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When it comes to image compression in digital cameras, denoising is

traditionally performed prior to compression. However, there are

applications where image noise may be necessary to demonstrate the

trustworthiness of the image, such as court evidence and image forensics.

This means that noise itself needs to be coded, in addition to the clean image

itself. In this paper, we present a learning-based image compression framework

where image denoising and compression are performed jointly. The latent

space of the image codec is organized in a scalable manner such that the clean

image can be decoded from a subset of the latent space (the base layer), while

the noisy image is decoded from the full latent space at a higher rate. Using a

subset of the latent space for the denoised image allows denoising to be carried

out at a lower rate. Besides providing a scalable representation of the noisy input

image, performing denoising jointly with compression makes intuitive sense

because noise is hard to compress; hence, compressibility is one of the criteria

that may help distinguish noise from the signal. The proposed codec is

compared against established compression and denoising benchmarks, and

the experiments reveal considerable bitrate savings compared to a cascade

combination of a state-of-the-art codec and a state-of-the-art denoiser.
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1 Introduction

Images obtained from digital imaging sensors are degraded by the noise generated due

to many factors such as lighting of the scene, sensors, shutter speed, etc. In practice,

noticeable noise is often encountered in low-light conditions, as illustrated in the

Smartphone Image Denoising Dataset (SIDD) Abdelhamed et al. (2018). In a typical

image processing pipeline, noise in the captured image is attenuated or removed before

compressing the image. The noise removed in the pre-processing stage cannot be restored,

and the compressed image does not carry information about the original noise. While it is

a desirable feature not to have noise in the stored image for the majority of applications,

the captured noise may carry useful information for certain applications, such as court

evidence, image forensics, and artistic intent. For such applications, the noise needs to be
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preserved in the compressed image. In fact, compressed-domain

denoising together with techniques to preserve the noise is part of

the recent JPEG AI call for proposals ISO/IEC and ITU-T

(2022a). The major drawback of encoding the noise is that it

significantly increases the bitrate required for storing and

transferring the images. As an example, it is known that

independent and identically distributed (iid) Gaussian source,

which is a common noise model, has the worst rate-distortion

performance among all the sources with the same variance Cover

and Thomas (2006). Another issue is that when the clean

(denoised) image is needed, the denoising should be applied

to the reconstructed noisy images. The additional denoising step

may increase the run time and the complexity of the pipeline.

To overcome the mentioned drawbacks of encoding the

noisy image and performing denoising in cascade, we present

a scalable multi-task image compression framework that

performs compression and denoising jointly. We borrow the

terminology from scalable video coding Schwarz et al. (2007),

where the input video is encoded into a scalable representation

consisting of a base layer and one or more enhancement layers,

which enables reconstructing various representations of the

original video - different resolutions and/or frame rates and/

or qualities. In the proposed Joint Image Compression and

Denoising (JICD) framework, the encoder maps the noisy

input to a latent representation that is partitioned into a base

layer and an enhancement layer. The base layer contains the

information about the clean image, while the enhancement layer

contains information about noise. When the denoised image is

needed, only the base layer needs to be encoded (and decoded),

thereby avoiding noise coding. The enhancement layer is

encoded only when the noisy input reconstruction is needed.

The scalable design of the system provides several

advantages. Since only a subset of latent features is encoded

for the denoised image, the bitrate is reduced compared to using

the entire latent space. Another advantage is that the noise is not

completely removed from the latent features, only separated from

the features corresponding to the denoised image. Therefore,

when the noisy input reconstruction is needed, the enhancement

features are used in addition to the base features to decode the

noisy input. The multi-task nature of the framework means that

compression and denoising are trained jointly, and it also allows

us to obtain both reconstructed noisy input and the

corresponding denoised image in single forward pass, which

reduces the complexity compared to the cascade implementation

of compression and denoising. In fact, our results demonstrate

that such a system provides improved performance—better

denoising accuracy at the same bitrate—compared to a

cascade combination of a state-of-the-art codec and a state-of-

the-art denoiser.

The novel contributions of this paper are as follows:

• We develop JICD, the first multi-task image coding

framework that supports both image denoising and

noisy image reconstruction.

• JICD employs latent space scalability, such that the

information about the clean image is mapped to a

subset of the latent space (base layer) while noise

information is mapped to the remainder (enhancement

layer).

• Unlike many methods in the literature, which are either

developed for a particular type of noise and/or

require some noise parameter(s) in order to operate

FIGURE 1
The proposed joint compression and denoising (JICD) framework. AE/AD represent arithmetic encoder and decoder, respectively. Cm and EP
stand for the context model and entropy parameters, respectively. Q represents the quantizer, which is simple rounding to the nearest integer. The
architecture of the individual building blocks is the same as in Cheng et al. (2020); Choi and Bajić (2021, 2022), but they have been retrained to
support different tasks, as explained in the text.
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properly, the proposed JICD is capable of handling

unseen noise.

