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Electroencephalographic (EEG) signals are electrical signals generated in the

brain due to cognitive activities. They are non-invasive and are widely used to

assess neurodegenerative conditions, mental load, and sleep patterns. In this

work, we explore the utility of representing the inherently single dimensional

time-series in different dimensions such as 1D-feature vector, 2D-feature

maps, and 3D-videos. The proposed methodology is applied to four diverse

datasets: 1) EEG baseline, 2) mental arithmetic, 3) Parkinson’s disease, and 4)

emotion dataset. For a 1D analysis, popular 1D features hand-crafted from the

time-series are utilized for classification. This performance is compared against

the data-driven approach of using raw time-series as the input to the deep

learning framework. To assess the efficacy of 2D representation, 2D feature

maps that utilize a combination of the Feature Pyramid Network (FPN) and

Atrous Spatial Pyramid Pooling (ASPP) is proposed. This is compared against an

approach utilizing a composite feature set consisting of 2D featuremaps and 1D

features. However, these approaches do not exploit spatial, spectral, and

temporal characteristics simultaneously. To address this, 3D EEG videos are

created by stacking spectral feature maps obtained from each sub-band per

time frame in a temporal domain. The EEG videos are the input to a combination

of the Convolution Neural Network (CNN) and Long–Short Term Memory

(LSTM) for classification. Performances obtained using the proposed

methodologies have surpassed the state-of-the-art for three of the

classification scenarios considered in this work, namely, EEG baselines,

mental arithmetic, and Parkinson’s disease. The video analysis resulted in

92.5% and 98.81% peak mean accuracies for the EEG baseline and EEG

mental arithmetic, respectively. On the other hand, for distinguishing

Parkinson’s disease from controls, a peak mean accuracy of 88.51% is

achieved using traditional methods on 1D feature vectors. This illustrates

that 3D and 2D feature representations are effective for those EEG data

where topographical changes in brain activation regions are observed.

However, in scenarios where topographical changes are not consistent

across subjects of the same class, these methodologies fail. On the other

hand, the 1D analysis proves to be significantly effective in the case involving

changes in the overall activation of the brain due to varying degrees of

deterioration.
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1 Introduction

Electroencephalography is a technique used to measure the

electrical activity in the brain. Electrodes are placed on the scalp

of the subject and electrical signals (of varying amplitudes and

frequencies) generated from the brain are captured. It is well

known that EEG signals consist of various frequency sub-bands:

1–4 Hz (Delta waves), 4–8 Hz (Theta waves), 8–13 Hz (Alpha

waves), 13–30 Hz (Beta waves), and 30–60 Hz (Gamma waves).

EEG, being non-invasive, is widely used to assess neurological

disorders such as Parkinson’s disease, dementia, and epileptic

seizures. Furthermore, multiple BCI (Brain–Computer Interface)

applications utilize EEG to control bionic limbs/external devices

and even to play games. For instance, Meng et al. (2020) utilized

EEG to control a robotic arm for a reach and grasp task, and

Vaughan (2020) elaborated the use of EEG to enable

communication for people with locked-in-syndrome.

In the present study, four diverse datasets are utilized for the

following reasons:

• Distinguish EEG baselines: In the study of cognitive tasks,

it is important to choose one of the two EEG baselines,

namely, eyes open or eyes closed Roslan et al. (2017). EEG

baselines are the lowest levels of activation/arousal that can

be obtained in a controlled environmentBarry et al. (2007).

It is imperative to note that the two baselines vary in the

power levels, topography, and connectivity Tan et al.

(2013).

• Distinguish the state of mental calculation and the state of

rest: EEG of a person performing a cognitive task, as

opposed to that at rest, would show significant changes

in the activation of the brain regionsFernández et al.

(1995). Exploiting the characteristic differences to

classify them appropriately are the initial steps to

understand the EEG of any cognitive task.

• Distinguish positive emotions and negative emotions: One

widely acknowledged difficult task is to distinguish

emotions using EEG. It is well-known that we require

dealing with multitudes of emotions in varying degrees.

But the stepping stone to understanding these emotions is

to classify positive from negative emotions.

• Distinguish Parkinson’s disease from healthy controls:

Apart from understanding various cognitive states, it is

also crucial to distinguish subjects with neurological

disorders from that of healthy controls. This is

especially true for a progressive degenerative

neurological disorder such as Parkinson’s disease. This

needs to be diagnosed as early as possible for an

effective intervention. To enable the diagnosis of

Parkinson’s disease using EEG, it is necessary to

understand if and how the signature of this disorder is

captured in EEG signals.

Studies show that EEG signals were broadly analyzed using

two types of methodologies: 1) traditional techniques which

required hand-crafting of features and 2) data-driven

framework, deep learning. Sharma L. D. et al. (2021) utilized

1D representation of entropy-based features and SVM to classify

mental arithmetic tasks on a publicly available “EEG Mental

Arithmetic Dataset” by Physionet PhysioBank (2000), Zyma et al.

(2019) and achieved an accuracy of 94%. To classify mental

arithmetic vs. rest, the stacked long–short term memory (LSTM)

was applied to raw 1D EEG signals, resulting in an accuracy of

93.59% in the study by Ganguly et al. (2020). Behrouzi and

Hatzinakos, (2022) elaborated the benefits of deep learning-

based graph variational auto-encoder on 2D representation to

detect the task of mental arithmetic attaining a peak mean

performance of 95%. Statistical features represented in 1D

were input to k-NN for EEG baseline classification (eyes open

vs. eyes closed) by Gopan et al. (2016b) and a peakmean accuracy

of 77.92% was obtained. On the other hand, Reñosa et al. (2020)

used the deep learning-based LSTM approach on 1D time-series

EEG data to classify EEG baselines which resulted in an accuracy

of 89.23%. To classify emotions, 1D representation was used by

Torres et al. (2020) for hand-crafted features and trained them

using the random forest model to achieve an accuracy of 71.22%.

