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The use of wearable technology for monitoring a person’s health status is

becoming increasingly more popular. Unfortunately, this technology typically

suffers from low-quality measurement data, making the acquisition of, for

instance, the heart rate based on electrocardiography data from non-

adhesive sensors challenging. Such sensors are prone to motion artifacts

and hence the electrocardiogram (ECG) measurements require signal

processing to enhance their quality and enable detection of the heart rate.

Over the last years, considerable progress has been made in the use of deep

neural networks for many signal processing challenges. Yet, for healthcare

applications their success is limited because the required large datasets to train

these networks are typically not available. In this paper we propose a method to

embed prior knowledge about the measurement data and problem statement

in the network architecture to make it more data efficient. Our proposed

method aims to enhance the quality of ECG signals by describing ECG

signals from the perspective of a multi-measurement vector convolutional

sparse coding model and use a deep unfolded neural network architecture to

learn the model parameters. The sparse coding problem was solved using the

Alternation Direction Method of Multipliers. Our method was evaluated by

denoising ECG signals, that were corrupted by adding noise to clean ECG

signals, and subsequently detecting the heart beats from the denoised data and

compare these to the heartbeats and derived heartrate variability features

detected in the clean ECG signals. This evaluation demonstrated an

improved in the signal-to-noise ratio (SNR) improvement ranging from 17 to

27 dB and an improvement in heart rate detection (i.e. F1 score) ranging

between 0 and 50%, where the range depends on the SNR of the input

signals. The performance of the method was compared to that of a

denoising encoder-decoder neural network and a wavelet-based denoising

method, showing equivalent and better performance, respectively.
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1 Introduction

Current research trends in healthcare aim at enabling

patients to be monitored in their home environment. Not

only does staying at home, instead of in the hospital, improve

the quality of life for the patients, but it also reduces the

occupancy of hospital infrastructure and saves costs. During

the recent worldwide Covid-19 pandemic, it has become even

clearer that having the possibility to monitor patients out of the

hospital has additional advantages as it limits the exposure of

people to viruses and infections.

One of the most frequently monitored health parameters

in the home environment is the heart rate, while other

examples include mobility, blood pressure, and oxygen

saturation. A common property between all home

monitoring applications is that the quality of the signals is

lower than in related hospital applications. During home

monitoring, the patient can place the sensors, needed to

record the desired health parameters, by him/herself, often

leading to suboptimal placing. Alternatively, sensors placed in

the hospital and then used at home can get detached, e.g. after

showering. To compromise signal quality further, patients at

home tend to move around more compared to when they are

monitored in a hospital bed.

For every health parameter monitored at home, several

technologies can be used to acquire that parameter. For

instance, heart rate can be monitored through

electrocardiography (Waller, 1887), photoplethysmography

(Allen, 2007), seismocardiography (Salerno and Zanetti, 1990),

etc. In the remainder of this work, we will focus our discussion on

monitoring of the heart rate through electrocardiogram (ECG)

measurements. However, the proposed strategy and parts of the

methodology can be generalized to other home monitoring

modalities.

When considering home monitoring of the ECG, wearable

solutions by means of Holter recordings already exist. These are

for instance used for periods up to 48 h to screen for atrial

fibrillation. But also here, during episodes of movement the

signal quality can degrade, complicating the analysis of the

recorded data. This degradation of signal quality is even more

apparent when unobtrusive sensors such as textile or capacitive

electrodes are used (Ottenbacher and Heuer, 2010; Nigusse et al.,

2021). Current solutions for dealing with low signal quality

mainly focus on the detection of artifacts that yield unreliable

inference on heart rate (Moeyersons et al., 2019). Subsequently,

these unreliable segments can be ignored for any downstream

assessment of the patient’s condition. In many situations this is

an acceptable solution, because the heart rate does not need to be

monitored 24/7. However, if we were to develop technology that

can unobtrusively and continuously monitor the heart rate in a

reliable way, this could unravel further possibilities for

monitoring even more patients outside of the hospital.