The remainder of the paper is organized as follows. Section 2

briefly describes prior work related to compression, denoising,

and joint compression and denoising. Section 3 discusses the

preliminaries related to learning-based multi-task image

compression. Section 4 presents the proposed method. Section

5 describes the experiments and analyzes the experimental

results. Finally, Section 6 presents concluding remarks.

2 Related works

The proposed JICD framework is a multi-task image codec

that performs image compression and denoising jointly. In this

section, we briefly discuss the most relevant works related to

image denoising (Section 2.1), learning-based image

compression (Section 2.2), and multi-task image compression

including joint compression and denoising (Section 2.3).

2.1 Image denoising

State-of-the-art classical image denoising methods are based

on Non-local Self Similarity (NSS). In these methods, repetitive

local patterns in a noisy image are used to capture signal and

noise characteristics, and perform denoising. In BM3D Dabov

et al. (2007b), similar patches are first found by block matching.

Then, they are stacked to form a 3D block. Finally, transform-

domain collaborative filtering is applied to obtain the clean patch.

Yahya et al. (2020) used adaptive filtering to improve BM3D.

WNNMGu et al. (2014) performs denoisng by applying low rank

matrix approximation to the stacked noisy patches. In Xu et al.

(2015), a patch group based NSS prior learning scheme to learn

explicit NSS models from natural images is proposed. The

denoising method in Zha et al. (2019) used NSS priors in

both the degraded images and the external clean images to

perform denoising. CBM3D Dabov et al. (2007a) and

MCWNNM Xu et al. (2017) are the extensions of BM3D and

WNNM, respectively, created to handle color images.

More recently (deep) learning-based denoising methods have

gained popularity and surpassed the performance of classical

methods. Burger et al. (2012) used a multi-layer perceptron

(MLP) to achieve denoising results comparable to the state-of-

the-art classic method. Among the learning-based denoisers,

DnCNN Zhang et al. (2017) was the first Convolutional

Neural Network (CNN) to perform blind Gaussian denoising.

FFDNet Zhang et al. (2018) improved upon DnCNN by

proposing a fast and flexible denoising CNN that could

handle different noise levels with a single model. In Guo et al.

(2019), noise estimation subnetwork is added prior to the CNN-

based denoiser to get an accurate estimate of the noise level in the

real-world noisy photographs. A Generative Adversarial

Networks (GAN)-based denoising method is proposed in

Chen et al. (2018). The mentioned works are supervised

methods where clean reference image is needed for training.

In Laine et al. (2019); Quan et al. (2020), self-supervised

denoising methods are proposed.

2.2 Learning-based image compression

In recent years, there has been an increasing interest in the

development of learning-based image codecs. Some of the early

works Toderici et al. (2016); Minnen et al. (2017); Johnston et al.

(2018) were based on Recurrent Neural Networks (RNNs),

whose purpose was to model spatial dependence of pixels in

an image. More recently, the focus has shifted to Convolutional

Neural Network (CNN)-based autoencoders. Ballé et al. (2017)

introduced Generalized Divisive Normalization (GDN) as a key

component of the nonlinear transform in the encoder. The image

codec based on GDN was improved by introducing a hyperprior

to capture spatial dependencies and take advantage of statistical

redundancy in the entropy model Ballé et al. (2018). To further

improve the coding gains, discretized Gaussian mixture

likelihoods are used in Cheng et al. (2020) to parameterize the

distributions of latent codes. Most recently, this approach has

been extended using advanced latent-space context modelling

Guo et al. (2022) to achieve even better performance.

Most state-of-the-art learning-based image codding

approaches Ballé et al. (2018); Cheng et al. (2020); Guo et al.

(2022) train different models for different bitrates, by changing

the Lagrange multiplier that trades-off rate and distortion. Such

approach is meant to explore the potential of learning-based

compression, rather than be used in practice as is. There has also

been a considerable amount of work on variable-rate learning-

based compression Toderici et al. (2016); Choi et al. (2019); Yang

et al. (2020); Sebai (2021); Yin et al. (2022), where a single model

is able to produce multiple rate-distortion points. However, in

terms of rate-distortion performance, “fixed-rate” approaches

such as Cheng et al. (2020); Guo et al. (2022) currently seem to

have an advantage over variable-rate ones.