Yang et al. (2020) utilized 1D representation of differential

entropy with bidirectional LSTM (BiLSTM) to attain an

accuracy of 84.21%. For the same classification scenario,

Zheng et al. (2017) exploited 2D representation and utilized

the graph regularized extreme learning machine (GRELM)

approach along with the combination of hand-crafted features

such as short-time Fourier transform (STFT), power spectrum

density (PSD), differential entropy (DE), differential asymmetry

(DASM), and rational asymmetry (RASM) to distinguish

emotions, which resulted in a performance of 91.07%.

Similarly, 2D representation was exploited by Gonzalez et al.

(2019) to obtain a 72.4% peak performance using the convolution

neural network (CNN). Frequency spectrum features extracted

from ten different brain regions were input to the random forest

model to detect Parkinson’s disease in the study by (Chaturvedi

and Hatz, 2017) which achieved a peak mean performance of

78% and Saikia et al. (2019) explored the use of Shannon’s

entropy and Lyapunov exponent to distinguish Parkinson’s

disease from controls, which resulted in an accuracy of 62%

using 1D representation. On the other hand, the study by Ruffini

et al. (2019), which utilized the convolution neural network

(CNN) on 2D representation of EEG spectrogram, achieved a
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peak accuracy of 79%. 3D representation of EEG data has not

been explored on the considered datasets used in this work, to the

authors’ knowledge.

Multiple representations of EEG, i.e., 1D (signals or feature

vector), 2D feature maps, and 3D (video) were analyzed in

different studies to perform varied classification analyses. The

most popular representation is 1D. Shi et al. (2019) and Oh et al.

(2020) utilized the EEG time-series as the input to a multi-layer

1D convolutional neural network to preserve the temporal

information in distinguishing Parkinson’s disease from

controls. Murugappan et al. (2020) utilized hand-crafted

features with the extreme learning machine (ELM) to

distinguish emotions in subjects with Parkinson’s disease.

Different works had utilized hand-crafted feature vectors to

detect epileptic seizures (Qureshi et al. (2021) and Raghu

et al. (2020)), classify motor imagery (Sadiq et al. (2019)),

distinguish sleep stages (Gopan et al. (2020) and Jiang et al.

(2019)), detect alcoholism (Rodrigues et al. (2019)), diagnose

dementia (Sharma N. et al. (2021) and Ieracitano et al. (2020)),

and assess the grades of visual creativity (Gopan et al. (2022)). Of

late, representation of EEG as 2D feature maps has been explored

in many studies, mostly involving deep learning frameworks.

There are two types of 2D EEG representation, one that preserves

the spatial structure and another that does not consider spatial

information. For instance, to distinguish emotions using EEG,

Topic and Russo (2021) utilized hand-crafted features to

construct 2D feature maps that preserved the spatial structure.

These feature maps were the input to a deep learning framework

for feature extraction. Cheng et al. (2020) generated 2D frames

from multi-channel EEG, and are input to the deep forest model

to classify emotions in the DEAP and DREAMERS datasets. The

obtained feature vector was input to an SVM classifier. A unique

approach was followed by Wang et al. (2020) for emotion

classification, where electrode frequency distribution maps

(EFDM) constructed using electrode frequencies were input as

2D feature maps to CNN. However, the 2D representation

utilized in this work does not preserve spatial information.

EEG spectral images that retained the spatial structure were

utilized by Bi and Wang (2019) as 2D feature maps, which were

input to the Discriminative Contractive Slab and Spike

Convolutional Deep Boltzmann Machine (DCssCDBM) for

the early detection of Alzheimer’s. On the other hand, EEG

spectral images that do not retain spatial information were used

by Ieracitano et al. (2019) for the classification of dementia stages.

Limited studies Bashivan et al. (2015), Zhang et al. (2018), and

Zhang et al. (2018) had utilized EEG in 3D representation, i. e, as

videos. These studies focussed on mental workload estimation

that has application in fatigue detection. To the authors’

knowledge, the work that put forward the idea of using 3D

representation of EEG was the study by Bashivan et al. (2015).

This idea was further utilized in the works of Zhang et al. (2018)

and Kwak et al. (2020) to represent EEG data as sequences of

topology-preserving multi-spectral feature maps which

preserved the temporal, spatial, and spectral information.

3D representation of EEG data encompasses rich spectral,

spatial, and temporal information. This representation proves

useful when significant topographical changes in brain activation

are consistent for a particular class. 2D feature maps generated

using the hand-crafted features exploit the non-linear

characteristics of the brain waves at different electrode

locations by preserving spatial information. 1D representation

of EEG signals looks at the characteristic changes in the manually

extracted non-linear features. In the case of raw EEG signals, the

power level of brain activation is exploited. The motivation of the

study is to answer the question of which representation is best

suited for each of the considered classification scenarios.

Following are the main contributions of this work:

1. Efficacy evaluation of EEG representation as 1D—feature

vector, 2D—spatial structure preserving feature maps, and

3D—videos for a given classification scenario.

2. A novel 3D representation of EEG is proposed here,

interpreting three sub-bands as three image channels and

utilizing Delaunay triangulation interpolation to estimate the

spectral values in-between electrodes in image/feature map/

spectral map generated for each sub-band.

2 Methodology

The proposed methodology of the analyses is shown in

Figure 1. Raw EEG signals are pre-processed to remove

artifacts and the signals are down-sampled to 128 Hz.

Furthermore, these signals are decomposed into various sub-

bands using discrete wavelet transform (DWT). The publicly

available datasets that are used in this study have provided EEG

signals after artifact removal. In experiments requiring sub-band

decomposition, the downsampled EEG are band-limited to

64 Hz before further analysis. Furthermore, the processed data

are converted to videos for 3D, feature maps for 2D, and feature

vectors for 1D analyses. Separate analyses are carried out for

multi-dimensional (3D, 2D, and 1D) input representation.

