires further
research due to the limiting small sample sizes present in
many P-wave indices studies and the lack of a standardized
protocol in P-wave signal acquisition and analysis (Magnani
et al., 2009).

3 SINGLE-LEAD ECG DESIGN FACTORS

A 4-axis concept is proposed here that explores the specific
design factors of single-lead ECG wearables for long term
remote monitoring. These factors include
capabilities, power consumption, real-time factor, weight,
recording time and form factor of the device under the
umbrella of 4 dimensions, power requirements, quality of
signal, computational complexity, and human factors, as
shown in Table 2 summarizing the main points behind the
proposed design factors. Each dimension takes into
consideration the overall single-lead ECG system and the
detailed components used in its design. The power
requirements dimension is important in single-lead ECG
designs for very long-term remote monitoring because of
the reliance on light-weight batteries for all the device’s
operational needs. While computational complexity

wireless

power source (types of batteries)

Horizons in Single-Lead ECG Analysis

current Consumption per hour in (mAh) at Normal Device Operation for Entire System and Specific Hardware

digital algorithm Power Consumption

wireless connectivity Power Consumption

Real-time Capabilities (Considering Latency and Real-time Operating Systems)

Numerical Efficiency of algorithms (# of iterations, operators, etc.)

Presence of Motion Artifacts and power Noise
Sensor Location (relevant to ECG information)
Recording Type (Event-monitoring vs. continuous)
Types of Sensors (Dry and wet electrodes)

Comfortability (presence of rash, marks, etc.)

dimension mainly focuses on the real-time capabilities of the
device. This dimension is crucial for single-lead ECG wearable
designs because it determines the speed and accuracy of
algorithms used to detect ECG abnormalities that can
underly cardiac diseases and cause sudden death. Also, the
quality of the ECG signal is an important dimension. A good
quality signal will offer a clear ECG waveform that can assist
doctors in their diagnosis when compared to a low-quality
signal (Kligfield et al., 2007; Satija et al. 2017). A clear noise-
free signal would also improve output accuracies of HR and
Arrythmia detection algorithms. The last dimension, human
factors explore the comfortability of a device in use. Highly
comfortable ECG wearable devices have a high user compliance
rate which is important in long-term remote monitoring. A high
compliance will yield more accurate results for medical
professionals to analyze (Tai Wong et al., 2019).

4 SINGLE-LEAD ECG DESIGN
CONSIDERATIONS

In power requirements, the single-lead wearable should not
require high power consumption, uses low-power density
batteries, and does not operate on power intensive hardware.
These factors are important and desired for continuous long-term
remote monitoring. Low power consumption saves on battery
power which increases the longevity of the device in operation.
For example, Zio achieves this factor as evident by its continuous
operation for up to 14 days. On the other hand, low energy
density batteries help in achieving the small form factor and
lightweight features of the wearable. Higher density batteries are
heavier which can add up to the wearable’s weight causing its
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unbearableness during usage but offer more power that can be
used in computations. This factor relates to both power
requirements, human factors, and computational complexity.
Low-density batteries may not be suitable for processing
power hungry complex algorithms. However, low power
density power sources are a desired factor to limit the not so
considered excessive power consumption of hardware modules
and help designers focus on developing low-power, low-complex
algorithms and choosing power-efficient hardware components.
Lastly, the oscillating frequency of microcontroller units (MCUs)
is considered in power requirements, and computational
complexity to show how power consumption and digital
algorithms are related to one another through MCUs and
their hardware limitations.

Computational complexity factors are highly related to power
requirements. Highly complex algorithms require significant
computational resources such as high oscillating frequencies of
MCUs, which in turn increases power consumption. Therefore,
by limiting frequency oscillations to a few MHz, the designer is
limited to developing low-complex algorithms that take into
consideration the Big O Notation, the order of mathematical
equations. For example, if the Big O Notation is limited to
constant-time algorithms, O(1), featuring basic operations
only during computations. Also, Big O Notation is influenced
by the order of the mathematical equations (Imtiaz et al., 2016).
From Elgendi’s work, the numerical efficiency of available HR
and QRS detection algorithms is reviewed to present which
mathematical processes are suitable for battery-powered,
wearable and wireless ECG systems (Elgendi et al., 2014). First
and second order derivatives, fixed and float point calculations
are evident from previous works that they are computationally
inexpensive, suitable for a long-term remote ECG wearable
(Elgendi et al., 2014).