2.3 Multi-task image compression

The mentioned learning-based codec are single-task models,

where the task is the reconstruction of the input image, just like

with conventional codecs. However, the real power of learning-

based codecs is their ability to be trained for multiple tasks, for

example, image processing or computer vision tasks, besides the

usual input reconstruction. In fact, the goal of JPEG AI

standardization is to develop such a coding framework that

could support multiple tasks from a common compressed

representation ISO/IEC and ITU-T (2022b).
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Choi and Bajić (2022) proposed a scalable multi-task model

with multiple segments in the latent space to handle computer

vision tasks in addition to input reconstruction. The concept was

based on latent-space scalability Choi and Bajić (2021), where the

latent space is partitioned in a scalable manner, from tasks that

require less information to tasks that require more information.

Our JICD framework is also based on latent-space scalability

Choi and Bajić (2021). However, unlike these earlier works, the

latent space is organized such that it supports image denoising

from the base layer and noisy input reconstruction from the full

latent space. In other words, the tasks are different compared to

these earlier works.

Recently, Testolina et al. (2021) and Alves de Oliveira et al.

(2022) developed joint image compression and denoising

pipelines built upon learning-based image codecs, where the

pipeline is trained to take the input noisy image, compress it, and

decode a denoised image. However, with these approaches, it is

not possible to reconstruct the original noisy image, hence they

are not multi-task models. Our proposed JICD performs the

denoising task in its base layer, but it keeps the noise information

in the enhancement layer, thereby also enabling noisy input

reconstruction if needed.

3 Prelimineries

In thinking about how to construct a learning-based system

that can produce both the denoised image and reconstruct the

noisy image, it is useful to consider the processing pipeline in

which noisy image is first compressed, then decoded, and then

denoising is applied to obtain the denoised image. Let Xn be the

noisy input image. If such an image is input to a learning-based

FIGURE 2
The architecture of the components inside the proposed JICD framework.
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codec Ballé et al. (2017, 2018); Minnen et al. (2018); Cheng et al.

(2020), encoding would proceed in three steps:

Y � ga Xn; ϕ( ) (1)
Ŷ � Q Y( ) (2)
B � AE Ŷ( ) (3)

where ga is the analysis transform, ϕ represents the parameters of

ga,Q is the quantization function, and B is the bitstream obtained

by applying the arithmetic encoder AE to Ŷ.

The noisy input image is reconstructed at the decoder by

applying the entropy decoding and synthesis transform to the

encoded bitstream as:

Ŷ � AD B( ) (4)
X̂n � gs Ŷ; θ( ) (5)

where AD is the entropy decoder, gs and θ are the synthesis

transform and its parameters, respectively. Then the denoised

image can be obtained by applying a denoiser to the

reconstructed noisy input as:

X̂ � F X̂n,ψ( ) (6)

where F and ψ are the denoiser and its parameters, respectively,

and X̂ is the denoised image.

This processing pipeline forms a Markov chain

Xn → Ŷ → X̂n → X̂. Applying the data processing inequality

(DPI) Cover and Thomas (2006) to this Markov chain, we get

I Ŷ; X̂n( )≥ I Ŷ; X̂( ), (7)

where I (·; ·) is the mutual information Cover and Thomas (2006)

between two random quantities. Based on (7) we can conclude

that latent representation Ŷ carries less information about the

denoised image X̂ than it does about the noisy reconstructed

image X̂n. Moreover, because X̂ is obtained from X̂n, the

information that Ŷ carries about X̂ is a subset of the

information that it carries about X̂n. This motivates us to

structure the latent representation Ŷ in such a way that only

a part of it (the base layer) is used to reconstruct the denoised

image X̂, while the whole of Ŷ (base + enhancement) is used to

reconstruct the noisy image X̂n.

4 Proposed method

The proposed joint image compression and denoising (JICD)

framework consists of an encoder and two task-specific decoders,

as illustrated in Figure 1. The architecture of the blocks that make

up the encoder and two decoders in Figure 1 is shown in Figure 2.

Note that the architecture of the individual building blocks

(Analysis Transform, Synthesis Transform, etc.) is the same as

in Cheng et al. (2020); Choi and Bajić (2021, 2022), but these

blocks have been retrained to support a scalable latent

representation for joint compression and denoising.

Specifically, compared to Cheng et al. (2020), our encoder is

trained to produce a scalable latent space that enables both

denoising and noisy input reconstruction. Compared to Choi

and Bajić (2021, 2022), our system is trained to support different

tasks, and correspondingly the structure of the latent space and

the training procedure is different. Details of individual

components are described below.