2.1 Discrete wavelet decomposition

Wavelet decomposition is widely used to decompose EEG

signals into various sub-bands. Wavelet is a wave-like oscillation

that is localized (compact in both time and frequency, used to

analyse signals with minimum uncertainty in time–frequency

simultaneously) in the time and frequency domains. In this work,

4-level decomposition with “db5” mother wavelet is used on the

pre-processed EEG signals. Each of the levels of DWT results in

approximation (A) and detail (D) coefficients which characterize
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the low and high frequency components, respectively. 4-Level

decomposition used in this work is shown in Table 1.

2.2 Hand-crafted features

Various features encapsulate multiple characteristics of EEG

and therefore it is necessary to select the appropriate features

which can extract relevant information from the EEG data for a

given classification scenario. Commonly extracted features from

EEG data can be broadly classified into three as: 1) Frequency

domain—band power, Hurst exponent, differential entropy, and

power spectral density, 2) Time domain—Peak-to-Peak, Hjorth

parameters, fractal dimension, and higher order crossing, and 3)

Spatial domain—magnitude squared coherence, rational

asymmetry, and differential causality. After exhaustive

analyses, the top five best performing features are selected and

reported in this work. They are differential entropy, Hurst

exponent, Hjorth activity, Hjorth complexity, and Hjorth

mobility.

Differential entropy (DE) is used to measure the signal

complexity in biomedical signals Chen et al. (2020) Zheng

et al. (2018). For a Gaussian distribution, DE can be

formulated as shown in Eq. 1

h x( ) � 1
2
log 2πeσ2( ) (1)

where X follows Gaussian distribution N (μ, σ2), π and e are

constants, and x is a variable.

Hjorth activity parameter represents the average power of the

signal (squared standard deviation of amplitude) and can be

calculated as (Eq. 2)

Activity x( ) � ∑N
n�1 x n( )( ) − �x)2

N
(2)

where �x represents the mean of x.

Hjorth mobility parameter (HM) calculates the mean

frequency of the signal or the standard deviation of the power

spectrum and can be calculated as shown in Eq. 3

Mobility x( ) �
�������
var x′( )
var x( )

√
(3)

where x′ represents the derivative of the signal x.

FIGURE 1
The proposed methodology for the analyzes of EEG using 1D, 2D, and 3D representations. In the 3D analysis, EEG signals are converted to
videos and classified using: 1) the CNN and LSTM model or 2) the FPN and LSTM model. In the 2D analysis, feature maps are generated from hand-
crafted features and classified using FPN and ASPP while a composite feature set consisting of 2D feature maps and 1D feature vector is classified
using FPN and ASPP along with a fully connected classification layer. In the 1D analysis, 1D feature vectors are classified using traditional
methods and raw EEG signals are analyzed using CNN.

TABLE 1 Frequency bands of EEG corresponding to the wavelet
coefficients obtained from a 4-level wavelet decomposition of
band-limited EEG.

EEG bands Wavelet coefficients Frequency bands

Gamma Detail Coeff D4 32–64 Hz

Beta Detail Coeff D3 16–32 Hz

Alpha Detail Coeff D2 8–16 Hz

Theta Detail Coeff D1 4–8 Hz

Delta Approximation Coeff A1 1–4 Hz
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Hjorth complexity parameter measures the change in

frequency of the signal. It measures the deviation of the signal

from a pure sine wave, and the values converge toward 1 if the

signal is more similar to a pure sine wave. Hjorth complexity is

calculated as (Eq. 4)

Complexity x( ) � Mobility x′( )
Mobility x( ) (4)

The Hurst exponent (H) is used to evaluate the absence or

presence of long-range dependence in a time-series or to

measure how much the signal deviates from a random walk.

If the value of H is greater than 0.5, it indicates that the data has

long-range correlations. Long-range anti-correlations are

indicated by the H value less than 0.5, while H equals to

0.5 indicates random data. The equation to calculate Hurst

exponent is given in Eq. 5

E
R n( )
S n( )[ ] � CnH (5)

where R(n) is the range of the data series, S(n) is the sum of the

standard deviation, E[n] is the expected values, n is the number

of data points in a time series, and C is a constant.

2.3 1D representation of EEG data

2.3.1 Generating hand-crafted features
The pre-processed band-limited EEG signals are utilized to

calculate various hand-crafted features. Discrete wavelet-

transform is applied to decompose the EEG signals into five

sub-bands—Delta (1–4 Hz), Theta (4–8 Hz), Alpha (8–14 Hz),

Beta (14–32 Hz), and Gamma (32–64 Hz). The five hand-crafted

features encapsulating various signal characteristics as

mentioned in Section 2.2 are calculated for each of the five

sub-bands and for each electrode. For each of the hand-crafted

feature n × 5 a unit long 1-dimensional vector is generated, where

n is the number of electrodes in each dataset.

2.3.2 Traditional methods for 1D feature vector
classification

n × 5 unit long feature vector is obtained separately for each

of the hand-crafted features. Initially, each of these features is

experimented individually to assess their effectiveness in

classification. Each of the hand-crafted features (5 × number

of channels) undergo the “SelectKBest” feature selection

algorithm by Pedregosa et al. (2011) which computes chi-

squared statistic and provides relevant scores. Multiple “k”

values are experimented in this work, and it is found that k =

80 results in the peak performance across all datasets. Four

different classification algorithms—k-NN, SVM, random forest

(RF), and AdaBoost (AB) are utilized in this work. k-Nearest

Neighbors (k-NN) is one of the commonly used classification

algorithm. The main idea of the algorithm is to search for “k”

neighbor subjects nearest to the unknown subject, and then

classify the unknown subject based on majority votes of its

“k” neighbors. Support vector machine (SVM) works by

finding a hyperplane in an N-dimensional space that distinctly

classifies the data points. The dimension of the hyperplane varies

with the number of features. Random forest (RF) is based on the

concept of ensemble learning. Decision trees are built on

different samples and their majority vote is taken for

classification. AdaBoost (AB) is another ensemble learning

algorithm which first fits a classifier onto the original dataset,

and then fits more copies of the same classifier but the weights of

misclassified instances are adjusted to perform better.