For signal quality, it is desirable to get signals that are noise-
free and can be used in clinical and consumer settings alike. 10
consecutive QRS complexes is chosen as a good indicator of
clinical grade ECG quality is due to previous research in the field
that reproduced this factor. Samol et al. were able to use this
indicator consistently, by reproducing it in different studies
(Samol et al,, 2019a; Samol et al., 2019b). This process has
shown its reliability as an indicator of good ECG signal
quality of wearable based ECG systems that can be used in
clinical diagnosis. While a minimum of 12-bit resolution ECG
show great amplitude changes because it offers in-depth
amplitude information that has shown promise as presented in
multiple studies working with ECG (Narayanaswamy, 2002). For
example, Narayanaswamy can obtain clinically significant health
information using a 12-bit ADC and a sampling frequency of
1,000 Hz (Narayanaswamy 2002). While the choice of providing a
minimum of 125 Hz for sampling frequency is based on the work
where authors showed that algorithms that functioned with at
least 125 Hz ECG signal yielded less inaccuracies (Ajdaraga and
Gusev, 2017). Higher sampling frequencies of more than 125 Hz
is recommended for clinical applications, especially for the
detection of arrythmias which may require a minimum of
1,000 Hz sampling rate (Abboud and Barnea 1995). Some
frequency ranges that are used significantly in clinical
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literature include 250 Hz, 500 and 1,000 Hz. While the last
factor that impacts signal quality is motion artifacts. Motion
artifacts are an unavoidable element that creates difficulties for
researchers and developers alike when acquiring ECG signals.
Reduced motion artifacts during signal capture play a significant
role in the total preprocessing, analysis, and postprocessing stages
required in an ECG system, which can lead to reduced power
consumption and improved signal quality. Therefore, it is
important for single-lead ECG wearable developers to consider
the fixation of wearables on users as to limit motion artifacts while
also maintaining good quality ECG signals.

Human factors are a subjective measure that can be further
improved upon by examining the presence of rash or severe skin
marks caused by the single-lead ECG wearables. The human
factors dimension is highly user subjective which may require
developers to approach this factor through prototyping, field
testing and pilot studies. However, it is still an important
dimension to consider in any single-lead ECG design because
compliance rate can impact user wear time which in turn relates
to the amount and duration of signals that can be analyzed for
clinical diagnosis. After having looked into the design
considerations for single-lead ECG signals, in the next
sections, data consideration and algorithmic challenges and
opportunities will be discussed in detail.

5 TRENDS IN FILTERING AND DENOISING
OF LONG-TERM ECG DATA

ECQG like other electrophysiological signals encounter noise that
can ruin the quality and in turn the diagnostic value of the
recordings. Signal processing and noise filtering techniques
become a paramount step in any ECG analysis algorithm that
helps to extract a clear PQRST waveform that can be used in all
sorts of applications including HRV estimation, HR, arrythmia
detection, and general wellbeing monitoring. The most common
noise that can be found with an ECG signal include baseline
wander, motion artifacts, electromagnetic interference (EMI),
electrode contact, muscle contraction and other unwanted
electrophysiological Baseline wandering is
frequency noise mainly caused by respiration. Its frequency
can range from 0.15Hz to over a few Hz (Kher. 2019). While
motion artifacts are caused by body movements. Motion artifacts
can be of low and/or of high frequency nature depending on the
physical activity of the subject. Up to this date, a robust solution
for eliminating motion artifacts is still elusive. On the other hand,
EMI is one of the first noise sources that are eliminated in a signal
processing technique. EMI can be power-line interference noise
characterized by the 50/60 Hz produced from power sources such
as electric outlets. Also, EMI include electromagnetic waves
produced by electronic devices such as cellphones that
interfere with the highly sensitive ECG processing circuitry.
Muscle contractions create EMG signals that interferes with
ECG in the same frequency bands. EMG are high frequency
signals. Lastly, electrode contact noise is caused by the movement
of electrodes relative to the skin contact surface. The noise is
apparent with high amplitudes in an ECG that look like R-peaks

noise. a low
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but larger (Kher, 2019). This type of noise is a main contributor to
the false detection of R-peaks for HR detection.