4.1 Encoder

The encoder employs an analysis transform to obtain a high

fidelity latent-space representation for the input image. In addition,

the encoder has blocks to efficiently encode the obtained latent-space

tensor. The encoder’s analysis transform is borrowed from Cheng

et al. (2020) due to its high compression efficiency. In addition to the

analysis transform, we also adopted the entropy parameter (EP)

module, the context model (CTX) for arithmetic encoder/decoder

(AE/AD), synthesis transform and hyper analysis/synthesis without

attention layers from Cheng et al. (2020).

The analysis transform converts the input image X into

Y ∈ RN×M×C, with C = 192 as in Minnen et al. (2018); Cheng

et al. (2020). Unlike Minnen et al. (2018); Cheng et al. (2020), the

latent representation Y is split into two separate sub-latents

Y � Y1 ∪ Y2, Y1 ∩ Y2 � ∅, where Y1 is the base layer

containing i channels, Y1 � {Y1,Y2, . . .Yi}, and Y2 is the

enhancement layer containing C − i channels,

Y2 � {Yi+1,Yi+2, . . . ,YC}. This allows the latent representation

to be used efficiently for multiple purposes, namely denoising

(from Y1) and noisy input reconstruction (from Y1 ∪ Y2).

Since denoising requires only Y1, it can be accomplished at a

lower bitrate compared to decoding the full latent space. The

sub-latents are then quantized to produce Ŷ1 and Ŷ2,

respectively, and then coded using their respective context

models to produce two independently-decodable bitstreams, as

discussed in Choi and Bajić (2022, 2021). The side bitstream

shown in Figure 1 is considered to be a part of the base layer

and its rate is included in bitrate calculations for the base layer

bitstream in the experiments.

4.2 Decoder

Two task-specific decoders are constructed: one for denoised

image decoding and one for noisy input image reconstruction.

TABLE 1 λ values used for training various models. Higher λ leads to
higher qualities and higher bitrates.

Model index 1 2 3 4 5 6

λ 0.0035 0.0067 0.013 0.025 0.0483 0.09
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The hyperpriors used in both decoders are reconstructed from

the side bitstream which, as mentioned above, is considered to be

a part of the base layer. Quantized base representation Ŷ1 is

reconstructed in the base decoder by decoding the base bitstream,

and used to produce the denoised image X̂. Unlike Choi and Bajić

(2021, 2022), where the base layer was dedicated to object

detection/segmentation, our decoder does not require latent

space transformation from Ŷ1 into another latent space; the

synthesis transform (Figure 1) produces the denoised image X̂

directly from Ŷ1. Quantized enhancement representation Ŷ2 is

decoded only when noisy input reconstruction is needed. The

reconstructed noisy input image X̂n is produced by the second

decoder using Ŷ � Ŷ1 ∪ Ŷ2.

Although not pursued in this work, it is worth mentioning

that the proposed JICD framework can be extended to perform

various computer vision tasks as well, such as image classification

or object detection. These tasks typically require clean images, so

one can think of the processing pipeline described by the

following Markov chain: Xn → Ŷ1 → X̂ → T, where T is the

output of a computer vision task, for example a class label or

object bounding boxes. Applying the DPI to this Markov chain

we have

I Ŷ1; X̂( )≥ I Ŷ1;T( ), (8)

which implies that a subset of information from Ŷ1 is

sufficient to produce T. Hence, if such tasks are required,

the encoder’s latent space can be further partitioned by

splitting Ŷ1, in a manner similar to Choi and Bajić (2021,

2022), to support such tasks at an even lower bitrate than our

base layer.

4.3 Training

The model is trained end-to-end with a rate-distortion

Lagrangian loss function in the form of:

L � R + λ ·D, (9)
where R is an estimate of rate, D is the total distortion of both

tasks, and λ is the Lagrange multiplier. The estimated rate

is affected by latent and hyper-priors as in Minnen et al.

(2018),

R � Ex~px −log2pŷ ŷ( )[ ]︸								︷︷								︸
latent

+Ex~px −log2pẑ ẑ( )[ ]︸								︷︷								︸
hyper−priors

, (10)

where x denotes input data, ŷ is the quantized latent data and ẑ is

the quantized hyper-prior. Total distortion D is computed as the

FIGURE 3
Denoising rate-PSNR curves for σ =50: (A) CBSD68, (B) Kodak24, (C) McMaster, (D) JPEG AI.

Frontiers in Signal Processing frontiersin.org06

Ranjbar Alvar et al. 10.3389/frsip.2022.932873

https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://doi.org/10.3389/frsip.2022.932873


weighted average of image denoising distortion and noisy input

reconstruction distortion:

D � 1 − w( ) ·MSE X, X̂( ) + w ·MSE Xn, X̂n( ), (11)

where w is the trade-off factor to adjust the importance of the tasks.