A composite feature set is also experimented in this work to

find the optimal combination of features and is shown in

Figure 2. n × 5 unit long feature vector obtained for each of

the hand-crafted features are concatenated to form a composite

feature set. On the composite feature set, “SelectKBest” feature

selection is carried out, and the resulting feature set is input to the

four classifiers for classification.

2.3.3 CNN for 1D EEG data
The pre-processed EEG can be utilized as the input without

manual feature extraction to a 1D deep learning framework. This

enables the model to extract those features that it deems effective

for classification. Multi-layer 1D CNN is utilized here to perform

data-driven feature extraction and classification. The base

network architecture consists of two convolutions—batch

normalization layers and one MaxPool layer, followed by

another two convolutions—batch normalization layers and

one MaxPool layer. The output from the last MaxPool layer is

flattened and is input to a dense layer, followed by a final Softmax

classification layer.

2.4 2D representation of EEG data

2.4.1 Generating 2D feature maps from hand-
crafted features

The five EEG sub-bands obtained by discrete wavelet

decomposition as mentioned in Section 2.3.1 are utilized in

this experiment. Since the EEG electrodes are placed on a

scalp in a 3D space; in order to generate topography

preserving 2D maps, the 3D location of the electrodes

obtained using the standard 10/10 or 10/20 international

system have to be converted to a 2D space. Additionally, it is

imperative to preserve the relative distance between the

electrodes in a 3D space when transforming to a 2D space

Bashivan et al. (2015). In order to achieve this, polar

projection, also known as Azimuthal Equidistant Projection

(AEP), is utilized here Gao et al. (2020). Values calculated for

each of the hand-crafted features for each of the sub-bands are

placed at the transformed 2D location of the electrodes. Positions

of the electrodes are mapped on to a 200, ×, 200 matrix. Delaunay
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Triangulation Interpolation technique is then applied to estimate

the measurement values in-between the electrodes. This method

of interpolation calculates the Delaunay triangulation between

positions of the mapped electrodes Dimitrov (1998), to generate a

smooth reconstructed spatial map with different activation

regions and fine transitions between them. The two-

dimensional feature maps are generated for each of the five

sub-bands and are stacked forming 200 sized feature maps. The

2D feature maps care generated for each hand-crafted features

individually.

2.4.2 2D feature map classification
A widely used deep learning framework, the convolution

neural network (CNN), is utilized in this analysis. CNN

comprises of a series of convolution layers, normalization

layers, activation layers, pooling layers, and dropout layers.

These layers which perform feature extraction on the input

data are followed by multiple fully-connected layers for final

classification. In this work, atrous spatial pyramid pooling

(ASPP) and feature pyramid network (FPN) are utilized.

Multi-scale analysis widens the receptive field, providing

context information at various scales. The ASPP module

Benjdira et al. (2020) is utilized to perform the multi-scale

analysis. The input is given to five convolution layers in

parallel with 1, 2, 4, 6, and 12 dilation rates, respectively.

Kernel size is set to 2 and the strides size is 1. The output

from these five convolution layers are concatenated and input to

a 1 × 1 convolution layer with kernel and stride size of 2. This

forms a single ASPP module. Three such ASPP modules are

utilized sequentially. In image classification, the feature pyramid

FIGURE 2
Analysis on 1D EEG representation with a composite feature set. The top performing features are found to be Hjorth parameters and differential
entropy.

FIGURE 3
Network architecture for the analysis of 2D feature maps and a composite feature set consisting of 2D feature maps and 1D features. ASPP,
atrous spatial pyramid pooling; FPN, feature pyramid network; MP, max pooling; CONC, concatenate; SM, softMax; n number of electrodes.
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network (FPN) has shown to boost the accuracy as observed in

the study by Rahimzadeh et al. (2021). Hence, the FPN network is

utilized in this work to boost the performance of the model. The

complete network architecture is shown in Figure 3. The 3rd

ASPP layer is upsampled and added with the output of the 2nd

ASPP layer which had undergone the 1 × 1 convolution. This

forms the first FPN layer. This process is repeated for FPN1 and

the first ASPP layer resulting in FPN2. The MaxPool layer is

applied to the outputs of FPN1, FPN2, and ASPP3, separately.

The outputs from each MaxPool layers are flattened and

concatenated, forming a single feature vector. The single

feature vector is input to a fully connected layer, followed by

the Softmax layer for classification.

2.4.3 Composite feature set consisting of 2D
feature maps and 1D features

Another approach that utilizes the 2D feature map with 1D

feature vector (n × 5 unit long feature vector) is also experimented

here. As shown in Figure 3, the 2D feature maps undergo feature

extraction as described in Section 2.4.2 and the output of the fully

connected layer is utilized for concatenation with the output of the

fully connected (FC) network. The fullyconnected (FC) network

consists of multiple dense layers, as shown in Figure 3. The

concatenated vector is input to a dense layer followed by the

SoftMax layer for classification.

2.5 3D representation of EEG data

2.5.1 Converting EEG signals to EEG videos
Roach and Mathalon, (2008) decomposed the pre-processed

EEG signals into the magnitude and phase components

(time–frequency analysis) using the method of spectral

decomposition that utilized the fast Fourier transform (FFT).

The process of using this method to obtain EEG sub-bands is

known as frequency binning. In this experiment four EEG sub-

bands, namely, Theta (4–7 Hz), Alpha (8–12 Hz), and Beta

(12–40 Hz) obtained using frequency binning are utilized.

