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Conventional individual head-related transfer function (HRTF) measurements are
demanding in terms of measurement time and equipment. For more flexibility, free
body movement (FBM) measurement systems provide an easy-to-use way to measure
full-spherical HRTF datasets with less effort. However, having no fixed measurement
installation implies that the HRTFs are not sampled on a predefined regular grid but rely on
the individual movements of the subject. Furthermore, depending on the measurement
effort, a rather small number of measurements can be expected, ranging, for example,
from 50 to 150 sampling points. Spherical harmonics (SH) interpolation has been
extensively studied recently as one method to obtain full-spherical datasets from such
sparse measurements, but previous studies primarily focused on regular full-spherical
sampling grids. For irregular grids, it remains unclear up to which spatial order meaningful
SH coefficients can be calculated and how the resulting interpolation error compares to
regular grids. This study investigates SH interpolation of selected irregular grids obtained
from HRTF measurements with an FBM system. Intending to derive general constraints for
SH interpolation of irregular grids, the study analyzes how the variation of the SH order
affects the interpolation results. Moreover, the study demonstrates the importance of
Tikhonov regularization for SH interpolation, which is popular for solving ill-posed numerical
problems associated with such irregular grids. As a key result, the study shows that the
optimal SH order that minimizes the interpolation error depends mainly on the grid and the
regularization strength but is almost independent of the selected HRTF set. Based on
these results, the study proposes to determine the optimal SH order by minimizing the
interpolation error of a reference HRTF set sampled on the sparse and irregular FBM grid.
Finally, the study verifies the proposed method for estimating the optimal SH order by
comparing interpolation results of irregular and equivalent regular grids, showing that the
differences are small when the SH interpolation is optimally parameterized.
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1 INTRODUCTION

Head-Related Transfer Functions (HRTFs) are essential for the
binaural reproduction of virtual acoustic environments (Vorländer,
2008). In contrast to commonly used generic HRTFs, individual
HRTFs improve the perceived quality of binaural reproduction in
terms of front/back localization and elevation perception (Wenzel
et al., 1993; Møller et al., 1996). However, conventional
measurements of individual HRTF sets are costly in time and
effort. Even though recent achievements reduced the required
measurement time (Majdak et al., 2007; Enzner et al., 2013;
Richter, 2019), most measurement systems still rely on rather
complex immobile setups, such as (semi-)circular loudspeaker
arcs, where a full-spherical coverage of measurement directions
needs a continuous rotation of the subject or the installation.
Besides measurements, there are also alternative methods to
obtain individual HRTFs (Guezenoc and Seguier, 2018), such as
numerical simulation from 3Dmodels (Pollack andMajdak, 2021) or
individualization of generic HRTFs (Bomhardt, 2017). Even though
those methods mostly have some shortcomings compared to
measurements, they primarily target a consumer audience, where
their simplicity justifies their relevance.

To simplify individual HRTFmeasurements and prevent the need
for costly measurement setups, some recently introduced systems
utilize free body movements (FBM; such systems are in the following
called FBM systems) of the subject to cover the different sound
incidence angles. Characteristic to these FBM systems are the low
equipment requirements, that is, a single stationary loudspeaker, a
pair of in-earmicrophones, and a system to track the head orientation
with respect to the stationary loudspeaker. The system presented in
He et al. (2018) uses adaptive filtering to acquire HRTFs from a
continuous excitation signal, while the head orientation is tracked
with an inertial measurement unit (IMU). A similar system was also
implemented by Li and Peissig (2017). HRTF measurements using
adaptive filtering, introduced by Enzner (2008), yield spatially
continuous HRTFs, given a sufficiently slow and known rotation
speed, and do not require any successive interpolation. However,
adaptive filtering is less robust against environmental noise than
commonly used exponential sine sweep (ESS) measurements (Fallahi
et al., 2015), making it rather inappropriate for use in normal rooms.
Reijniers et al. (2020) presented a system that uses an optical tracking
system for the head movements and short ESS for measurements at
discrete sampling points. Similarly, our recently proposed system
(Bau et al., 2021) is based on ESS measurements but uses a
commercially available virtual reality system for tracking. With the
latter two systems, measurements can be performed even in
reverberant conditions, meaning that an anechoic chamber is not
mandatory. In general, FBM systems have some properties that can
have a negative effect on the measurement. Major sources of errors
are inaccuracies of the tracking devices, reflections of the torso at
various orientations, and in case the measurements are carried out in
reflective environments the influence of the room acoustics.
However, recent studies showed that these effects can be
successfully mitigated or neglected (Pörschmann and Arend,
2019a; Pörschmann and Arend, 2019b; Reijniers et al., 2020; Bau
and Pörschmann, 2022). As such, FBM systems, especially due to
their simple design, offer a promising approach for obtaining high-

quality individual HRTFs by facilities that are not specialized in
acoustic measurements.