The automatic differentiation Paszke et al. (2019) ensures that the

gradients fromD flow through the corresponding parameters without

further modification to the back-propagation algorithm.

5 Experimental results

5.1 Network training

The proposed multi-task model is trained from scratch using

the randomly cropped 256 × 256 patches from the CLIC dataset

CLIC (2019). The noisy images are obtained using additive white

Gaussian noise (AWGN) with three noise levels σ = {15, 25, 50},

FIGURE 4
Denoising rate-SSIM curves for σ =50: (A) CBSD68, (B) Kodak24, (C) McMaster, (D) JPEG AI.

TABLE 2 The PSNR-based BD-rate of the proposed JICD compared to
Cheng + FFDNet-clip on the image denoising task.

Noise
type

Model CBSD68 Kodak24 McMaster JPEG
AI

AWGN
σ = 50

σ = 50 −69.28% −72.91% −72.69% −74.45%

variable
σ

−70.66% −77.27% −76.55% −80.20%

AWGN
σ = 25

σ = 25 −30.58% −41.00% −33.18% −45.13%

variable
σ

−30.28% −42.61% −33.52% −45.77%

AWGN
σ = 15

σ = 15 1.07% −11.99% −4.95% −15.82%

variable
σ

8.00% −2.99% 9.22% −5.78%

Practical
noise

variable
σ

−23.25% −33.83% −21.51% −23.42%

simulator

TABLE 3 The SSIM-based BD-rate of the proposed JICD compared to
Cheng + FFDNet-clip on the image denoising task.

Noise
type

Model CBSD68 Kodak24 McMaster JPEG
AI

AWGN
σ = 50

σ = 50 −63.34% −72.08% −72.29% −72.89%

variable
σ

−64.09% −73.64% −75.57% −76.43%

AWGN
σ = 25

σ = 25 −24.14% −38.99% −53.40% −43.11%

variable
σ

−24.45% −39.86% −52.21% −43.97%

AWGN
σ = 15

σ = 15 4.52% −11.85% −21.57% −15.32%

variable
σ

9.14% −5.96% −8.60% −8.78%

Practical
noise

variable
σ

−15.83% −27.66% −28.18% −37.72%

simulator
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clipping the resulting values to [0, 255] and quantizing the

clipped values to mimic how noisy images are stored in

practice. The batch size is set to 16. Training is ran for

300 epochs using the Adam optimizer with initial learning

rate of 1 × 10–4. The learning rate is reduced by factor of

0.5 when the training loss plateaus. We trained six different

models by changing the value of λ in (9). The list of different

values for λ is shown in Table 1. For all the models we used w =

0.05 in (11). We trained the model for the first rate point (lowest

λ) from scratch. However, for the remaining rate points we fine-

tune the model starting from the previous rate point’s weights.

We trained models under two different settings. In the first

setting, a given model is trained for each noise level. For this case,

the number of enhancement channels C − i is chosen according

to the strength of the noise. For stronger noise, we allocate more

channels to the enhancement layer, so that it can capture enough

information to reconstruct the noise. The number of enhancement

channels is reduced as the noise gets weaker. Specifically, the

number of enhancement channels is empirically set to 32, 12, and

two for σ = 50, σ = 25, and σ = 15, respectively. The second training

setting is to train a single model with different noise levels σ ∈ {50,

25, 15} simultaneously, and use the final trained model to perform

denoising for all noise levels. This is beneficial when the noise level

information is not given. In this model, we used 180 base channels

and 12 enhancement channels. σ at each training iteration is

uniformly chosen from {50, 25, 15}.

5.2 Data

To evaluate the performance of the proposed JICD

framework, four color image datasets are used: 1)

CBSD68 Martin et al. (2001), 2) Kodak24 Franzen (1999), 3)

McMaster Zhang et al. (2011) and 4) JPEG AI testset ISO/IEC

and ITU-T (2022b), which is used in the JPEG AI exploration

experiments. The mentioned datasets contain 68, 24, 18, and

16 images, respectively. The resolution of the images in the

Kodak24 and McMaster dataset is fixed to 500, ×, 500.

CBS68 dataset contains the lowest-resolution images among

the four datasets, with the height and width of images ranging

between 321 and 481. The images in the JPEG AI testset are high-

resolution images with the height varying between 872 and

2,456 pixels and width varying between 1,336 and

3,680 pixels. The results are reported for two sets of noisy

images. In the first set, we added synthesized AWGN to the

testing images with three noise levels: σ = {15, 25, 50} and tested

the results with the quantized noisy images. In the second set, we

used the synthesized noise obtained from the noise simulator in

FIGURE 5
Denoising rate-PSNR curves for σ =25: (A) CBSD68, (B) Kodak24, (C) McMaster, (D) JPEG AI.