Signal filters can come in many types such as digital, analog,
mechanical and optical. The focus for this work will be digital and
analog filters that are highly applicable in long-term ECG signal
processing. Digital filters are approaches performed in software,
and they are designed and implemented in general purpose
computers or in specialized hardware. Some of the most
prominent digital filters used for ECG and other
electrophysiological signals include Butterworth, Chebyshev,
Bessel, Elliptic, and Gaussian filters. While analog filters for
ECG manipulate the electrical signal of the heart directly.
Analog filters can be designed using resistors, capacitors, and
general-purpose electronics. ECG signal filtering is becoming a
saturated field of research. Since early 1980s, research have
examined different approaches and filtering techniques that up
to this date are considered optimal for application use. A good
example is the Pan-Tompkins algorithm, developed in 1985. The
algorithm features a band-pass filter, by cascading low and high
pass filters, that eliminates most EMI noise and is considered the
golden standard for HR detection (Pan and Tompkins 1985).
Since then, researchers have examined different filter
configuration, focusing on filter design, and optimizing its
transfer function. The recent progress in ECG denoising
currently revolves two aspects: hardware and software
techniques. Hardware techniques can be attributed to
hardware accelerators and their role in denoising by offering
low-power circuitry that can eliminate EMI noise effectively
without compromising signal quality and achieving a low-
power consumption compared to software-based approaches
(George et al., 2020). As for software denoising techniques, the
goal is to improve on the signal using adaptive approaches that
are highly accurate and can be used in numerous diagnoses of
arrythmias and early detection of cardiac disease precursors in
ECG. For example, Finite Impulse Response (FIR) filters are
robust in eliminating most unwanted ECG noise that are actively
used in many ECG analysis algorithms. But some researchers are
examining the feasibility of simple filtering and data driven
techniques in real-time denoising for long-term remote
monitoring applications (Mukhopadhyay and Krishnan 2020).

Many researchers examined the role of denoising and offered
full comparisons between different techniques for ECG (Malghan
and Kumar Hota, 2020). It is important to note that software
approaches can also be performed on the cloud or through on-
edge computing in access point devices such as smartphones.
Band-pass filtering is the most prominent and simple method
used to eliminate unwanted noise outside a certain frequency
range. Useful information in ECG can be found in the range of a
few Hz to around 100 Hz. However, noise can still exist in this
frequency band. To eliminate the unwanted noise within the
signal, notch filters are used to suppress a certain frequency. For
example, a 50 Hz notch filter is used to eliminate power line
interference noise. Other techniques include adaptive filters,
DWT, and empirical mode decomposition (EMD). Adaptive
filters are denoising approaches that improve by taking into
consideration the error produced from the output signal and
feeding that information back into the digital filter in developing
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FIGURE 1 | Adaptive filtering for ECG noise cancellation.

more optimal filter coefficients for separating overlapping signal
and noise components, as shown in Figure 1.

On the other hand, DWT is used in ECG filtering by
separating the input signal into different frequency bands with
unique resolutions. Multistage wavelet filtering involves wavelet
decomposition of the input signal by dividing the signal into ‘N’
number of bands with different frequency resolutions (Malghan
and Kumar Hota., 2020). Based on the noise level at hand, the N
number of decomposed levels is determined. Also, wavelet can be
used with soft and hard thresholding. He et al. developed an
adaptive wavelet thresholding method (AWT) that enhances
ECG signals (He and Tan 2018). Their algorithm produces
automatically the most appropriate base wavelet for a signal
by looking at cross correlation coefficients and the energy to
entropy ratio. While Oliveria et al. used wavelets to eliminate
power line interference without thresholding (Oliveira et al,
2018). Their algorithm was more robust and presented better
results compared to notch filtering and other threshold
approaches.

Wavelet requires a pre-selected basic function that is used in
the initial breakdown of the signal. This issue is what lead to the
rise of EMD based denoising algorithms that do not require any
function initial configurations. EMD decomposes signals into M
number of signals known as intrinsic mode functions (IMFs). Jain
et al. developed an EMD based approach that separated the input
signal into different IMFs (Jain, Bajaj, and Kumar 2018). The
IMFs with the highest low-pass and high pass frequency noise are
determined using recognition algorithms and underwent
complex filtering. The de-noised IMFs, with the dominant
IMFs, are later used in the reconstruction of the ECG signal
(Jain et al, 2018). EMD, DWT and some adaptive filter
techniques are not optimal for long-term remote monitoring
due to the high complexity and computational cost.

Future trends in filtering techniques for single-lead long-term
remote monitoring ECG should focus on power and some
hardware considerations. In essence, simple arithmetic-based
filtering such as low-order low-complexity filtering is optimal
for these applications. Filters with a computational complexity of
O(N) or O(1) are perfect candidates. However, the quality of the
ECG may be impacted due to the lack of complex approaches in
eliminating most of the unwanted noise. In this case, it is
imperative to consider other ways to maintain a high signal
quality and allow for good denoising structures. A mixed
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approach of denoising using hardware 1st order hardware filters,
AFEs and software can yield good results for HR detection
algorithms (Abdou and Krishnan, 2021). Other approaches
include the use of hardware accelerators to lower power
consumption when compared to the same filtering techniques
performed in software. Application specific filter hardware
accelerator has a significant role in ECG denoising (George
et al, 2020). While PCB wiring should be considered by
single-lead designers due to the inherent nature of
electromagnetic fields present during electrical conduction. If
electrode leads are in proximity or the presence of a wireless
module approximate to ECG circuitry can yield small mV noise
that becomes amplified with the input signal. Other
considerations should include the type of material, the
electronic component noise tolerance and presence of
electrode shielding. The above-mentioned considerations
should also investigate the applicability of the intended ECG
acquisition. Denoising can filter some important information
from an ECG which could be useful in other case scenarios. For
example, a clinical ECG signal may require focusing on a larger
frequency band for heart patients vs. wellness monitoring that
may only need to focus on a small frequency band that is
representative of the normal population. These factors should
be taken into consideration when designing application-specific
single-lead ECG monitoring devices.