However, having no fixed measurement installation implies that
the measurement directions of HRTFs typically do not correspond to
predefined sampling grids. Instead, FBM systems usually provide
HRTF measurements on irregular grids, meaning for directions
irregularly distributed along a virtual sphere. Moreover, depending
on the measurement effort, typically only a small number of
directions are captured. To obtain meaningful HRTF sets, spatial
interpolation of such irregularly and sparsely sampled measurement
data is necessary. In the past, various approaches for HRTF
interpolation have been proposed. Already in 1993, Wenzel and
Foster (1993) stated that localization accuracy was largely unaffected
by discontinuous nearest-neighbor interpolation, even for large
interpolation intervals. Chen et al. (1995) used a weighted
combination of Eigen transfer functions obtained by feature
extraction to synthesize interpolated HRTFs. Djelani et al. (2000)
aligned the HRTFs in the time-domain prior to interpolation to
mitigate interpolation errors. Separate interpolation of magnitude
and unwrapped phase delivered similarly good results (Hartung et al.,
1999). The interpolation weights can be derived in different ways,
including natural neighbor (Sibson, 1981; Pörschmann et al., 2020),
spline-based interpolation (Hartung et al., 1999), or barycentric
weights (Shirley and Marschner, 2009, Chap. 2) as, for example,
used by Gamper (2013).

Describing and interpolating HRTFs in the spherical harmonics
(SH) domain is an efficient and recently quite popular approach.
(Evans et al., 1998; Richter, 2019; Arend et al., 2021). However, the
highest representable frequency is limited by the SH order N,
following the relation N ~ kr (Rafaely and Avni, 2010). Here, k
denotes the wavenumber and r the radius of the smallest sphere
surrounding the head. Thus, for a correct interpolation up to 20 kHz
with an average head radius of r = 0.0875m, an SH order of Nmax ≈
32 is required, resulting in a minimum of (Nmax + 1)2 � 1089
measurement directions. Sparsely measured HRTF sets with
Nsparse < Nmax cannot meet this requirement and their SH
representation suffers from so-called sparsity errors (see Section
2.2). Various recent publications investigated SH interpolation of
sparse HRTF sets and the associated sparsity errors (Ben-Hur et al.,
2019; Arend et al., 2021). These studies only considered sparse HRTF
sets sampled on regular (explicitly defined) grids, for which the SH
order is usually known (Zotter, 2009b) (Rafaely, 2015, Chap. 3).
However, to the best of our knowledge, the effects on SH
interpolation when using irregular grids (e.g., from FBM systems)
have not been investigated systematically yet. Furthermore, a general
rule for choosing an appropriate SH order for interpolation of
irregular sampled HRTFs has also not been given so far.

This study investigates SH interpolation of selected irregular
sampling grids obtained from HRTF measurements with our
FBM system (Bau et al., 2021) to find the optimal SH order for
interpolation. The sparse sets are spatially interpolated to a dense
reference grid using state-of-the-art pre- and postprocessing
methods in combination with SH interpolation. The study
analyzes how the variation of the SH order affects and ideally
improves the interpolation results and how applying the
commonly used Tikhonov regularization (see Section 2.4)
affects the results. We show that the optimal SH order, that is,
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the one resulting in the lowest interpolation errors, depends
strongly on the irregular sampling grid and the regularization
but is almost independent of the HRTF set. Based on these
results, we propose a simple method for estimating the
optimal SH order for HRTFs measured on irregular grids,
such as those obtained with FBM systems: The irregular grid of
the FBMmeasurement is used to derive a substitute HRTF set from
a dense reference HRTF set. Then, the optimal SH order is derived
from interpolation and subsequent error evaluation of the substitute
set. To evaluate the proposedmethod, we compare the interpolation
error of irregular grids with that of regular grids, both interpolated
with the same SH order. We show that when the optimal SH order
(of the irregular grid) is determined by the proposed method,
irregular grids lead to very similar interpolation results as the
well-studied regular grids.

2 SPHERICAL HARMONICS
INTERPOLATION OF HRTF DATA

2.1 Spherical Harmonics Interpolation and
Least-Squares Solution
Spherical harmonics provide an efficient way to represent HRTF
data HL/R for the left and right ear sampled at a finite number of
measurement directions Ω (Duraiswami et al., 2004) (indices for
the left and right ear are omitted in the following whenever the
processing is identical for both ears). The direction Ω = (ϕ, θ) is
defined by the azimuth ϕ = [0°, 360°] and the elevation θ = [ − 90°,
90°], whereby ϕ is measured counterclockwise in the xy-plane,
starting at positive x, and θ is 90° at positive z. From a set of (order
limited) SH coefficients hnm, a set of HRTFsH can be obtained for
any direction Ωq with the discrete inverse spherical Fourier
transform (ISFT) by

H � Yhnm (1)
where Y is the Q × (N + 1)2 SH matrix of SH basis functions, with

Y �
Y0

0 Ω1( ) Y−1
1 Ω1( ) Y0

1 Ω1( ) / YN
N Ω1( )

Y0
0 Ω2( ) Y−1

1 Ω2( ) Y0
1 Ω2( ) / YN

N Ω2( )
..
. ..