Frontiers in Signal Processing frontiersin.org08

Ranjbar Alvar et al. 10.3389/frsip.2022.932873

https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://doi.org/10.3389/frsip.2022.932873


FIGURE 6
Denoising rate-SSIM curves for σ =25: (A) CBSD68, (B) Kodak24, (C) McMaster, (D) JPEG AI.

FIGURE 7
Denoising rate-PSNR curves for σ =15: (A) CBSD68, (B) Kodak24, (C) McMaster, (D) JPEG AI.
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Ranjbar Alvar and Bajić (2022), which was also used to generate

the final test images for the denoising tasks in the ongoing JPEG

AI standardization. This type of noise was not used during the

training of the proposed JICD framework. Hence, the goal of

testing with this second set of images is to evaluate how well the

proposed JICD generalizes to the noise that is not seen during the

training.

5.3 Baselines

The denoising performance of the proposed JICD framework

is compared against well-established baselines: CBM3D Dabov

et al. (2007a) and FFDNet Zhang et al. (2018). CBM3D is a NSS-

based denoising method, and FFDNet belongs to the learning-

based denoising category. FFDNet was trained using AWGN

with different noise levels during the training. At inference time,

FFDNet needs the variance of the noise as input. FFDNet-clip

Zhang et al. (2018) is a version of FFDNet that is trained with

quantized noisy images. Since our focus is on practical settings

with quantized noisy images, we used FFDNet-clip as a baseline

in the experiments. We also tested the DRUNet denoiser Zhang

et al. (2021), which is one of the latest state-of-the-art denoisers.

DRUNet assumes that the noise is not quantized, and when

tested with quantized noise, it performs worse than FFDNet-clip.

As a result, we did not include it in the experiments.

Two baselines are established by applying CBM3D and

FFDNet-clip directly on noisy images, without compression.

However, to assess the interaction of compression and

denoising, we establish one more baseline. In this third

baseline, the noisy image is first compressed using the end-to-

end image compression model from Cheng et al. (2020) (the

“Cheng model”) with an implementation from CompressAI

Bégaint et al. (2020), and then decoded. Then FFDNet-clip is

used to denoise the decoded noisy image. We call this cascade

denoising approach as Cheng + FFDNet-clip. It is worth

mentioning that Cheng + FFDNet-clip, similar to the

proposed JICD framework, is able to obtain both the

reconstructed noisy images and denoised images, hence it

could be considered a multi-task approach.

5.4 Experiments on AWGN removal

We evaluate the baselines and the proposed JICDmethod using

the quantized noisy images obtained using AWGNwith three noise

levels, σ ∈ {15, 25, 50}. The test results with the strongest noise (σ =

50) across the four datasets (CBSD68, Kodak24, McMaster, and

FIGURE 8
Denoising rate-SSIM curves for σ =15: (A) CBSD68, (B) Kodak24, (C) McMaster, (D) JPEG AI.
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JPEG AI) are shown Figure 3 in terms of rate vs Peak Signal-to-

Noise Ratio (PSNR) and in Figure 4 in terms of rate vs Structural

Similarity Index Measure (SSIM). The horizontal lines in the figure

correspond to applying CBM3D and FFDNet-clip to the raw

(uncompressed) noisy images. The blue curve shows the results

for Cheng + FFDNet-clip. The six points on this curve correspond to

the six Cheng models from CompressAI Bégaint et al. (2020). For

JICD, two curves are shown. The orange curve shows the results

obtained from the models trained for σ = 50 with 160 base feature

channels and 32 enhancement channels. The yellow curve

corresponds to the results obtained using the model that was

trained with variable σ values and has 180 base and

12 enhancement channels. The six points on the orange and

yellow curves correspond to the six JICD models we trained with

λ values shown in Table 1.

As seen in Figure 3, for σ= 50, the quality of the images denoised

by CBM3D is considerably lower compared to those obtained using

FFDNet-clip. It was shown in Zhang et al. (2018) that CBM3D and

FFDNet-clip achieve comparable performance for non-quantized

noisy images. Our results show that CBM3D’s performance is

degraded when the noise deviates (due to clipping and

quantization) from the assumed model, at least at high noise levels.

The comparison of the results obtained by JICD and Cheng +

FFDNet-clip reveal that JICD is able to reduce the bitrate

substantially while achieving the same denoising performance as

Cheng + FFDNet-clip. This is due to the fact that the Cheng model

allocates the entire latent representation to noisy input

reconstruction, whereas the proposed method uses a subset of

the latent features to perform denoising. The results of JICD

trained with variable σ are also shown in the curves. Since the

number of base channels is larger in this model compared to the

model trained for σ = 50, its denoising performance is improved.