The proposed approach in this experiment utilizes

topographical maps that preserve spatial information. As

described in Section 2.4, electrodes placed on the scalp in a

3D space are converted to a 2D space using azimuthal equidistant

projection (AEP) to preserve the relative distance between

electrodes present in the 3D space. The three scalar values,

obtained per time frame, through the method of frequency

binning, for each electrode, are interpreted as channels of an

image, which are then projected onto a 2D electrode location. To

generate smooth topographical 2Dmaps, Delaunay triangulation

interpolation is utilized. This interpolation algorithm estimates

the spectral measurement values in-between the electrodes over a

32 × 32 grid. Smooth reconstructed spatial maps are generated

with different activation regions having fine transitions between

them. Such a sequence of these spatial maps, as shown in

Figure 4, are stacked together in the time domain to create

EEG videos. Videos are generated of the size t × m × m × c,

where t is the length of the video,m is the spatial resolution of the

video created using the grid, and c refers to the number of

channels. The generated videos are passed to the video

classification model as the input. The model utilizes spatial

information using CNN and temporal information

through RNN.

2.5.2 CNN–RNN model for videos
CNN layers are utilized to exploit spatial and spectral

information, whereas to exploit temporal information, LSTM is

used. EEG videos are input to the multiple time-distributed

convolution and MaxPool layers, followed by LSTM. The base

network architecture has four convolutions—batch normalization

layers and oneMaxPool layer, followed by two convolutions—batch

normalization and one MaxPool layers. This is further followed by

one convolution - batch normalization and oneMaxPool layers. The

output of the last MaxPool layer is given in parallel to the LSTM and

1D temporal convolution layer. The outputs of LSTM and temporal

convolution are concatenated and input to a dense layer of

256 dimensions, which is followed by the SoftMax layer. A

kernel size of 3 and the “ReLU” activation function are used for

the convolution layers. LSTM utilizes ‘tanh’ activation function.

Time-distributed convolution and MaxPool layers are used in place

of conventional CNN layers to utilize the EEG video as the input.

2.5.3 FPN–RNN model for videos
A conventional CNN model in combination with FPN

(Feature Pyramid Network) are experimented in this work

using the network architecture described in Section 2.5.2. The

proposed FPN architecture is shown in Figure 5. The first layer of

FIGURE 4
Sample of 6 contiguous frames of EEG video representation
from the EEG Baseline dataset for the eyes open class.
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FPN (FPN1) is formed by adding the upsampled output of the 7th

convolution layer with the output of 1 × 1 convolution of the

output of 6th convolution layer. Similarly, the FPN2 layer is

formed using outputs from FPN1 and the 5th convolution layer.

The outputs of FPN1, FPN2, and the 7th convolution layer are

inputs to three convolution and MaxPool layers in parallel. The

outputs of each of theMaxPool layers are inputs to the LSTM and

1D temporal convolution in parallel. The outputs of all LSTM

and 1D temporal convolution are concatenated and input to a

dense layer followed by the SoftMax layer.

2.5.4 Evaluation
Binary cross-entropy loss along with the Adam optimizer is

used for training for all the datasets. The scheduled learning rate

is applied with a starting rate of 0.001. For EEG baseline and

mental arithmetic, datasets are randomly split into train, test, and

validation using stratified split and the model is trained seven

times. 18% data are used for testing, 18% data are used for

validation, and the rest 64% data are used for training the model.

It is ensured that there is no data leakage between the splits. For

the Parkinson’s disease dataset, 10 rounds of 10-fold cross

validation are performed. Leave-one-subject-out method for

evaluation is used for the emotion dataset. Different

evaluation schemes are applied to different datasets for a

comparison of the results with other works in the literature.

3 Datasets

3.1 EEG baseline dataset

“EEGMotor/Movement Imagery” is a publicly available EEG

dataset from Physionet PhysioBank, (2000) Schalk et al. (2004).

Two distinct baseline runs available in the dataset are utilized in

this work. The dataset contains EEG data consisting of

218 samples each of 1 min duration, sampled at 160 samples

per second, from 109 volunteers. The two baseline runs are:

1. EEG recorded with open eyes

2. EEG recorded with closed eyes

The EEG signals were collected from 64 electrodes as per the

international 10–10 system.

3.2 EEG mental arithmetic dataset

The EEG mental arithmetic dataset by Physionet PhysioBank,

(2000) Zyma et al. (2019) consists of 72 one and 3 minute recordings

from 36 patients before and during the performance of mental

arithmetic tasks (two tasks), respectively. The EEG signals were

recorded from 19 EEG-channels according to the international

10–20 system. The data were acquired at the sampling rate of

500 Hz. The subjects were asked to do an arithmetic task that

involved the serial subtraction of two numbers. Each trial started

with the communication of orally 4-digit (minuend) and 2- digit

(subtrahend) numbers.

3.3 Parkinson’s disease dataset

The publicly available dataset for Parkinson’s disease

from the University of New Mexico (UNM) Anjum et al.

(2020) is utilized in this work. EEGs were recorded from

27 PD patients and 27 controls. The control participants were

matched for gender and age with the PD patients. EEG

signals were recorded with subjects at the rest state. The

data were captured under both the resting conditions of eyes-

FIGURE 5
Feature pyramid network (FPN) and long–short term memory (LSTM) network for the EEG video. CNN, convolution neural network; MP,
maxpool; CONC, concatenate; SM, softMax.
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open and eyes-closed. 64 Ag/AgCl electrodes were used to

collect the data at a sampling rate of 500 Hz across

0.1–100 Hz using the Brain Vision system. A reference

channel was set to CPz.

3.4 Emotion dataset

SJTU emotion EEG dataset (SEED) Zheng and Lu, (2015) is

utilized in this work for emotion classification. It contains EEG

signals and eye movement signals from 15 participants (7 males

and 8 females, and aged 23.27 ± 2.37). The data were collected via

62 electrodes while the participants were watching fifteen

Chinese film clips with three types of emotions, i.e., negative,

positive, and neutral. With an interval of about 1 week, three

experiments were performed for each participant. The EEG data,

recorded for approximately 4 minutes per trial, were down-

sampled to 200 Hz. A band-pass filter from 0 to 75 Hz was

applied. In the present study, only positive and negative trials

from the participants are used.

4 Results

The efficacy of various multi-dimensional representations of

EEG data as 1D—feature vector, 2D—feature map, and

3D—video, for the purpose of classification in diverse

scenarios as described in Section 3, are explored in this work.