6 TRENDS IN COMPRESSIVE SENSING
FOR LONG-TERM ECG DATA COLLECTION

Compression helps in power constrained and bandwidth limited
applications. Classical compression techniques are seen as a post-
processing tool, where the compression happens after the signal
has been captured. In the realm of compressive sensing (CS), the
compression happens at the acquisition phase itself. Classical
compression algorithms can be either lossy or lossless
approaches. Lossy algorithms lose information during
encoding which cannot be retrieved later. To mitigate this
issue with lossy algorithms, innovation in low-power cost
signal reconstruction algorithms is examined due to its vital
importance in extracting all the information needed
appropriately. While lossless compression algorithms do not
lose any information during encoding and allow for full
information recovered at signal reconstruction. Lempel-Ziv
Welch and Huffman coding are two lossless algorithms that
show good CR without losing any of the ECG cardiac
information but are not optimum compared to lossy methods.
Some researchers examined a hybrid of both types to achieve high
CR, with minimum information loss and increase the battery life
of the device.

Arrythmia detection is an important area for long-term
remote monitoring applications. Accurate automatic detection
helps physicians identify arrythmias and allow for large amounts
of recorded ambulatory ECG to be scanned quicker and easier for
an efficient timely prognosis. The long-term nature of ECG
remote monitoring requires large amounts of storage and
wirelessly transmitting it for cloud computing. This concept
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takes a significant amount of battery power which impacts the
device’s overall longevity. To alleviate this issue, researchers
undertook the approach of compressing ECG data into small
sets that can be stored and processed directly on the device. CS are
algorithms that help decrease the size of the data while
maintaining its integrity to be decoded later. This process
decreases the total amount of data points being transmitted
wirelessly which allows for an increase in battery longevity, as
shown in Figure 2. A good example of classical compression
scheme is the DWT that is being used to compress images.

The current widely accepted approach in ECG compression is
digital wavelet transform based algorithms (DWT). These
algorithms are split into embedded zerotree wavelet (EZW),
set partitioning in hierarchical trees (SPIHT), and
thresholding-based approaches (Hilton 1997; Lu et al., 2000).
EZW is a lossy compression algorithm that is mainly used for
images but has seen its role in other applications such as
biomedical signal compressions. While SPIHT examines the
fundamental similarities present between the different
frequency ranges in a wavelet decomposition. Lastly, the
thresholding-based algorithms uses wavelet decomposition and
focuses on iterating the resultant coefficients through a threshold
until a fixed number target of wavelet coefficients are zeroed. All
three approaches require DWT that is complex in nature which
takes up a lot of memory and computational resources. These
approaches can be found in hospital ECG machines. For long-
term remote monitoring, DWT is not feasible if battery efficiency
and memory are prioritized.

To eliminate this issue, researchers examined different CS
algorithms dependent on the ECG periodical form to eliminate
redundant information to be stored efficiently on the device
(Mamaghanian et al, 2011). The sparsity of the signal is
highly relevant to most CS approaches including DWT based
algorithms. Sparsity in simple terms can be defined as a signal that
has an S amount of non-zero elements is said to be S-sparse. The
idea revolves around that if a signal is represented is an S-sparse
form such as wavelet coefficients, the signal can be reconstructed
without taking into consideration the Nyquist sampling theorem
of the signal. This process in turn is the founding concept behind
CS and helps in lowering the computational costs of performing
operations on the signal. An approach developed by
Mamaghanian et al. utilizes sparse binary sensing matrices to
execute the matrix multiplications of CS. The algorithm is as
follows; linear transformation by implementing a sub-gaussian
random matrices using sparse binary sensing, removing
interpacket redundancy defined as removing the redundant
information presented in packets before encoding, and
Huffman encoding to develop the codebook to be transmitted
wirelessly or be stored using less memory on the device
(Mamaghanian et al, 2011). The authors later performed a
comparative analysis of both their CS and the accepted DWT
algorithm and found out that DWT outperforms the developed
CS, 90% compression ratio (CR) vs. 71%, respectively for good
reconstruction quality ECG. However, code execution time in
milliseconds (ms) dropped from 580 ms for DWT to 25ms,
appropriate for real-time compression. Overall, the device’s
battery longevity increased by 37.1% amounting to 146.8h
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compared to DWT’s life time of 107.05 h using 280 mAh at 3.7 V
(Mamaghanian et al., 2011).