. ..
.

1 ..
.

Y0
0 ΩQ( ) Y−1

1 ΩQ( ) Y1 ΩQ( ) / YN
N ΩQ( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (2)

Each row can be interpreted as a sampling direction ΩQ, and the
columns represent the SH coefficients up to order N.

The spherical Fourier transform (SFT), or also SH transform,
to obtain hnm from a set of HRTFs sampled at a sufficient number
of measurement directions Q ≥ (N + 1)2 corresponds to solving
the overdetermined linear system in Eq. 1 in a least-squares sense
to yield

hnm � Y†H, (3)
where Y† � (YHY)−1YH is the pseudo-inverse of Y. By substituting
Eq. 3 inEq. 1, the SH interpolation of the originQ-direction setH to a
target T-point set Ĥ can be described as:

Ĥ � YtY
†
qH (4)

where Yt and Yq are the SH matrices of size T × (N + 1)2 and Q ×
(N + 1)2, associated with the sampling directions Ωt and Ωq,
respectively.

2.2 Sparsity Errors
A sparsely sampled HRTF set can usually only be transformed to the
SH domain with a low SH order Nsparse < Nmax. This leads to order
truncation effects, resulting in lower spatial resolution and high-
frequency attenuation (Bernschütz et al., 2014). Furthermore, an
insufficient number of measurement directions Q causes spatial
aliasing, resulting in spatial ambiguities and increased energy in
higher frequencies above the so-called spatial aliasing frequency
(Rafaely, 2005). Together, truncation and aliasing errors form the
sparsity error, also frequently called undersampling error. A detailed
insight into the respective contribution to the overall sparsity error is
given in Ben-Hur et al. (2019).

The perceptual impact of sparsity errors on the spectral and
temporal structure of the HRTF was subject to several recent
studies with the aim to estimate a lower bound for the SH order at
which an HRTF can be successfully represented. Romigh et al.
(2015) found in their technical analysis a maximum error of 1 dB
between 300 Hz and 14 kHz at an SH order of N = 14, and in an
empirical study a largely preserved localization accuracy at N = 4.
They concluded that technical evaluation results might be gross
overestimates of a minimum SH order compared to perceived
error. In a perceptual study, Pike (2019) evaluated the perceivable
error of SH interpolation, where interpolation was also performed
on time-aligned HRTFs. At N = 5 and with time-alignment, only
low perceptual impact was found for frontal directions, while
clear differences remained for lateral source positions. A listening
experiment by Arend et al. (2021) to evaluate SH interpolation of
time-aligned HRTFs using one selected approach yielded similar
results, revealing a minimum required SH order for perceptually
transparent SH interpolation of N = 7 and N = 10 for frontal
speech and noise sources, respectively. For lateral directions, the
minimum required SH orders were substantially higher, with N ≈
17 andN ≈ 22 for speech and noise sources, respectively. Notably,
the different time-alignment methods technically evaluated in
this study performed similarly well, with notable differences only
at very low SH orders and contralateral HRTFs. Based on this, it
was suggested that the methods can be used equivalently.

2.3 Condition Number and Numerical
Stability
The condition number κ is defined by the ratio of the largest to
smallest singular value in the singular value decomposition of a
matrix (Lichtblau and Weisstein, 2022). If κ is too large, a linear
system, such as Eq. 1 or Eq. 3, is considered ill-conditioned and
will become unstable, resulting in an unpredictable output for a
given input. In general, a low condition number indicates a
system with high rank where the rows are mostly linearly
independent. Since the rows of the SH matrix Y represent the
sampling points, κ can be used as a measure for grid efficiency
(Zotter, 2009b). Furthermore, for a sampling grid Ω, where no
maximum SH order is given explicitly by its configuration, the
conditioning of Y can estimate if a proposed SH order can be used
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for a stable least-squares solution. For a deeper analysis of the
condition number for the SH matrix Y, please refer to Reddy and
Hegde (2017).