An important challenge is therefore to develop signal

processing methods that are tolerant to low quality data

and enable reliable detection of the heart rate. There are

different methods available in the literature that focus on

estimating the clean ECG signal from its noisy observation.

This ECG denoising is typically necessary as preprocessing

step before the heart rate can be detected. One category of

algorithms used for preprocessing consists of signal

decomposition techniques like empirical mode

decomposition (EMD) (Blanco-Velasco et al., 2008) and

Fourier decomposition (Singh, 2018; Singhal et al., 2020).

Another category of methods is based on wavelet

transforms that decompose the signal, threshold it and then

reconstruct it (Awal et al., 2014; Lin et al., 2014). Conventional

filtering techniques (van Alsté et al., 1986; Bhaskar, 2012) and

adaptive filters (Vullings et al., 2011; Hesar and Mohebbi,

2021) have been also widely used for ECG signal denoising.

Recently, breakthroughs have been made across many

domains by using deep learning models, including

applications in healthcare (Esteva et al., 2019; Parvaneh et al.,

2019; Fotiadou et al., 2021; Yang et al., 2021). Deep learning has

also attracted some research studies in ECG signal denoising with

denoising autoencoders (DAEs) and generative adversarial

networks (GANs) being the most representative methods

(Xiong et al., 2016; Chiang et al., 2019; Singh and Pradhan,

2021; Xu et al., 2021). Despite the clear potential of these deep

learning models, their success often largely depends on the

amount and quality of available data to train the models. In

healthcare applications, data sets are unfortunately often

relatively small and high-quality reference methods, to enable

supervised learning, are often lacking. In these cases, it is typically

beneficial to include knowledge on the signals and application

within the design of the deep learning models to enhance their

data efficiency.

To leverage the potential of deep learning models and

overcome the limitations concerning data availability, in this

paper we propose a neural network architecture that embeds

strong prior assumptions on the characteristics of the ECG

signal. This culminates in a convolutional sparse coding

method that aims to denoise poor-quality ECG signals, in

which reliable heart rate detection is no longer possible, to the

extent that heart rate detection is enabled.

This paper is organized as follows. In Section 2 the unfolded

convolutional sparse coding method is discussed and

motivated. Moreover, in this Section we discuss the dataset

used to train and evaluate the method, as well as how this

evaluation is done. In Section 3 the results of the proposed

method are shown. In Section 4 these results, the setup of this

study, as well as possible applications where the proposed

approach can be useful are discussed. Finally, in Section 5

we draw conclusions about the feasibility and potential of the

proposed approach.
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2 Methodology

2.1 Properties of electrocardiography
signals

The ECG reflects the electrical activity of the heart during

cardiac contraction. A typical ECG complex consists of P-wave,

QRS-complex and T-wave, representing atrial contraction,

ventricular contraction, and ventricular relaxation, respectively

(see Figure 1). For heart rate detection, we are typically interested

in the detection of the R-peaks, or more specifically, in the

detection of the interval between consecutive R-peaks. This

RR-interval RR reflects the time between two heartbeats; the

heart rateHR is calculated asHR = 60/RR and expressed in beats-

per-minute (BPM).

Considering that for heart rate detection we are only

interested in the R-peaks, or more specifically the QRS-

complex, we can consider the ECG signal to be sparse. The P-

and T-waves have typically much lower amplitude and hence we

could consider the ECG to be a signal of zeros, except for the

QRS-complex, which is corrupted by noise. Here, this noise

includes the actual measurement noise and P- and T-waves.

Next to sparsity, another property of the ECG that can be

leveraged in the design of deep learning models is related to

spatial correlations in multi-channel measurements. The ECG is

recorded as a voltage between two locations on the body. The

ECG lead, meaning the vector between these two locations, can

be considered a one-dimensional projection of the more complex

electrical activity of the heart (Malmivuo and Plonsey, 2002).