To summarize the differences between the performance-rate

curves, we compute Bjøntegaard Delta-rate (BD-rate) Bjøntegaard

(2001). The BD-rate of the proposed JICD compared to Cheng +

FFDNet-clip on the four datasets is given in the first two rows of

Table 2 for PSNR, and Table 3 for SSIM. It can be seen that the

proposed method achieves up to 80.2% BD-rate savings compared

to Cheng + FFDNet-clip. Both JICD and Cheng + FFDNet-clip

denoising methods outperform CBMD3D for all the tested rate

points at σ = 50. Using the proposed JICD method, we are able to

denoise images at a quality close to what FFDNet-clip achieves on

raw images, and at the same time compress the input.

We repeat the denoising experiment for σ = 25, and the results

are shown in Figure 5 for PSNR and Figure 6 for SSIM. As seen in

the figures, the gap between the CBM3D and FFDNet-clip

performance is now reduced, and the compression-based

methods now outperform CBM3D only at the higher rates. The

FIGURE 9
Denoising rate-PSNR curves for the unseen noise: (A) CBSD68, (B) Kodak24, (C) McMaster, (D) JPEG AI.
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gap between the curves corresponding to JICD and Cheng +

FFDNet-clip is also reduced. However, JICD still achieves a

considerable BD-rate saving compared to Cheng + FFDNet-clip,

as shown in the third row of Table 2 and Table 3. JICD trained with

variable σ has slightly better PSNR performance compared to the

noise-specific model on three datasets, and a slightly worse

performance (by 0.3%) on the low-resolution CBSD68 dataset.

At the lowest noise level (σ = 15), the gap between CBM3D and

FFDNet-clip shrinks further. It can be seen in the denoised rate-

PSNR curves in Figure 7 and rate-SSIM curves in Figure 8 that when

the noise is weak, applying denoising to the raw images achieves

high PSNR, and the compression-based methods cannot

outperform either CBM3D, or FFDNet-clip at the tested rates.

The gap between JICD and Cheng + FFDNet-clip curves is also

reduced compared to the higher noise levels. This can also be seen

from the BD-rates in the fourth row of Tables 2, 3. JICD trained for

σ = 15 outperforms Cheng + FFDNet-clip on three datasets, but it

suffers a 1% (4.5% for SSIM) loss on the low-resolution CBSD68.

As seen above, the performance of the proposed JICD

framework is lower on the low-resolution CBSD68 dataset than

on other datasets. The reason is the following. The processing

pipeline USED in JICD expects the input dimensions to be

multiples of 64. For images whose dimensions do not satisfy this

requirement, the input is padded up to the nearest multiple of 64. At

low resolutions, the padded area may be somewhat large in relation

to the original image, which causes noticeable performance

degradation. At high resolutions, the padded area is insignificant

compared to the original image, and the impact on JICD’s

performance is correspondingly smaller. It is worth mentioning

that for σ = 15, the JICD trained with variable σ has a weaker

denoising performance compared to the model trained specifically

for σ = 15. This is because the number of base channels in the

variable-σmodel (180) is smaller than the number of base channels

in the noise-specific model (190). At low noise levels, fewer channels

are needed to hold noise information, which means the number of

base channels could be higher. Hence, the structure chosen for the

noise-specific model is better suited for this case. However, we show

in the next subsection that the variable-σmodel is more useful when

the noise parameters are not known.

5.5 Experiments on unseen noise removal

5.5.1 Image compression and denoising
The proposed JICD denoiser and the baselines are also tested

with the noise that was not used in the training. The purpose of

this experiment is to evaluate how well the denoisers are able to

handle unseen noise. To generate unseen noise, we used the noise

FIGURE 10
Denoising rate-SSIM curves for the unseen noise: (A) CBSD68, (B) Kodak24, (C) McMaster, (D) JPEG AI.
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FIGURE 11
An example of denoised images. Top to Bottom: noisy image, clean image, Denoised: Cheng + FFDNet-clip (bpp = 0.57), Denoised: proposed
(bpp = 0.55). Images in the right column show the red square in the left images.
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simulator from Ranjbar Alvar and Bajić (2022). This noise

simulator, which we subsequently refer to as “practical noise

simulator,” was created by fitting the Poissonian-Gaussian noise

model Foi et al. (2008) to the noise from the Smartphone Image

Denoising Dataset (SIDD) Abdelhamed et al. (2018). It is worth

mentioning that this noise simulator is used in the evaluation of

the image denoising task in JPEG AI standardization.