The condition number is often used for characterising the
stability of the least-squares solution (Zotter, 2009a; Zotkin et al.,
2009; Pike, 2019). Ben-Hur et al. (2019) considered sampling
grids with a condition number below 3.5 as stable. However, to
the best of our knowledge, there is not yet a general rule for using
κ to decide whether or not a sampling grid can be considered
stable for a particular SH order. Problematic in this sense is the
indistinct relationship between κ and the resulting error of the
least-squares SFT. In terms of numerical computation, the
condition number describes the sensitivity of a least-squares
solution to perturbations of the input. Depending on the
underlying problem and the demands on the error tolerance
of the solution, κ can vary significantly and the results can still be
considered as acceptable (Demmel, 1997).

2.4 Regularization
Numerous ways to regularize ill-conditioned problems exist
(Hansen, 1994). The regularization proposed by Tikhonov
et al. (1995) is commonly used in the field of virtual
acoustics for stabilizing the SH transform for incomplete
sampling grids, such as when the lower cap of the sampling
sphere is missing due to the design of the measurement system
(Zhang et al., 2010; Ahrens et al., 2012; Pollow et al., 2012;
Richter and Fels, 2019). By applying regularization to the
inversion of Y, Eq. 3 becomes

hnm � YTY + ϵD( )−1YTH (5)
where ϵ controls the regularization amount and D is a diagonal
damping matrix as proposed by Duraiswami et al. (2004):

D � 1 + n n + 1( )( )I, (6)

where n denotes the degree of the corresponding basis function
Ym
n and I is the identity matrix.
Although routines exist to determine a suitable value for ϵ,

such as L-curve or Picard condition (Hansen, 1994), in practice ϵ
is commonly set by hand for a specific problem. Duraiswami et al.
(2004) set ϵ to 10−6, Zhang et al. (2010) used a value of 10−5.
Pollow et al. (2012) found that a lower value of 10−8 provides
better interpolation results at high frequencies and Richter and
Fels (2019) used regularization with ϵ = 10−8 to stabilize a grid
with 4,608 points and a missing bottom cap. Furthermore,
Tikhonov regularization can also be used for complete grids to
mitigate the influence of measurement noise (Pike, 2019,
Chap. A.7).

3 INTERPOLATION ANALYSIS

We investigated the interpolation error of HRTF data sampled
on six irregular sampling grids as shown in Figure 1. The
grids are representative example results of our FBM
system (Bau et al., 2021), where subjects followed different
strategies to obtain spherical sampling. The first two grids
Irregular 1 and Irregular 2, each with 40 sampling points,
can be considered as very sparse and represent a
minimal configuration. Irregular 3 and Irregular 4 with
68 and 73 points represent a compromise between
measurement time and accuracy. The grids Irregular 5 and
Irregular 6 with 118 and 117 points can be considered as fairly
well sampled, but depending on the measurement system, the
acquisition can be quite time-consuming (the time required for
those sets with our FBM system was about 20 min). For
comparison, two common regular sampling grids were
added, a Gaussian and a Lebedev sampling grid with
128 and 86 points, respectively.

FIGURE 1 | Examined six irregular test sampling grids and two regular grids for comparison.

Frontiers in Signal Processing | www.frontiersin.org September 2022 | Volume 2 | Article 8845414

Bau et al. Optimal SH Order for Irregular Grids

https://www.frontiersin.org/journals/signal-processing
www.frontiersin.org
https://www.frontiersin.org/journals/signal-processing#articles


3.1 Interpolation Procedure
To be able to examine the interpolation error isolated from other
potential measurement influences, we avoided to use the actual
HRTF data from the irregular measurements. Instead, we used
numerically simulated individual HRTFs of a randomly chosen
subject (no. 10) from the HUTUBS database (Brinkmann et al.,
2019) as a reference. The HRTFs of the reference set are stored on
a 1730-point Lebedev sampling grid, allowing for SH
representation up to order N = 35 and thus perceptually
correct representation of the entire frequency-range of an
HRTF (see Section 1). The reference HRTF set was
spatially resampled to the different irregular sampling grids
to obtain the artificial irregular HRTF sets for the
interpolation analysis.

We interpolated the irregular HRTF sets to a dense 1202-
point Lebedev grid in the SH domain according to Eq. 4. Prior
to SH interpolation, the HRTF sets were time-aligned, which
lowers the spatial complexity and thus reduces the required SH
order and consequently the interpolation errors (Arend et al.,
2021). A relative time-alignment was performed by division
with matching rigid sphere transfer functions using the
SUpDEq method (Pörschmann et al., 2019a; Arend et al.,
2021). After the interpolation, the phase and magnitude
components were recovered by spectral multiplication with
corresponding rigid sphere transfer functions for the
directions of the dense grid. In informal evaluations, we
compared various time-alignment procedures when
interpolating irregular HRTF sets, similar to what Arend
et al. (2021) did for regular HRTF measurements.
Supplementary Figures S1–S4 show an according
comparison of different preprocessing methods. As the
results showed great similarity, we chose SUpDEq as the
default preprocessing method.