4.1 1D analysis

4.1.1 Traditional methods
As described in Section 2.3.2, hand-crafted features are

calculated and n × 5 unit long vector is generated where n is the

number of electrodes and 5 indicates the number of sub-bands. The

five features are input to four classifiers for classification. Results of

this method on the four datasets are presented in Table 2. It is seen

from Table 2 that for the EEG baseline classification, a peak mean

accuracy of 88.28% is achieved using the optimal feature–classifier

combination of Hjorth mobility and the random forest model.

76.67% peak mean accuracy is attained on the mental arithmetic

TABLE 2 Mean accuracies obtained for 1D non-linear feature vectors trained using traditional methods.

EEG Baseline (%) Mental Arithmetic (%) Parkinson (%) Emotion (%)

Activity k-NN 83.14 75.00 68.51 63.33

SVM 85.14 72.49 66.66 61.11

RF 86.28 60.00 67.77 67.11

AB 79.42 65.00 65.55 67.33

Complexity k-NN 87.99 58.33 81.85 70.00

SVM 87.71 50.83 82.22 72.66

RF 87.42 60.00 79.44 69.55

AB 84.00 65.83 72.03 66.66

Mobility k-NN 87.14 50.00 79.81 72.66

SVM 87.42 40.83 80.37 70.88

RF 88.28 40.00 81.85 73.77

AB 85.71 49.99 69.81 71.77

DE k-NN 81.71 70.83 78.88 65.55

SVM 80.57 76.67 79.81 65.77

RF 79.71 60.83 79.25 63.77

AB 81.41 54.16 69.44 62.44

Hurst k-NN 82.85 62.49 63.33 69.77

SVM 86.57 58.33 64.25 73.77

RF 86.28 57.50 69.25 72.88

AB 82.57 63.33 63.14 68.22

k-NN, k-Nearest neighbors; SVM, support vector machine; RF, random forest and AB, AdaBoost.

Bold values indicate the highest accuracy obtained using that methodology for a particular dataset.
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dataset using differential entropy and SVM,whileHjorth complexity

in combinationwith SVMresults in 82.22%peakmean performance

for the Parkinson’s disease dataset. Individually, Hurst exponent and

Hjorth mobility result in a peak mean performance of 73.77% in

classifying positive and negative emotions.

A composite feature set is experimented for various

combinations of the hand-crafted features using the

methodology as shown in Figure 2. It is observed that the

combination of Hjorth—activity, Hjorth—mobility,

Hjorth—complexity, and differential entropy results in the

optimal performance. Table 3 shows the results of the

composite feature set for various classifiers and datasets. As

can be observed from the table, the composite feature set

results in the peak mean performances of 88.56% (higher by

0.32%), 83.33% (higher by 7%), 88.51% (higher by 6%), and

70.66% (lower by 3%) for EEG baselines, mental arithmetic,

Parkinson’s disease, and emotion datasets, respectively.

4.1.2 1D CNN
EEG signals are given as the input to CNN as explained in

Section 2.3.3 to exploit data-driven feature representation and

classification characteristics of deep learning. As observed from

Table 3, this method results in peak mean performances of

61.73%, 52.78%, 63.33%, and 58.22% for EEG baselines,

mental arithmetic, Parkinson’s disease, and emotion datasets,

respectively. The performances are observed to be lower than the

aforementioned hand-crafted features. It must be noted that the

EEG signals are not frequency decomposed into sub-bands

before being inputted to the CNN. To utilize a completely

data-driven approach, no sub-band decomposition is used in

this methodology.

4.2 2D analysis

4.2.1 2D feature maps
The 2D analysis as described in Section 2.4.2 is carried out to

retain the spatial structure of the electrodes’ positions and a 2D

feature maps’ classification module as shown in Figure 3 is used.

It is observed from Table 3 that the 2D feature map generated

using Hjorth complexity distinguishes the EEG baselines, with a

peak mean performance of 81.94%, while Hjorth mobility results

in a peak mean accuracy of 84.72% for mental arithmetic. In the

scenarios involving Parkinson’s disease and emotion datasets,

differential entropy and Hurst feature maps result in 63.75% and

72.2% peak mean accuracies, respectively.

4.2.2 Composite feature set consisting of 2D
feature maps and 1D features

A composite feature set of 2D feature maps along with 1D

features is also explored, as shown in Figure 3. A combination of

Hjorth mobility 2D feature maps with Hjorth mobility 1D

TABLE 3 Mean accuracies obtained using the proposed methodologies on the mentioned datasets.

Method Features EEG Baseline (%) Mental Arithmetic (%) Parkinson (%) Emotion (%)

Video 92.50 98.81 75.92 77.76

2D + 1D Activity 85.64 69.44 46.15 64.66

Complexity 82.86 74.95 75.00 67.11

DE 84.25 73.60 82.50 71.77

Mobility 87.95 94.40 78.84 66.67

Hurst 79.37 58.34 57.69 79.60

2D Activity 50.00 50.00 44.90 67.11

Complexity 81.94 73.61 48.75 55.40

DE 51.85 54.16 63.75 64.67

Mobility 65.74 84.72 58.70 58.60

Hurst 53.70 58.30 44.90 72.20

1D (ML) k-NN 88.56 83.33 88.51 70.66

SVM 87.42 76.66 83.10 69.50

RF 87.71 72.50 80.74 70.00

AB 87.14 64.16 80.74 72.00

1D (CNN) 61.73 52.78 63.33 58.22

KNN, K-nearest neighbor; SVM, support vector machine; RF, random forest; AB, AdaBoost.

Bold values indicate the highest accuracy obtained using that methodology for a particular dataset.
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features results in a peak mean performance of 87.95% for EEG

baselines. This performance is 6% higher than the method using

only 2D feature maps. Similarly, the same feature combination

results in a peak performance of 94.4% for mental arithmetic,

which is 10% higher than using only 2D feature maps. The trend

follows for both Parkinson’s disease and emotion datasets where

composite features of differential entropy and the composite

features of Hurst exponent result in peak mean accuracies of

82.5% and 79.6%, respectively. This is 18.75% and 7.4% higher

than using only 2D feature maps. The results clearly show that

the composite feature set consisting of 2D feature maps with

corresponding 1D features surpass the performance of using only

2D feature maps from a minimum accuracy of 6% to a maximum

accuracy of 18.75%.