Other researchers examined ECG sparsity differently. Pant and
Krishnan extracted the second-order difference of sparsity and with
using dictionary learning developed a reconstruction algorithm that is
highly accurate (Pant and Krishnan 2014). The algorithm is compared
to other highly accepted approaches such as 1d-Ip regularized least
squares and some Bayesian learning methods. Average SNR values for
their proposed algorithms were higher compared to reconstructed
signals from state of the art. As for CPU runtime, the dictionary
learning approach took 1,244 s-3,824 s depending on the size of the
original and reconstructed signals (Pant and Krishnan 2014). The
approach was developed on a PC however the authors argue that due
to the simple arithmetic calculations of this algorithm, the method can
be implemented on specialized hardware architectures such as Field
Programmable Gate Arrays (FPGAs).

It is important to note that the future for single-lead ECG devices
will prioritize battery life, small form-factor and automated
arrythmia detection. CS is becoming an important cornerstone to
lower the sampling rate, memory size, and wireless transmission
power costs. The trend in ECG compression revolves around CS and
using the sparsity of the signal. Signal sparsity detection and
implementation is the main tendency to mitigate the classical
Nyquist theorem sampling rate. In turn, the hope revolves
around collecting the ECG signal using a low sample rate, below
the conventional Nyquist rate that the theorem states, saving on
computational resources and thereby prolonging battery life.

7 TRENDS IN FEATURE EXTRACTION
FROM ECG DATA

An input signal can contain many features that make it unique
and can be used in classification, and analysis easily. The main
goal of many signal analysis algorithms is defining a pattern or a
set of values that can help the user to determine the signal or part
of a signal at hand. Feature extraction is the process of identifying
these values that are hidden within the acquired ECG that can
have significant use to both analysis and ML applications.
Krishnan et al. offers a detailed overview of biomedical signal
feature extraction techniques showing the most common and
vital processes used by researchers (Krishnan and Athavale 2018).
Feature types are split into 4 different domains defined in its
signal processing development over the past 70 years: time
domain, frequency domain, joint time-frequency, signal
decomposition and sparse domain features. Time domain
features are defined as characteristics relating to the change of

the signal over time. Signal statistical features such as mean,
variance and standard deviation are time domain based. Time
domain features yield general temporal information about the
signal which may not be optimal for specific analysis applications
such as personalized automatic arrhythmia detection. Frequency
domain features are aspects that relate to the rate of change of the
signal’s values. These features can be computed using frequency
transformation calculations, where the signal is converted from
time (real) domain to a frequency domain representation in most
cases using Fast Fourier transform (FFT). This approach provides
highly relevant frequency information but is limited in giving off
accurate temporal data. On the other hand, joint time-frequency
(TF) domain features try to mitigate each domain’s separate
disadvantage by giving off good temporal and frequency
information all together. A good example for this process is
Short-Time Fourier Transform (STFT) that uses windowing to
localize the TF representation of parts of the signal. The above
three approaches use the classical Nyquist sampling rate and
requires the full signal for feature extraction.

As mentioned before, Nyquist theorem is a major factor in
device power consumption, ideally lowering the sampling rate
will increase the longevity of the device’s battery life. To this end,
researchers have examined a new theory revolving around
sparsity and CS to decrease the sampling rate while
maintaining an accurate representation of the signal for
reconstruction and analysis. The same sparsity techniques
mentioned in Section 5 for ECG denoising can be used for
feature extraction. With sparsity comes dictionary learning.
Dictionary learning is used for the reconstruction of the
signal. It is a major aspect in sparse signal processing where a
dictionary is created using basis functions that can be combined
to form the input signal. A few disadvantages of sparsity
techniques include that the reconstructed signal cannot be
100% reconstructed accurately (Krishnan and Athavale 2018).
Another disadvantage includes the storage of a dictionary/
cookbook in memory which is not optimal for small form
factor devices. However, the periodic nature of ECG allows for
dictionary creation that is suitable for long-term remote
monitoring where repetitive patterns can be encoded using the
same code. The goal of sparsity techniques in feature extractions
is to use smaller amount of data in the form of distinctive patterns
to better classify signals.