The interpolation was repeated for each grid with different SH
order, starting from N = 1 up to Nmax for the respective grid
following Q≥ (Nmax + 1)2. For each grid and SH order, we
additionally performed SH interpolations using a regularized
inversion of Y according to Section 2.4 with ϵ = {10−4, 10−3,
10−2}. The lowest regularization parameter value represents a
conservative value, based on previous studies as mentioned in
Section 2.4. The highest value was chosen empirically during our
evaluation as it provided the best results for the sparse irregular
sampling grids presented here.

In order to get a useful error metric of the interpolation
performance, we compared every interpolated HRTF set to the
reference set and evaluated themagnitude error and ITDdifferences.
These metrics were recently used to analyze interpolation errors
by Arend et al. (2021) and showed good accordance to the results
of the perceptual evaluation.

The magnitude error ΔG (fc, Ω) was calculated as the absolute
difference in dB between HRTF magnitudes in 41 auditory filter
bands (Slaney, 1998) with center frequency fc for every sampling
point Ω, in the frequency range from 50 Hz to 20 kHz. The
magnitude error for left and right ear of the HRTF are largely
equivalent, so for simplicity only the left ear magnitude error is
considered in the following. For a more comprehensible error, the
error was averaged over the auditory filter bands to yield the

spatial error distribution ΔG(Ω) and over the sampling points to
yield the frequency error distribution ΔG (fc). By averaging over
both frequency and sampling points, a scalar magnitude error ΔG
was obtained.

The ITDs were calculated as the difference from the time-of-
arrivals (TOAs) for the left and right ear. The TOAs were
determined by onset detection from the low-pass filtered
(eighth order Butterworth, fc = 3 kHz) and 10 times
upsampled HRIRs, as proposed by Andreopoulou and Katz
(2017). An onset threshold of −10 dB in relation to the
maximum values was used for the TOA estimation, as
proposed by Arend et al. (2021). The ITD difference was then
calculated for every sampling point as the absolute difference
between the ITD of the reference set and the ITD of the
interpolated set.

3.2 Interpolation Error at Different Spherical
Harmonics Orders
In this section, we evaluate the overall magnitude error ΔG from
interpolation with different SH orders according to Section 3.1 to
estimate the optimal SH order for each grid as a trade-off between
sparsity error and the error of the least-squares solution.
Figure 2A shows how different SH orders affect the
interpolation results. As expected, the sparsity error decreases
with increasing order. At a certain order, without regularization,
the error starts to increase again. At this point, the least-squares
solution to the matrix Y becomes more and more ill-conditioned
and numerical errors occur.

In the topmost row of Figure 3, this decrease and increase of
the error can be observed for the spatial error distribution ΔG(Ω)
on the example of grid Irregular 6 and selected SH orders. Further
plots for other examined grids and SH orders are provided in the
Supplementary Figures S5–S20. Both Figure 2A and Figure 3
show that regularization can limit the error towards higher
orders. Without regularization, the error in certain spatial
regions increases dramatically towards higher orders. A
comparison with the corresponding sampling grid in Figure 1
shows that these regions are related to the sampling grid. With
regularization, however, the SH transform can be stabilized and
the error decreases, even for the highest possible SH order Nmax,
as can be seen in Figure 2A. Apart from this, regularization does
not affect the magnitude error for lower SH orders. For
Supplementary Figures S5–S20 in the supplementary
material, we also included interpolations using higher
regularization values to show that regularization values above
10−2 result in an increased error for both magnitude and ITD.
Notably, Tikhonov regularization has no impact on the regular
sampling grids.

Figure 4 shows the horizontal plane ITD difference for grid
Irregular 6 for selected SH orders and regularization values ϵ
by means of differences to the reference ITD. The gray area
denotes the broadband just noticeable difference (JND) as a
function of the reference ITD (Mossop and Culling, 1998). To
approximate the JND across all azimuthal positions, it was
linearly interpolated between 20 μs at ITDref = 0 and 100 μs at
ITDref = 700 μs Overall, the ITD differences remain well below
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the JND for all examined conditions. This is in accordance
with the findings of Arend et al. (2021), where the time-
aligned interpolation of HRTFs is unproblematic in regards to

ITD, even at very low SH orders. Only for N = 9 without
regularization, the ITD difference increases again significantly
and almost exceeds the JND.

FIGURE 2 | (A) Left-ear magnitude error ΔG with respect to SH order for six examined irregular grids and two regular grids with different regularization values ϵ.
HRTF: Subject no. 10 from HUTUBS database. (B) Corresponding condition number κ of Y† with respect to SH order and regularization value ϵ.