Intuitively, each ECG signal represents a different point of view

on this complex electrical activity. For this reason, in many ECG

applications, cardiologists resort to a 12-lead ECG as to paint a

complete picture of the heart. However, this also means that

several ECG leads, or equivalently: ECG channels, have strong

similarities. The QRS-complex can differ in morphology, but

must occur in every channel at the same point in time.

Based on the mentioned properties sparsity and spatial

correlation the ECG can be described by a multi-measurement

vector (i.e. multi-channel) sparse coding model.

2.2 Convolutional sparse coding

In a sparse coding model, the ECG is considered to be the

linear combination of a limited number of atoms from a

dictionary. In other words, the ECG can be modeled as the

linear combination of a small number of QRS templates that are

stored in a dictionary. The sparse coding algorithm will

determine which QRS templates should be used, in parallel

optimizing for two competing features: the reconstruction of

the ECG complex from the templates must be as accurate as

possible, while on the other hand as few as possible templates

should be used. Mathematically, this can be described as:

min
X

X‖ ‖w,2,1
s.t.AX � Y

{ . (1)

Here, Y ∈ Rm×n is the recorded ECG, withm the length of the

ECG and n the number of channels, A ∈ Rm×k is the dictionary

that contains k QRS templates, X ∈ Rk×n is a row-sparse matrix,

and ‖ ·‖w,2,1 represents the l2,1 norm with wi, (i = 1, . . . , n) a

positive scalar and Xi the ith row of X.

In the model of Eq. 1, we have assumed that the ECG

represents a short segment with a length of m samples from a

possibly longer ECG recording. If we were to segment a longer

ECG recording into shorter segments of fixed length, we cannot

be sure without a priori peak detection that the sparse

information occurs in the same part of every segment. The

QRS-complex can be at the start of the segment, the middle,

the end, etc. That means that the dictionary A in Eq. 1 must

contain templates for every possible position of the QRS

complex, on either side of the QRS complex padded with

zeros to have the length m. Alternatively, we propose to

change the sparse coding model of Eq. 1 into a convolutional

sparse coding model:

min
X

X‖ ‖w,2,1
s.t.A p X � Y

{ . (2)

Since convolutions are equivariant to translation, the

dictionary only needs to contain the QRS templates and not

their position within the ECG Y; This position is captured by the

sparsity matrix X. Additionally, the length of the QRS complexes

in the dictionary can now be freely chosen and is no longer

restricted to the same length m as the ECG segments.

Furthermore, in this notation X ∈ Rm×n.

To solve the sparse coding problem, following the

suggestions from Chen et al. (2021), we propose to use the

FIGURE 1
Example of ECG signal with its characteristic P-wave, QRS
complex, and T-wave. The part of the ECG signal that is
demarcated by the vertical lines is referred to as the QRS complex.
The distance between these lines is referred to as the QRS
interval. The length of this interval is used to define the kernel sizes
of some layers in the proposed neural network.
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Alternation Direction Method of Multipliers (ADMM) (Boyd

et al., 2011). In ADMM an auxiliary matrix Z ∈ Rm×n is

introduced that is optimized to resemble X as closely as

possible. The problem of Eq. 2 then transforms to:

min
X,Z

Z‖ ‖w,2,1
s.t.Z � X,A p X � Y

{ . (3)

ADMM proposes an iterative approach to solve an

augmented Lagrangian representation of the problem in Eq. 3:

min
X,Z

Z‖ ‖w,2,1 − Λ1
T Z − X( ) + β1

2
Z − X‖ ‖22 − Λ2

T A p X − Y( )

+ β2
2

A p X − Y‖ ‖22,
(4)

where Λ1 ∈ Rm×n and Λ2 ∈ Rm×n are Lagrangian multipliers

and β1 and β2 are penalty parameters (β1, β2 > 0).