4.3 3D analysis

To simultaneously exploit temporal, spectral, and spatial

information, EEG signals are converted into EEG videos as

mentioned in Section 2.5.1. Time-distributed convolution

layers are utilized to preserve temporal information, which is

subsequently utilized by LSTM. A combination of the

CNN–RNN Bashivan et al. (2015) network as explained in

Section 2.5.2 is explored. This method resulted in a peak

mean accuracy of 86.9%. When dropout is introduced in the

network to avoid the issue of over-fitting, it reduces the

performance by 9% resulting in a peak mean accuracy of

77.8%. l2-regularization is introduced as an alternative to

dropout, which boosts the performance to 92.5%. Hence, l2-

regularization is utilized in all methodologies involving EEG

video inputs across datasets; this results in peak mean accuracies

of 96.64%, 73.6%, and 69.5% for mental arithmetic, Parkinson’s

disease, and emotion datasets, respectively.

A modified architecture involving the feature pyramid

network (FPN) as shown in Figure 5 is also explored.

Introduction of FPN decreases the performance of EEG

baselines by 2.5% but improves the performance of the

network in the other three datasets. Peak mean accuracies of

98.81%, 75.92%, and 74.36% are obtained for mental arithmetic,

Parkinson’s disease, and emotion datasets, respectively.

A comparison of the performances of the proposed

methodologies with other works in the literature is shown in

Table 4. The analysis of the 3D representation of EEG as videos

yield 3.27% and 2.9% higher performances than the state-of-the-

art for EEG baselines and mental arithmetic, respectively. For the

TABLE 4 Comparison of the accuracy achieved using the proposed methodologies with other works in the literature.

No. Dataset Author Representation Accuracy

1 EEG Baseline Gopan et al. (2016b) 1D 77.92%

2 Gopan et al. (2016a) 1D 86.71%

3 Reñosa et al. (2020) 1D 89.23%

4 Proposed work (EEG Video) 3D 92.5 ± 1.8%

1 Mental Arithmetic Debarshi, (2020) 1D 97.5%

2 Ganguly et al. (2020) 1D 93.59%

3 Sharma N et al. (2021) 1D 94%

4 Behrouzi and Hatzinakos, (2022) 2D 95.91%

5 Proposed work (EEG Video) 3D 98.81 ± 2.9%

1 Parkinson’s Disease Anjum et al. (2020) 1D 85.4%

2 Chaturvedi and Hatz (2017) 1D 72.2%

3 Vanneste et al. (2018) 1D 72.2%

4 Proposed work (1D ML) 1D 88.51 ±0.1%

1 Emotion Yang et al. (2020) 1D 84.21%

2 Khazaei and Mohammadzade, (2021) 1D 88.40%

3 Wang et al. (2020) 2D 90.59%

4 Topic and Russo, (2021) 2D 88.45%

5 Zheng et al. (2017) 2D 91.07%

6 Proposed work (2D + 1D) 2D + 1D 79.6 ± 1.8%

Bold values indicate the highest accuracy obtained using that methodology for a particular dataset.
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Parkinson’s disease dataset, a 3.11% higher accuracy than the

state-of-the art is achieved using traditional methods involving

composite features for 1D representation of EEG while the

composite features consisting of 2D feature maps and 1D

features of differential entropy result in 3% less performance

than the state-of-the art. A peak mean performance of 79.60% is

obtained using the composite feature set consisting of 2D feature

maps and 1D features of the Hurst exponent for emotion dataset;

however, this performance is 8.85% less than the state-of-the-art.

Confusion matrices for the methods resulting in peak mean

performances for each of the dataset are shown in Figure 6. It can

be observed that 10% of the eyes open baseline is misclassified as

eyes closed, whereas only 5% of eyes closed is misclassified as eyes

Open. In the case of mental arithmetic, the only misclassification

is the cognitive state as a state of rest, which is approximately

2.4%. In the Parkinson’s disease analysis, it is observed that the

Type 1 error (14.82%) is higher than the Type 2 error (8.15%). In

emotion classification, the same extent of misclassification (20%)

is observed for both the classes.

5 Discussion

In this work, three distinct multi-dimensional

representations of EEG data, namely, 1D (feature vector

and raw signals), 2D (feature maps), and 3D (EEG videos)

are analyzed on data corresponding to four diverse

classification scenarios. In the methodologies involving 1D

representation, on one hand, we extract hand-crafted features

using traditional methods; on the other hand, a data-driven

framework such as 1D CNN, which uses raw EEG signals as

the input, is explored. 2D Feature maps generated using hand-

crafted features are utilized in a deep learning classification

framework, and a combination of 2D feature maps with 1D

features is also explored. 3D representation of EEG data is

analyzed using a combination of CNN and RNN networks as

well as with the use of FPN.

In the case of 1D representation of EEG signals, the

characteristic changes in hand-crafted features for the EEG

sub-bands are considered with the limitation that the spatial

information cannot be incorporated. The composite feature

set of Hjorth parameters - activity, mobility, complexity, and

differential entropy result in higher performances for three of

the classification scenarios. 2D feature map-based analyses

utilize the non-linear characteristics of the brain waves at

various electrode positions by preserving spatial information.

The Hjorth activity feature map measures the average power

of the brain regions in comparison with other brain regions.