FIGURE 3 | Left-ear magnitude error ΔG(Ω) for grid Irregular 6 at selected SH orders and regularization values ϵ. HRTF: Subject no. 10 from HUTUBS database.
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An analytical prediction of the point of instability, meaning
where the numerical errors of the least-squares solution become
overly large, would be of great benefit. In a first approach, we
evaluated the condition number κ of Y† to establish a relationship
between the error ΔG and κ. Figure 2B shows κ with respect to
the SH orderN for all examined grids and different regularization
values ϵ. Even though a general relation between error and
condition number is visible, a clear determination of a
threshold value for κ that ensures least-squares stability is not
directly possible. In general, the results indicate that the
interpolation is stable for κ < 10. However, for some grids,
such as Irregular 6, the lowest error without regulariazion is at
N = 7 with κ ≈ 18. Because of this relatively unpredictable
behavior of κ, we assume that estimating the optimal SH order
based on the condition number is inappropriate.

3.3 Method for Estimating the Optimal
Spherical Harmonics Order
Figure 2A shows that the optimal SH order for each artificial
HRTF set can be derived from the lowest associated magnitude
error ΔG. However, for sparse measurements made in practice
with an FBM system, a dense reference is usually unavailable, and
it is impossible to calculate the required error from the
measurement data. Yet, suppose the interpolation errors of

different artificial reference HRTF sets (i.e., HRTF sets
obtained by resampling different dense reference sets to the
individually measured sparse irregular grid) show a similar
pattern as a function of the SH order. In that case, it is most
likely that the optimal SH order thus obtained can be applied to
real individual HRTF measurements on the same irregular grid.
From this consideration, our approach follows to determine the
optimal (grid-dependent) SH order for the individual
measurements as the minimum magnitude error ΔG obtained
with a dense reference HRTF set.

To show that the interpolation error curve has a consistent
shape across different HRTF sets, we repeated the calculation of
the magnitude error (see Section 3.1) for the individual HRTFs of
all 96 subjects of the HUTUBS database and for a mean HRTF set
derived from all 96 subjects by separately averaging magnitude in
dB and unwrapped phase. Additionally, for cross-database
evaluation, we used generic HRTF sets of a KEMAR head-
and-torso simulator (Braren and Fels, 2020), the FABIAN
head-and-torso simulator (Brinkmann et al., 2017), a
Neumann KU100 dummy head (Bernschütz, 2013), and a
Head Acoustics HMS II.3 (Pörschmann et al., 2019b).

Figure 5A shows the resulting magnitude errors for the
averaged HUTUBS set (black line) and the 96 individual sets
(gray lines) for three examined irregular test grids and different
regularization values ϵ. Notably, the general shape of all error
curves is similar, and the error curve of the mean HRTF set
indeed resembles an average of the individual error curves. This
similarity suggests that the error curve of ΔG depends on the
sampling grid, but barely on the underlying HRTF set. Hence, it
can be used to characterize the sampling grid of an unknown
HRTF set. Indeed, the resulting SH order estimations in
Figure 5B have very little variance (± 1 N). The mean HRTF,
denoted by the red dot, shows great accordance to the individual
results. Only the grids Irregular 3 and Irregular 5 with high
Tikhonov regularization show slighlty more variance, but only for
a very small number of estimates.

Figure 6 shows the results of the cross-database evaluation. As
with the previous analysis, the shape of the error curves, here for
all generic HRTF sets examined, is very similar. Only a general
offset in the error between HRTF sets can be observed. The offset
is a result of the varying spatial complexity of the HRTF datasets,
which will have a direct impact on the interpolation error. The
KU100 and (simulated) HUTUBS datasets have a lower spatial
complexity due to the lack of a torso, whereby the rest of the
analyzed datasets include torso reflections. However, as the
minimum error for all sets is at the same SH order, there is
no impact on the proposed method for determining the optimal
SH order. Thus, the estimated optimal SH orders are consistent
across the HRTF sets, as summarized in Table 1.

Based on these results, it is reasonable to assume that the error
of an unknown (individually measured) HRTF set will behave
similarly. Therefore, as already briefly outlined above, we propose
the following method to determine the optimal SH order for any
sparse HRTF measurement obtained with an FBM system: 1) Use
the sparse irregular sampling grid of the individual HRTF
measurements to resample a dense reference HRTF and derive
a substitute HRTF set. 2) Interpolate the substitute HRTF set at

FIGURE 4 | Difference in horizontal plane ITD relative to the dense
reference for grid Irregular 6 at selected SH orders and regularization values ϵ.
The shaded area denotes the JND as a function of the reference ITD. HRTF:
Subject no. 10 from HUTUBS database.
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FIGURE 5 | (A) Left-ear magnitude error ΔG with respect to SH order for 96 individual HUTUBS HRTF sets (gray lines) and for the averaged HUTUBS HRTF set
(black line) for three examined irregular grids and different regularization values ϵ. (B) Distribution of estimated optimal SH orders from the 96 individual HUTUBS HRTF
sets (count as Gy bars) and the averaged HUTUBS HRTF set (red dot).