Common features that are extracted for ECG are PQRST time-
domain, morphological, wavelet, statistical and non-linear features
(Saini and Gupta 2021). While the extraction methods for time-
domain features are Autoregressive Modelling (AR), linear
predictive coding (LPC). Both are parametric approaches where
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coefficient parameters are estimated using previous samples. In AR,
the signal is represented by a linear combination of past and current
values. In LPC, the signal sample is estimated from previous values
and the weighted sum of these values. On the other hand, frequency
domain extraction methods for ECG have usually relied on FFT and
Discrete Cosine Transform, and discrete orthogonal stockwell
transform (DOST) (Raj and Ray 2017). DOST is used to extract
the morphological features in an ECG. While time-frequency
extraction methods include STFT, and DWT. DWT is used to
decompose the signal into low and high frequency components. The
low frequency approximate coefficients (cAi) and high frequency
detailed coefficients (cDi) are determined for feature extraction and
denoising (Saini and Gupta 2021).

In long-term consumer single-lead ECG wearables, the
current feature extraction methodologies are time-domain
features due to their low computational complexity and easy
implementation in C programming, the main language for most
microcontrollers. Some features that are commonly extracted in
time-domain analysis include R-R intervals, HRV, HR, QRS
interval, signal kurtosis, skewness, standard deviation, root-
mean square, and variance. In consumer ECG wearables,
time-domain features allow for real-time analysis and
detection of certain cardiac information that is important for
their intended applications. It is important to note that low-
order wavelet transform can be performed on hardware through
a cascade of band-pass filters separating different frequency
components in each level. Liu et al. developed such an algorithm
for long-term remote ECG monitoring (Liu et al., 2011). For on-
edge and cloud computing applications, the more complex
algorithms can be performed such as EMD. It is important
to note that most single-lead ECG wearables rely on
transmission the data across to a more capable device for
ECG signal analysis. Up to this date, there is a lack of a
robust single-lead wearable signal analysis approaches that
can perform complex feature extraction and denoising
techniques. The current trend in this research area focuses
on the use of sparsity and CS to lower the overall sample
rate, and the size of the wireless data packet transmission to
the cloud. However, sparsity and CS still requires further work
in terms of device feasibility and use. There are currently no
sparse based algorithms for denoising and/or feature extraction
of 1D biomedical signals including single-lead ECGs performed
on small embedded system microcontrollers due to the lack of
the computational tools that can be found in MATLAB and
other software packages.

8 MACHINE LEARNING CONSIDERATIONS
FOR LONG-TERM ECG DATA

Arrythmias have many different types and classes. These classes
are normal beats, ventricular ectopic beats (VEB),
supraventricular ectopic beats (SVEB), mixed normal, VEB
and unknown beats (Saini and Gupta 2021). It is crucial for
physicians to be able to diagnose these arrythmias quickly and
accurately which requires significant domain knowledge and
time. Automatic heartbeat detection can alleviate the current

Horizons in Single-Lead ECG Analysis

constraints by identifying and classifying the different types with
ease and high diagnostic value. ML has a role in the goal of
automatic classification of arrythmias without any human
labelling. The process is believed to help detect severe
immediate attention type of arrythmias such as ventricular
fibrillation and tachycardia. Also, it is assumed to predict
future arrythmias for cardiac prevention methods. In the field
of ECG, ML is used for the classification of heart beats and
different types of arrythmias as shown in Figure 3. The current
artificial intelligence methods used in this field include; Support
Vector Machines (SVMs), Artificial Neural Networks (ANNs),
Linear Discriminants (LDs), Convolutional and Probabilistic
Neural Networks (CNNs, PNNs), and Fuzzy systems (Saini
and Gupta, 2021). We will not delve into details behind each
ML algorithm for ECG but it is important to note this does not
cover all ML algorithms in the literature.

Implementation of predictive models do not constitute high
computational cost on the device if they are small prediction
models with a limited number of weighted coefficients. Also,
other classification algorithms that are based on hand-crafted
features are not mentioned due to the limitation in its use for
specific arrythmia classification compared to the above-
mentioned models that cover many arrythmia types and classes.