The iterative solution to this problem can be derived in line

with the presentation by Chen et al. (2021), leading to the

following set of equations where in each iteration towards the

solution a cycle is made through these equations:

X(k) � X(k−1) − η∇X(k−1) ;Z(k−1) ,Λ(k−1)
1 ,Λ(k−1)

2
(5a)

Z(k) � S X(k) + 1
β1
Λ(k−1)

1 ,
w

β1
( ) (5b)

Λ1
(k) � Λ(k−1)

1 + γ1β1 X(k) − Z(k)( ) (5c)
Λ2

(k) � Λ(k−1)
2 + γ2β2 Y − A(k) p X(k)( ), (5d)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(5)

with η a step size, γ1 and γ2 step lengths for the Lagrangian

multipliers (γ1, γ2> 0), and∇X;Z,Λ1 ,Λ2 the gradient for the update ofX.

This gradient is described in more detail in the following subsection.

2.3 Deep unfolding model for sparse
coding

Asmentioned before, the solution to the ADMMproblem can be

found through an iterative approach. This constitutes an iterative

algorithm that cycles over a small number of equations until

convergence has reached. Similar approaches for solving sparse

coding problems are the iterative shrinkage and thresholding

algorithm (ISTA) (Beck and Teboulle, 2009). Recent advances in

deep learning models have shown that iterative algorithms can be

effectively described via unfolding neural networks. Here, each fold in

the neural network represents one cycle over the equations in the

iterative approach. Unlike conventional iterative optimization

algorithms, the unfolded neural networks can rapidly converge to

a solution, often requiring only a small number of folds. In Figure 2 an

illustration is provided for the unfolding of the recurrent update ofZk.

In the simplistic representation of the recurrent update (left panel), the

update equations forXk andΛ(k−1)
1 are not provided. In the unfolded

representation (right panel), the update equations are replaced by

convolutions with filter kernels Wi (van Sloun et al., 2019).

Following a deep unfolding approach for the entire solution

of Eqs. 5a–5d, the following set of equations can be derived:

X(k) � X(k−1) −W5 p ∇X(k−1) ;Z(k−1) ,Λ(k−1)
1 ,Λ(k−1)

2
(6a)

Z(k) � S X(k) +W6 p Λ(k−1)
1 ,

w

β1
( ) (6b)

Λ1
(k) � Λ(k−1)

1 +W7 p X(k) − Z(k)( ) (6c)
Λ2

(k) � Λ(k−1)
2 +W8 p Y −W(k)

9 p X(k)( ). (6d)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(6)

Here,

∇X;Z,Λ1 ,Λ2 � W1 p X − W2 p Z − Λ1 −W3 p Y +W4 p Λ2( ),
(7)

S(·) represents a row-wise shrinkage operator,

Wi, i ∈ 0, 1, 3, 4, 9{ } are convolutions with 12 filters and kernel

size 100, similar to the length of the QRS interval (see Figure 1),

and Wi, i ∈ 2, 5, 6, 7, 8{ } are 1 × 1 convolutions. The iterative

process can be initialized by:

X 0( ) � W0 p Y. (8)

In line with the work by Solomon et al. (2020) we propose to

replace the row-wise shrinkage operator S(·) in every fold k by a

trainable soft-thresholding function, as also depicted in Figure 2

FIGURE 2
Illustration of deep unfolding of the recurrent update algorithm for Zk. The blue line within the black box (top center in the left panel) represents
the row-wise shrinkage operator that stimulates sparsity of the ultimate solutions.
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S z, λk( ) � z

z| |max z| | − log eλk + 1( ), 0{ }. (9)

It should be noted here that the softplus function log(eλk + 1)
with trainable parameter λk replaces the term w

β1
in Eq. 6b.

The deep unfolding model was implemented in Keras

(Chollet et al., 2015) with the Tensorflow backend. As an

optimization method, we selected the Adam optimizer with a

learning rate of 0.0001 and a mean squared error as loss function.