FIGURE 6 | Left-ear magnitude error ΔGwith respect to SH order for different generic HRTF sets and the averaged HUTUBS HRTF set for three examined irregular
grids and different regularization values ϵ.
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several SH orders and evaluate the magnitude error ΔG. 3) Derive
the optimal SH order for the individual HRTF measurements as
the SH order where the magnitude error ΔG is minimal.

3.4 Comparison to Regular Sampling Grids
To validate the proposed method for estimating the optimal SH
order for sparse irregular HRTF measurements, we compared the
interpolation error of each irregular test sampling grid with a
regular sampling grid of corresponding order. As regular
sampling grid, we used the Gaussian sampling scheme. For
regular grids, Arend and Pörschmann (2019) have already
shown that the choice of sampling grid only marginally affects
the interpolation, especially when pre-and post-processing such
as the SUpDEq method are used. Hence, the presented results
should be representative for other types of regular sampling grids.
Furthermore, Gauss grids are quite common for individual HRTF
measurements, for example with a loudspeaker arc. For the
regular grids, we used the same interpolation method as
described in Section 3.1. However, as we found in Section 3.2
that regularization has no effect for regular grids, no
regularization was applied. For the irregular grids, we used a
regularization amount of ϵ = 10–2.

Figure 7 shows the error ΔG(ω) for the six examined irregular
grids and the corresponding regular Gauss grids. Derived from
the proposed method in Section 3.3 with ϵ = 10–2, the estimated

orders wereN = 5 for Irregular 1& 2,N = 7 for Irregular 3& 4 and
N = 9 for Irregular 5 & 6. The similarity of the error curves
indicates that the irregular grids provide comparable
interpolation results as the regular grids. As expected, the
error generally decreases with increasing SH order for all
grids, but overall the error of the regular grid is slightly lower
than that of the irregular grids.

Figure 8 gives further detailed insights on the interpolation
results by means of the spatial error distribution ΔG(Ω). The
errors in the area around the contralateral ear, known to be the
most critical area for magnitude errors, are largely consistent for
each SH order, with error size and range decreasing with
increasing order. For the irregular grids, additional errors can
be observed in the areas with a low sampling point density (see
Figure 1).

4 DISCUSSION

4.1 Interpolation Error Analysis for Different
Spherical Harmonics Orders
Investigating the interpolation of sparse irregular HRTF sets with
different SH orders revealed a characteristic pattern of the error
ΔG with increasing SH order. First, for low orders, the sparsity
error decreases. Then, towards the maximum order Nmax, the
error increases again as the least-squares solution becomes more
and more ill-conditioned. As expected, when Tikhonov
regularization was applied, an attenuating effect on the
numerical instability error was observed. Notably, the
regularization showed better results when the regularization
value was higher (ϵ = 10–2) than suggested in other studies
(between 10–8 and 10–5, see Section 2.4). Since these studies
used dense sampling grids and higher SH orders, a comparison is
not directly possible. However, based on our results, we assume
that for sparse irregular grids, a higher regularization is necessary
and appropriate. Pollow et al. (2012) reported that the
interpolation result at high frequencies was better when using
a lower amount of ϵ = 10–8 compared to ϵ = 10–6. However, in our
evaluation, we did not find any negative impact of the high
regularization amount on the interpolation error. One reason for
this could be that in our case, the sparsity error caused by the low

TABLE 1 | Estimated optimal SH order for different generic HRTF sets and the
averaged HUTUBS HRTF set for three examined irregular grids and different
regularization values ϵ.

HRTF
set Estimated SH order

Irregular 1 Irregular 3 Irregular 5

 = 0 10–4 10–2  = 0 10–4 10–2  = 0 10–4 10–2

KU100 4 4 5 5 4 7 6 6 9
KEMAR 4 4 5 4 4 7 7 7 9
HMS II 4 4 5 5 5 7 7 7 9
FABIAN 4 4 5 5 5 7 7 7 9
HUTUBS
AVG

4 4 5 5 5 7 6 7 9

FIGURE 7 | Left-ear magnitude error ΔG(ω) for six examined irregular grids and three regular Gauss grids, with estimated optimal (irregular) or corresponding
(regular) SH order. HRTF: Subject no. 10 from HUTUBS database.
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SH orders is much more dominant than the error introduced by
regularization. Only for regularization values higher than 10−2, as
shown in the Supplementary Figures S5–S20, the interpolation
error increases notably. An in-depth study on regularization of
sparse grids, ideally with an emphasis on the numerical
properties, should be considered as future work.