For long-term remote single-lead ECG monitoring, it is
recommended to perform the learning phase of Al algorithms
offline. Once the model is developed, it can be employed into
embedded systems. This approach is optimal for power and
computing consumption. Future trends in long-term ECG
monitoring still aims in developing ML algorithms to be
performed through On-Edge and cloud computing platforms.
However, some progress has been made for the development of
reinforcement learning (RL) methods that allows for automatic
classification in the hopes of developing a solution for user-
specific arrythmia detection (Ebrahimi et al, 2020). Currently
there is a lack of RL for long-term remote ECG monitoring
performed on device and/or through on-edge computing.
However, TinyML day by day is becoming a reality where some
progress show promise as discussed in (Sepahvand and Abdali-
Mohammadi, 2022). The authors examined the use of teacher-
student knowledge distillation approaches, highly used in power
efficient classification in ECG. Their work showed promise where
arrythmia classification accuracy was not impacted significantly by
decreasing the number of ECG leads from 12 to 1 (Sepahvand and
Abdali-Mohammadi, 2022). It is imperative to know that this field of
research is growing at a fast pace with many emerging ML
techniques published for general biomedical data.

9 EMERGING SINGLE-LEAD ECG
APPLICATIONS AND OPPORTUNITIES FOR
HEALTHCARE

From this review, it is evident there is a lack of a wearable,
wireless, low power, real-time, low-cost, lightweight, continuous
single-lead ECG device that can perform very long-term remote
ECG monitoring of more than 14 days for wellness and medical
applications using dry electrodes or novel biosensors. These
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limitations in wearable remote ECG monitoring devices can be
alleviated with continuous research and technology progression
in wearable designs. Optimizing signal processing techniques to
work on low-power hardware architectures can assist in the
realization of more than 14days of continuous ECG
monitoring. For example, the implementation of low-
complexity ECG compression algorithms in ECG remote
monitoring applications can assist in reducing the energy
consumption of battery-powered ECG devices while
maintaining high quality and accurate reconstructed ECG
signals. These advancements can increase the number of
applications of long-term remote ECG monitoring. For
example, 30days of continuous ECG monitoring can be
performed for post-operation patient home monitoring
(Kernan et al., 2014).

Some recommended applications for a very-long term
continuous ECG monitoring device include managing care for
patients with long-term chronic diseases such as coronary heart
disease.

Wearable Single-Lead ECG for Health
Applications Include

1) Early prediction of cardiac abnormalities and determining risk
factors using long-term longitudinal ECG data

Monitoring post-op patients remotely

Using long-term wearable ECG in monitoring elders in
retirement homes and long-term care centers during
pandemic scenarios such as COVID-19 pandemic.
Astronaut vital ECG monitoring in space for long durations
of time.

Utilizing long-term wearables for telehealth and telemedicine
applications in remote locations that do not have access to
critical vital sign diagnostic technology or medical facilities
Medical Mental health monitoring

2)
3)

4)

5)

6)

A plethora of single-lead ECG medical wearables are being
tested and validated for clinical use. Some already are used in the
medical field such as Zio Patch, CAM, BF, and ECG247. Most of
the single-lead ECG patches can record up to 14 days
continuously but cannot transmit cardiac information
wirelessly. While BioIntelliSense can monitor patients up to
30 days of continuous ECG monitoring. The main application
for these patches is monitoring cardiac patients post-op to
ensure operation success. Also, they are prescribed by
physicians to monitor the cardiac activity during medication
and/or treatment. Clinicians rely on accurate data from the
patches which is why they are all FDA cleared for use. As for
Kardia, Apple Watch and other consumer single-lead wearable
devices, they are currently being used to detect and monitor
certain cardiac conditions as discussed earlier. Kardia, and
Apple Watch monitor the presence of AF in patients with
chronic cardiac illnesses. On the other hand, there is a lack
of single-lead ECG wearables for long-term elder care, and
telehealth in remote location applications. These applications
rely more on PPG based cardiac information which is not
entirely suitable for arrythmia detection due to the signal’s
behavior and low quality. The current progress for these
applications relies on portable single-lead ECG devices such
as Kardia to record non-continuous ECG over short periods of
time. It is evident there is a lack of single-lead ECG patches or
wearables for continuous monitoring for elder care and
telemedicine in remote communities due to constraints in
developing such a device and the wide acceptance of the
current status quo of PPG based technology.

On the other hand, ECG monitoring for space applications
have shown great promise and progress. Zypher’s BioHarness is
currently used by NASA as part of their Mars simulation to
monitor astronaut’s health. Another promising textile wearable
for space is Skiin, a textile that is currently being tested for long-
term remote applications especially for early detection of CVD.
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Currently the wearable can monitor different vital signs and is
collaborating with Mayo Clinic.

Also, ECG has shown its importance in psychiatry. Hage et al.
used ECG, and HRYV to differentiate bipolar disorder from major
depression patients (Hage et al., 2019). The authors used 15 min
of ECG to be able to create this differentiation. HRV features such
as low and high frequency components of the signal are used. The
authors hope their findings can assist physicians in differential
diagnosis and managing therapeutics for their patients (Hage
et al., 2019).