The batch size was set to 64 and the number of folds to 3. In our

results, we saw that the performance of the method does no

longer significantly improve when adding more folds, while

adding more folds will increase the computational complexity.

As a final model, we chose the one that has the lowest loss on the

validation dataset.

2.4 Data for training and evaluation

To evaluate the method the PTBDiagnostic ECGDatabase of

Physionet is used (Bousseljot et al., 1995; Goldberger et al., 2000).

The database comprises of both normal and pathological signals

with 15 leads, from which we have used the conventional

12 leads. The database contains 549 records from 290 male

and female subjects, sampled at 1,000 Hz. We corrupt the

signals with additive Gaussian noise, to obtain signals with

signal-to-noise ratio (SNR) from −5 to −20 dB. 458 recordings

from the subjects ‘patient001′ to ‘patient224′ are used for

training the network, 46 recordings from subjects ‘patient225′
to ‘patient259′ for validation and the remaining 43 recordings are

kept as a test set (the recordings‘s0544_re’ and‘s0555_re’ were

excluded because of poor quality). Finally, the ECG signals are

divided in segments of length of 1,000 samples and normalized to

have zero mean and unity standard deviation. The normalization

is performed along each channel separately.

2.5 Reference methods for ECG denoising

Our method is evaluated in comparison with a wavelet-based

denoising method and a denoising autoencoder (DAE). Wavelet-

based denoising uses three main steps. In the first step, the

wavelet transform is applied to decompose the signal into a set of

wavelet coefficients; the detail and the approximation ones. In the

second step, the detail coefficients are compared to a threshold

and in the third step the coefficients that exceed the threshold are

used together with the approximation coefficients to reconstruct

the denoised signal. The symlet wavelet is selected as mother

wavelet due to its resemblance with an ECG, while a fixed

threshold is used.

Autoencoders are unsupervised neural networks aiming at

copying inputs to outputs by learning dense representations of

the input data. An autoencoder has two distinct components: an

encoder and a decoder. In case of a DAE the input data are

corrupted by noise and the network is trained to predict the

original uncorrupted data. We compare our method with the

DAE proposed by (Chiang et al., 2019), but unlike (Chiang et al.,

2019) we simultaneously denoise all the 12 ECG leads and not

each lead separately. The architecture of the DAE that we have

used is shown in Figure 3. The size of the network’s input is set to

1024 × 12 to facilitate the subsampling operations.

2.6 Evaluation strategy

Because the goal of the proposed method is to denoise ECG

signals to enable reliable detection of the heart rate, the

evaluation of the method in comparison to reference

methods is made based on the denoising capabilities and the

correctness of the heart rate and heart rate variability (HRV)

that can be detected from the denoised ECG signals. As ground

truth heart rate, the heart rate and HRV are first detected from

the ECG signal prior to adding the Gaussian noise (i.e., the clean

ECG signal). The method used to detect the heart rate is the

well-known Pan-Tompkins algorithm (Pan and Tompkins,

1985), for which we have used an open source Python

implementation (Sznajder and Łukowska, 2017). As HRV

features, we have used the root mean square of successive

differences between adjacent RR intervals (RMSSD) and the

PNN50 metric, the proportion of beat to beat interval pairs that

differ by more than 50 ms.

The performance in denoising is quantified in terms of the

improvement of the SNR of the ECG signals, where the clean

ECG signal serves as ground truth. To quantify the performance

of the heart rate detection, each detected QRS complex–or

R-peak–in the ECG is compared to the QRS complexes from

the clean signals. A detection is indicated to be correct if it falls

within a 50 milliseconds window centered around the true QRS

complex (Warmerdam et al., 2018). Based on this classification as

correct or incorrect, we can define the following evaluation

metrics:

F1 � 2TP
2TP + FP + FN

(10)

PPV � TP

TP + FP
(11)

Sensitivity � TP

TP + FN
, (12)

where PPV is the positive predictive value, TP is true positives

(i.e., QRS complexes correctly detected), FN is false negatives

(i.e., QRS complexes missed), FP is false positive (i.e., QRS

complexes incorrectly detected).