The comparison of the interpolation error and the condition
number κ for each SH order revealed no clear relation. All
examined interpolations were stable up to a condition value
of κ < 10. However, even with a comparably high value, this
would be a rather conservative stability criterion, as in some
cases even considerably higher condition values still lead to
stable results. Overall, our results suggest that, at least for
irregular grids, the upper bound on stability is more relaxed
than the commonly used value of κ = 3.5 (Ben-Hur et al., 2019;
Ackermann et al., 2021).

4.2 Estimation of Optimal Spherical
Harmonics Order
With the interpolation error analysis, we intended to find a
perceptually motivated method to derive the optimal SH order
for irregular sparse HRTF sets. As shown in Section 3.2, the
condition number κ seems not to be the best measure to derive
the optimal SH order, especially when working with irregular
grids. However, evaluation of the interpolation error for the test
HRTF sets revealed a characteristic error curve. Hence, instead of
the condition number κ, the SH order with the smallest associated
magnitude error ΔG can be considered as the optimal SH order
for the particular sampling grid. Our evaluation showed that this

method provides reliable results, but it requires a dense reference
HRTF set for evaluating the magnitude error. For this reason, we
repeated the interpolation error analysis for various HRTF
databases and found that, when using the same test grid, the
estimated optimal SH order is almost always the same for all
examined HRTF databases.

Based on these results, we propose to determine the optimal
SH order for sparse irregular grids based on the interpolation
error across SH order for a reference HRTF set resampled to the
respective sparse irregular grid. As for the reference HRTF set a
dense representation is available, the interpolation error can be
calculated for any possible sparse irregular grid. Although this
method relies on the rather time-consuming calculation of several
interpolations and is therefore quite unsuitable for real-time
application, it provides a much more reliable estimate of the
required optimal SH order than approximation based on the
condition number κ. In general, there might be other, possibly
more accurate, analytical methods in linear algebra for such
problems. However, we argue that the error metric used in the
present work provides better SH order estimates regarding
perceptual quality than purely analytical methods that only
consider the sampling scheme without including the actual
HRTF data. For future work, a combination of the proposed
perceptually motivated method and an analytical approach could
be of great interest to further improve the SH order estimation.
Furthermore, other HRTF error metrics could be considered,
such as auditory models as recently used by Engel et al. (2022). It
should be mentioned that all of the grids used in this evaluation
were obtained during actual measurements with uniform
spherical sampling in mind. Thus, this evaluation does not

FIGURE 8 | Left-ear magnitude error ΔG(Ω) for six examined irregular grids and three regular Gauss grids, with estimated optimal (irregular) or corresponding
(regular) SH order. HRTF: Subject no. 10 from HUTUBS database.
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consider extreme cases, such as large holes or an overly
imbalanced distribution of points.

Finally, we compared the interpolations of the six examined
irregular HRTF sets with optimal SH order to the interpolation of
regular HRTF sets (Gauss grids) with corresponding SH order.
This comparison verified the proposed method for estimating the
optimal SH order and put the results into context of interpolation
studies of regular sparse grids, such as Ben-Hur et al. (2019) or
Arend et al. (2021). For comparable orders, the interpolation
results found in the present study for irregular grids are very
similar to those found for regular grids in Arend et al. (2021).

We would like to emphasize that the proposed method can be
used not only with the HRTF preprocessing method applied in
this work, i.e., SUpDEq and Tikhonov regularization, but also
with any preprocessing method for SH-based HRTF
interpolation. The estimated SH order is then optimal for the
respective chosen method. A further generalization to data other
than HRTFs, e.g., loudspeaker or voice directivity patterns, could
be examined in future research.

5 CONCLUSION

In this study, we investigated the SH interpolation of HRTF sets
sampled on sparse irregular grids. We found that Tikhonov
regularization, even at high regularization strength, generally
has a positive effect on SH interpolation of irregularly sampled
HRTFs and does not increase the interpolation error when applied
with high regularization amount, as is often the case with regular
(dense) grids. Furthermore, we showed that determining the optimal
SH order for interpolation cannot be directly derived from the
sampling grid and the associated condition number κ. As a more
reliable alternative approach, we proposed a method to estimate
the optimal SH order for interpolating sparse irregular HRTF
measurements based on the order-dependent magnitude error for
a reference HRTF set. A final comparison of the interpolation errors
for irregular and regular HRTF sets showed good performance of the
estimation method. The proposed method and the insights gained
on SH interpolation of HRTFs sampled on sparse irregular grids are
of great value for new approaches to individual HRTF
measurements, such as FBM systems.
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