For this experiment we use the JICDmodel trained with variable

σ. One advantage of thismodel is that, unlike some of the baselines, it

does not require any additional input or noise information, besides

the noisy image. On the other hand, FFDNet needs σ to perform

denoising. In the experiment, the σ is estimated for each image by

computing the standard deviation of the difference between the noisy

test image and the corresponding clean image.

The denoising rate-PSNR and rate-SSIM curves are illustrated in

Figures 9, 10, respectively. Since the variance of the noise obtained

from the practical noise simulator is not large, the PSNR range of the

denoised images is close to that observed in the AWGN experiments

with σ = 15 and σ = 25. The results indicate that JICD achieves better

denoising performance compared toCheng + FFDNet-clip across all

four datasets. Moreover, at higher bitrates (1 bpp and above), JICD

outperforms CBM3D applied to uncompressed noisy images. BD-

rate results are summarized in the last row of Tables 2, 3. It is seen in

the table that JICD achieves 15–30% gain over Cheng + FFDNer-

clip across the four datasets.

A visual example comparing the denoised images obtained from

JICD and Cheng + FFDNet-clip encoded at similar bitrates is shown

in Figure 11. As seen in the figure, JICD preserves more details

compared to Cheng + FFDNet-clip. In addition, the colors inside the

white circle are reproduced closer to the ground truth with JICD

compared to the image produced by Cheng + FFDNet-clip.

5.5.2 Noisy image reconstruction
Besides denoising, the proposed JICD framework is also able to

reconstruct the noisy input image when enhancement features are

decoded together with base features. While the main focus of this

work was on denoising (and the majority of experiments devoted to

that goal), for completeness we also evaluate the noisy image

reconstruction performance using unseen noise. We compare the

noisy input reconstruction performance of JICD against Cheng et al.

(2020), i.e., the compression model used earlier in the Cheng +

FFDNet-clip baseline. The PSNR between the noisy input and the

reconstructed noisy images is shown against bitrate in Figure 12,

while Figure 13 shows SSIM vs bitrate. As illustrated in Figure 12,

our JICD achieves better noisy input reconstruction compared to

Cheng et al. (2020) in most cases. BD-rate results corresponding to

Figures 12, 13 are given in Tables 4, 5, respectively. As the numbers

in Table 4 indicate, the proposed JICD achieves noticeable BD-rate

savings on three of the four test datasets; the only exception is, again,

the low-resolution CBSD68 dataset, where the loss is mainly

FIGURE 12
The rate-PSNR curves for noisy input reconstruction. (A) CBSD68, (B) Kodak24, (C) McMaster, (D) JPEG-AI.
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concentrated at higher bitrates. It is worth noting that, since our

proposedmethod is trained using theMSE loss, it performs better in

terms of PSNR than SSIM. Overall, the proposed JICD framework

achieves gains on both denoising and compression tasks compared

to Cheng + FFDNet-clip and Cheng et al. (2020) models.

6 Conclusion

In this work, we presented a joint image compression and

denoising framework. The proposed framework is a scalable

multi-task image compression model based on the latent-

space scalability. The base features are used to perform the

denoising and the enhancement features are used when the

noisy input reconstruction is needed. Extensive experiments

show that the proposed framework achieves significant BD-

rate savings up to 80.20% across different dataset compared to

the cascade compression and denoising method. The

experimental results also indicate that the proposed method

achieves improved results for the unseen noise for both

denoising and noisy input reconstruction tasks.

Data availability statement

Publicly available datasets were analyzed in this study. This

data can be found here: For CBSD8 and Kodak24 datasets:

https://github.com/cszn/KAIR, For McMaster dataset: https://

www4.comp.polyu.edu.hk/~cslzhang/CDM_Dataset.htm, For

JPEG AI: https://jpeg.org/jpegai/dataset.html.

FIGURE 13
The rate-SSIM curves for noisy input reconstruction. (A) CBSD68, (B) Kodak24, (C) McMaster, (D) JPEG-AI.

TABLE 4 The PSNR-based BD-rate of the proposed JICD compared to
the Cheng model on noisy input reconstruction.

Noise
type

Model CBSD68 Kodak24 McMaster JPEG
AI

Practical
noise

variable
σ

5.50% −11.74% −3.97% −13.49%

simulator

TABLE 5 The SSIM-based BD-rate of the proposed JICD compared to
the Cheng model on noisy input reconstruction.

Noise
type

Model CBSD68 Kodak24 McMaster JPEG
AI

Practical
noise

variable
σ

22.58% 1.90% 4.05% 0.58%

simulator
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