For the HRV features, the performance is quantified by the

percentual difference between the HRV features calculated from

the denoised ECG signal and those calculated from the clean

ECG signal.

Frontiers in Signal Processing frontiersin.org05

Fotiadou et al. 10.3389/frsip.2022.981453

https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://doi.org/10.3389/frsip.2022.981453


Every ECG recording in the dataset is a 12-lead ECG

recording. In such a multi-channel recording, each heart

beat (i.e., QRS complex) happens in each of the channels at

the same time. Hence, many signal processing methods

exploit the spatial correlation in the data to improve the

detection of heart beats (Vullings et al., 2010; Lee et al.,

2020). Yet, to evaluate our method on its contribution to

denoising the ECG, we have considered each channel to be

independent of the others, effectively expanding our

dataset 12 times: a single 12-lead ECG recording is

considered as 12 single-lead ECG recordings. To also

present a more realistic measure of the performance of our

method and the reference methods, we also evaluated the

performance in retrieving the correct heart rate by only

considering the channel that showed the best comparison

to the ground truth heart rate.

FIGURE 3
Architecture of the denoising autoencoder proposed by (Chiang et al., 2019) that is used as a reference method for comparison with our
method. Conv and Deconv stand for convolutional and deconvolutional layers respectively.

FIGURE 4
Example of filter kernels that are learned by the deep unfolding convolutional sparse coding network. These kernels are convoluted with the
row-sparse matrix Z to yield the denoised ECG signals as output.
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3 Results

Conceptually, the proposed method works such that it

estimates the row-sparse matrix Z, or equivalently X, and

convolutes this matrix in the last fold of the unfolded

recurrent architecture with a set of learned filter kernels. The

result of this convolution should resemble a denoised, sparse

ECG signal and therefore, we would expect that the neural

network has learned that the filter kernels should resemble

clean QRS complexes. To evaluate this expectation, in

Figure 4 the first six kernels of this last set of filter kernels are

depicted. Indeed, most of them strongly resemble QRS

complexes from a clean ECG signal.

As mentioned before, the goal of the proposed method is to

denoise ECG signals to the extent that reliable detection of the

QRS complexes, and thereby calculation of the heart rate,

becomes possible. In Figure 5 an example is provided of a

clean ECG, its noisy counterpart, and the denoised signal after

applying the proposed method and the reference methods

(i.e., DAE and wavelet-based denoising). The red dots in the

plots symbolize the locations at which the Pan-Tompkins

method detected the QRS complexes.

To quantify the performance of our method in denoising the

ECG signals and enable heart rate detection, we applied our

method and subsequently the Pan-Tompkins peak detection on

the 43 recordings from the test set of our data (see Section 2.4). In

this evaluation, the SNR of the input data was varied by adding

higher or smaller amplitude noise. The detected QRS complexes

were compared to those from the ground truth (i.e. clean ECG

signal) and the performance in QRS detection was quantified via

the F1, PPV, and Sensitivitymetrics explained in Eqs. 10–12. The

denoising performance of the methods was assessed based on the

improvement in SNR of the denoised signals when compared to

the noisy ones. Finally, the efficiency of the methods in extracting

reliable HRV features was measured by the RMSSD and

PNN50 feature comparison between the clean and the

denoised signals. In Figure 6, all the performance metrics are

depicted as a function of the SNR of the input data.