The Hjorth mobility feature map captures the deviation in the

power spectrum of different brain regions. The Hjorth

complexity feature map provides a measure of similarity of

EEG signals at different brain regions to a pure sine wave. The

long-range dependencies of EEG signals of different brain

regions and the changes in the signal complexity of brain

regions are captured by Hurst exponent and differential

entropy feature maps, respectively. However, it is observed

that the composite feature set consisting of 2D feature maps

and 1D features of the same handcrafted features result in a

higher performance than using the 2D feature map alone. This

could be because the composite feature set exploits the spatial

information from 2D feature maps as well as the characteristic

changes in the hand-crafted features using 1D features. The

EEG video analyses utilize spatial, spectral, and temporal

information simultaneously and exploit the topographical

changes in the brain activation regions.

In view of these choices of multi-dimensional EEG

representations, the following inferences can be concluded

based on the analyses on the four diverse datasets. During the

eyes open and eyes closed baselines, studies Barry et al.

(2007) observed topographical and power level changes in

the brain activations. During the eyes open baseline, the

prefrontal cortex (PF) and the frontopolar cortex (FPC)

regions were observed to have higher levels of power as

compared to eyes closed. Significant changes in the

FIGURE 6
Confusion matrices of high performing multi-dimensional EEG representations for the four datasets. (A) EEG baseline dataset using the EEG
video. (B)Mental Arithmetic dataset using the EEG video. (C) Parkinson’s disease dataset using 1D features. (D) Emotion dataset using the composite
feature set consisting of 2D feature maps and 1D features.
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occipital and parietal lobes were also observed during these

states in Kan et al. (2017). Thus, an analysis based on EEG

video representation is able to exploit the inherent

characteristic differences between the EEG baselines.

Changes in the mean frequencies across various brain

regions are utilized using the composite feature set of

Hjorth mobility to distinguish the baselines. The overall

changes in the power levels of brain activations are

exploited by the 1D EEG representation using hand-

crafted features, leading to a higher performance. In the

case of mental arithmetic, Abd Hamid et al. (2011)

observed activations in the brain regions of the frontal

and parietal lobes while performing the tasks of addition

and subtraction. These two regions are known to be involved

during mental calculationZago et al. (2001). It was observed

by Arsalidou et al. (2018) that the superior frontal and medial

frontal brain regions were also the key regions for

calculations and working memory. Hence, the analysis

based on EEG video representation utilizes the

topographical changes in brain activation regions during

the cognitive state and the state of rest to distinguish

between the two classes. The changes in the mean

frequencies across brain regions as well as the overall

changes in brain activations are exploited in the analyses

involving 2D EEG and 1D EEG representations.

The topographical changes along with the spectral and

temporal information need to be consistent across subjects for

a particular class to effectively use the analysis based on EEG

video representation. The degree of deterioration of brain

regions and the effect of such degradation on the brain

activation regions need not necessarily be consistent for all

subjects suffering from Parkinson’s disease. This

inconsistency could be the reason why the analysis based

on EEG video representation resulted in a peak mean

performance of only 75.9% (13% less than the peak

performance obtained using the 1D feature vector analysis).

The varying degrees of deterioration of brain regions in

Parkinson’s disease result in characteristic changes in the

EEG signals of various brain regions. This includes changes

in the signal complexity of the brain regions, which is well

utilized by differential entropy to distinguish subjects with

Parkinson’s disease from healthy controls. These regions may

not be consistent, and hence the incorporation of spatial

information into the analyses might not be effective. This is

illustrated on the Parkinson’s disease dataset when the

performance of the analysis based on EEG 1D feature

vector representation is compared with that involving the

2D feature map and EEG video representation.

Multiple regions in the brain are involved during positive and

negative emotionsVytal and Hamann (2010). Though there were

no specific visible patterns of topographical changes associated

with the positive and negative emotions, the study by Lindquist

et al. (2016) found that the activations have higher power levels

during negative emotions as compared to positive emotions. This

could be the reason for the peak mean performance of 77.76%

with the analysis based on EEG video representation indicating

the potential of the proposed approach with different network

architectures, even though currently, the performance is

approximately 11% less than the state-of-the-art. Though the

topographical changes associated with positive and negative

emotions are similar, the Hurst exponent distinguished the

two types of emotions, with high performance indicating

significant changes in the long-range dependencies of EEG

signals of different brain regions.

The study shows that, while 3D-video representation of EEG

signals encompasses rich information, this methodology proves

useful only when there are significant topographical changes in

brain activations and the changes are consistent for a particular

class. Apart from this, the efficacy of this representation is high

when spectral and temporal changes, across the classes, are

significant. 2D-feature map representation is important when

spatial information is combined with either spectral or temporal

information, but not all three simultaneously. 1D-feature vector

representations are useful in cases where spatial information is

not critical. Thus, the choice of the EEG data representation and

analyses depends on the type of classification scenario being

considered and the characteristics of the EEG signals of the

considered classes that can be exploited.

6 Conclusion

The efficacies of various multi-dimensional representations

of EEG signals are analyzed in this work for diverse

classification scenarios. EEG data are represented in terms of

1D–feature vector, 2D–feature maps, and 3D—EEG videos. 1D

hand-crafted features were analyzed using traditional methods

and 1D signals were analyzed using 1D CNN. 2D feature maps

and a composite feature set of 2D feature maps along with 1D

features were proposed and explored using deep learning

frameworks. Furthermore, EEG videos were analyzed using a

combination of temporal convolution and LSTM. An

architecture involving the feature pyramid network (FPN)

and atrous spatial pyramid pooling (ASPP) is proposed for

2D feature maps and EEG video analyses. Four diverse datasets

- EEG baseline, EEG mental arithmetic, Parkinson’s disease,

and emotion datasets are analyzed using the proposed EEG

representations and networks. The Analysis of EEG video

representation resulted in peak mean performances of 3.27%

and 2.9% higher than the state-of-the-art for EEG baselines and

mental arithmetic, respectively. 1D EEG representation with

traditional methods resulted in 3.11% higher accuracy than the

state-of-the art for Parkinson’s disease. From the study, it can

be inferred that the EEG can be analyzed using various multi-

dimensional representations. However, the representation

needs to be chosen based on the classification scenarios
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being considered and whether spatial, spectral, and temporal

information need to be exploited simultaneously or in various

combinations.
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