All devices in health applications require to undergo
significant testing and validation before use. It is obvious
that development requires a few years to produce single-
lead ECG wearables for health. However, most if not all
single-lead ECG wearables undergo a class-II FDA
clearance due to their similar purpose and technologies
when compared to Holter monitors and other multi-lead
ECG devices. Most of the current trend in innovation is
miniaturization and remote monitoring of the raw ECG
signals. Up to this date, a continuous single lead ECG
wearable that can perform automatic arrythmia
detection, provide insights into signal features and allow
for sparse CS is lacking.

10 EMERGING SINGLE-LEAD ECG
APPLICATIONS AND OPPORTUNITIES FOR
WELLNESS APPLICATIONS

Some of the above-mentioned wearables can be used for wellness
applications including;

1) HRV and HR for wellbeing

2) Improving wellbeing practices such as meditating and
maintaining a healthy lifestyle

3) Daily stress analysis

4) Monitoring daily sleep circadian rhythm (Ankitha et al., 2021)

5) Monitoring workforce wellbeing in high risk, high intensity
workplace such as Military, and first responders.

ECG monitoring for wellbeing applications is not a new field of
study. Currently there is some lack of use for single-lead ECG for
consumer wellbeing applications when compared to PPG based
monitoring. However, as single-lead ECG development cost
decreases with the progress of hardware friendly signal
processing, and power-efficient sensors, the technology is
becoming comparable to PPG. For wellness, most applications
do not require ECG but its surrogate signals HR, and HRV in
its analysis. Some single-lead ECG wearables for wellness include
Apple Watch, Kardia, BioHarness, DuoEK and Amazfit Smart
Watch 2. Although Kardia and Apple Watch are being used for
AF, it can also be used to monitor general cardiac activity for
wellness. Apple Watch’s ECG can be used to determine HR and
determine the overall stress level of individuals by identifying
periods of high HR vs. low HR.

While Ishaque et Al used HRV to analyze stress levels of
individuals participating in virtual reality video games. The

Horizons in Single-Lead ECG Analysis

authors later used different types of ML models to clearly
classifty HRV data and identify stressed VR situations vs.
relaxed times (Ishaque et al., 2020). Their work is a promising
precursor to the use of HRV obtained from single-lead ECG in the
analysis of individual behavior and ultimately their mental
wellbeing during daily activities.

Lastly, the current progress for workforce wellbeing can be
seen through the BioHarness’s role in monitoring military and
first responders through their band. The device is currently used
intensively to monitor their stress levels and identify pitfalls of
human performance. Also, they are using this technology to
determine fatigue levels in people and how physical activity
related to cognitive behavior. It is evident that with continuous
progress and research in single-lead ECG, the goal of
implementing more commercial grade single-lead ECG
wearables for wellness and clinical applications is realizable.
However, there are important factors that should be considered
as mentioned earlier. Using low computational and power
efficient signal processing and analysis algorithms allow for
real-time computing. While device power requirements for
long-term applications should be examined in the design
stage itself. Moving forward, researchers should focus on
developing appropriate algorithms that are power efficient
and highly applicable for the common wellness use cases of
HR, and HRV detection. While they should also focus on the in-
depth complex algorithms used for common cardiac problems
and wellness tracking applications. ECG signal quality and
information content can be enhanced by using appropriate
signal processing techniques and this would form as the
foundational step in data-driven machine learning
approaches (Krishnan, 2021). As wearables continually
collect more ECG data, Al algorithms can be developed for
the different wellness and clinical applications. Also, it is
important to note that user comfortability is another
important factor in the use of single-lead ECG. With the
advancements in dry electrodes, a dry sensor could be the
ideal candidate that allows for high user compliance and
high-quality ECG acquisition.

11 CONCLUSION

The article covered important aspects of single-lead ECG
wearable design and data analysis considerations for long-
term, continuous, and remote monitoring applications. A
quick overview of different prominent devices, Apple
Watch, Kardia, Zio, BioHarness, Bittium Faros 360 and
CAM in their wide in medical and consumer
applications is discussed. Zio and CAM can detect many
arrythmias while Kardia is used in community screening for
AF. On the other hand, Apple Watch is used for both AF
detection, and wellbeing roles. BioHarness is suitable for
emergency services, and in tracking elite athletes. While
Bittium Faros can be applicable for military personnel.
Guidelines for efficient wearable design using a novel four
parametric representation domain has been proposed.
Hardware-efficient software algorithmic design

use
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considerations become of importance due to power
constraints. With the current progress in microelectronics,
hardware accelerators, low-complexity algorithms, and
sensors, single-lead ECG is becoming a necessary diagnostic
modality for a plethora of healthcare and wellness applications.
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