4 Discussion

4.1 Rationale of the study

In this paper, we proposed a deep unfolded multi-

measurement vector convolutional sparse coding algorithm for

denoising of ECG signals to enable more reliable heart rate

detection. This algorithm is derived by the explicit embedding

FIGURE 5
Example of the peak detection. In (A) the clean signal, (B) the signal with addded Gaussian noise of SNR −15 dB (C) the denoised signal by the
proposed method, (D) the denoised signal by the reference DAE and (E) the denoised signal by the reference wavelet method is shown. The ECG
recording that is visualized here is obtained from patient265, channel 12. Prior to being denoised by our proposed method and the DAEmethod, the
ECG signals are normalized (see Section 2.4). To visualize the output of the method on the same vertical scale as the other ECG signals, the
output was corrected for this normalization.
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FIGURE 6
Performance of QRS complex detection, heart rate variability feature extraction and denoising as a function of the SNR of the input signals. The
QRS detection was performed in ECG signals that are denoised with the proposed method (blue), with the DAE (green), with the wavelet-based
method (orange), and without any denoising (red).
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of strong signal priors within the architecture of a neural

network. By embedding prior knowledge on signal properties,

the neural network can be trained with fewer data (i.e., no data is

wasted to learn structures within the data that were already

known) and with a smaller memory footprint. Moreover, the

resulting algorithms are typically more robust and to some extent

explainable; the neural network is no longer a black box but its

working can be partly understood. In our example, the neural

network denoises the input data by reconstructing it from a

sparse linear combination of learned filter kernels.

4.2 Performance in denoising and
enabling heart rate detection

From the results in Figure 6 it can be seen that the proposed

method achieves a significant improvement in SNR of the noisy

ECG signals and that it outperforms the wavelet-based denoising

method, while performing comparable to the DAE neural

network. From the results in Figures 5, 6 it is clear that the

proposed method is capable of denoising ECG signals to improve

the detection of the heart rate. Also here, the proposed method

performs comparable to the DAE, which was to be expected as

the denoising capabilities, which is the key ingredient to enable

heart rate detection, was comparable. From Figure 6 it can be

concluded that both the proposedmethod and the DAE stand out

from the wavelet-based denoising for a SNR range of the input

signals between −20 and 0 dB. Below −20 dB also the proposed

method and the DAE are no longer capable of sufficiently

denoising the ECG signals and the detection of QRS

complexes breaks down. This is evidenced by the relatively

low Sensitivity of the proposed method for these low input

SNRs, albeit that the Sensitivity is significantly better than that

of the DAE method.

For the noisy data, the Sensitivity is close to perfect, also in

case of low SNR. This can be explained by the fact that in the

noisy data and also in the wavelet denoised data, the employed

QRS detection method finds many peaks, most of which can be

attributed to noise (i.e. false positives). However, by findingmany

peaks, the chance that for each of the peaks in the ground truth

signal at least one peak was found in the vicinity is large, thus

yielding a small number of false negatives. From the PPV and F1

metrics, it can be seen that most of the detected peaks from the

noisy and wavelet-denoised data are indeed false positives.

From the HRV features in Figure 6 it can be concluded that

all methods have their pro’s and con’s, but what stands out the

most is that all methods differ a substantial amount from the

ground truth data. A reasonable explanation for this is that the

implementation of the Pan-Tompkins method used in this paper

seems to perform below par, as illustrated in Figure 5. A better

peak detection method would likely resolve the differences in

HRV features to a large extent, but for reproducability of this

study, the Pan-Tompkins method was still favored here. The

proposed method and the DAE perform relatively well in terms

of PNN50 for input SNR abov -10 dB, but are outperformed by

the wavelet-based denoising in terms of the RMSSD. For RMSSD,

the proposed method performs significantly better than the DAE

method. It should be noted here that for low input SNR, the heart

rate detection for all methods is already so low, that the RMSSD

and PNN50 are far off from the ground truth results. At that

point, it can be argued whether an error as large as 800% is really

that much better than an error of 3,000%; both will yield

inaccurate interpretation of the HRV.

To further boost heart rate detection in practical situations,

and perhaps enable accurate heart rate detection for input SNR

below −20 dB, the spatial correlation between the ECG signals

could be exploited during peak detection, such as proposed in

(Warmerdam et al., 2018). Moreover, as an alternative method

for heart rate detection, one could consider using the row-sparse

matrix Z instead of the reconstructed ECG signals that were

exemplified in the results section. These reconstructed ECGs are

determined by the convolution of the learned filter kernels with

Z. That means that Z encodes the locations of the QRS complexes

(i.e., the positions of the peak that we want to detect), while the

filter kernels encode the shape of these complexes.

4.3 Limitations of our study

The performance of our proposed method was evaluated by

comparing the ability of a well-known heart rate detection

method in detecting the heart rate in both noisy and denoised

data. To gauge the performance of our method, the input data

was also denoised with a wavelet-based denoising method prior

to heart rate detection. It is important to note here that the goal of

our paper is to showcase an example of how signal priors can be

embedded within a neural network architecture. We have chosen

convolutional sparse coding of ECG signals as an appealing

example, but should stress that the presented framework can

be similarly applied to other problems. The presented method is

therefore not (yet) intended to outperform the state-of-the-art

algorithms for ECG denoising, nor has it yet been fully optimized

by tuning all hyperparameters such as the number of folds and

the number of filter kernels. In line with this reasoning, the

benchmark method is not considered the state of the art, but

constitutes a widely used generic method for signal denoising.

Future work should therefore include the further

optimization of the proposed method and the comparison of

the method to state-of-the-art denoising methods.

4.4 Clinical utility and future work

The proposed method is able to enhance the quality of noisy

ECG signals to the extent that it is possible to detect the heart

rate. It should be noted here that the detected heart rates
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correspond well to the heart rates from the clean reference

signals, but that for some recordings small differences in heart

rate can be encountered. These differences can lead to different

interpretations when it comes to heart rate variability features

that look at short-term variations, such as RMSSD. This means

that the proposed method can be used for e.g. monitoring at

home when the key interest is in monitoring heart rate trends

over time or in monitoring long-term variability. To enable

monitoring of short-term variability, further advances in the

proposed method are still needed.

The proposed method has a few characteristics that should

make it suitable for use on a wide range of problems. It was

designed based on four key assumptions on the input data. 1) The

input data is sparse in nature. 2) The input data is multi-channel

and the sparse information in the data is present in all channels in

the same position or at the same point in time. 3) The sparse

information more or less repeats itself between signal segments

(i.e., quasi-periodical). 4) It is a priori unknown where in the

signal segments the sparse information will be. In case the last

assumption is not valid and it can be a priori known where the

information is, the convolutions in the proposed method can be

replaced by multiplications such as fully-connected layers.

The assumptions that were made, apply to many problems

around the detection of the periodicity within a multi-channel

time series data, especially when these data are strongly

corrupted by noise. For example, the use of multi-color

photoplethysmography signals for reliable heart rate detection

with smart watches (Ghamari et al., 2018), heart rate detection

from ECGmeasurement during pregnancy (Peters et al., 2006) or

with textile (Atallah et al., 2014) or capacitive electrodes (Yang

et al., 2014). These applications should nevertheless be studied in

future work before conclusions about the generalizability of the

proposed method can be drawn.

5 Conclusion

In this paper, a method for multi-measurement vector

convolutional sparse coding with unfolded deep neural

networks was presented, aiming to denoise ECG signals and

thereby enable reliable heart rate detection. The proposed

method is capable of denoising ECG signals by accurately

reconstructing them from the convolution of a limited

number of filter kernels with a row-sparse matrix. The

method was shown to outperform a popular wavelet-based

denoising method for input ECG signals with a SNR higher

than −20 dB and perform similarly to a denoising autoencoder

neural network, making it suitable for applications in ambulatory

or unobtrusive monitoring of the heart rate.
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