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Measuring fine-grained physical interaction between the human player and the
musical instrument can significantly improve our understanding of music
performance. This article presents a Musical Instrument Performance Capture
and Analysis Toolbox (MIPCAT) that can be used to capture and to process the
physical control variables used by a musician while performing music. This includes
both a measurement apparatus with sensors and a software toolbox for analysis.
Several of the components used here can also be applied in other musical contexts.
The system is here applied to the clarinet, where the instrument sensors record
blowing pressure, reed position, tongue contact, and sound pressures in the mouth,
mouthpiece, and barrel. Radiated sound and multiple videos are also recorded to
allow details of the embouchure and the instrument’s motion to be determined. The
software toolbox can synchronise measurements from different devices, including
video sources, extract time-variable descriptors, segment by notes and excerpts, and
summarise descriptors per note, phrase, or excerpt. An example of its application
shows how to compare performances from different musicians.

KEYWORDS

music performance, motion capture, signal acquisition, software toolbox, segmentation,
clarinet, reed instrument, music information retrieval

1 Introduction

Musicians can produce quite varied performances of the same piece of music: imagine, for
example, comparing a performance by a virtuoso and one by someone who plays the correct
notes with poor expression, or the differences between two interpretations by the same player.
The details of how these different performances are produced are, for different reasons, of
interest to music pedagogues and students as well as to music researchers in various
subdisciplines.

At the level of a sound recording, performances can be analysed in terms of tone duration
and timing, loudness, pitch, vibrato, and aspects of timbre such as brightness, roughness,
sharpness, etc. At a fundamental level, these properties of the sound are the result of physical
variables that are produced by the actions of the player. The measurements afforded at the level
of a sound recording are seldom related to this fundamental level of physical variables in a
simple way. For example, on a clarinet, one might expect the player’s blowing pressure (a
physical variable) to be strongly, but not completely, correlated with a listener’s perception of
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the loudness of the consequent tone produced (a psychophysical level
often calculated from sound recording data). As another example,
knowledge is fairly limited regarding the relationship between the fine-
grained physical position of the reed with respect to the mouthpiece
aperture and its effects on the sound and thence on the psychophysical
impact on the listener.

For a player of reed instruments (here represented by the clarinet),
the physical variables controlled by the musician include the blowing
pressure, the position and forces of the lips on the reed, the angle of the
instrument with respect to the player’s face, and the shape of the
mouth and vocal tract. Unlike the piano or the harp, where the control
of the sound mostly occurs at the beginning of the tone (hereafter
called
instruments are continuously controlled during the sounding of the

“impulsive  sound-producing” instruments), woodwind
musical tone. Continuous measurement of the control variables and
understanding of their effects and interactions are likely to inform the
global understanding of performance and significantly impact music
psychology and pedagogy.

This paper reports a musical instrument performance capture and
analysis toolbox, hereafter called MIPCAT, for the investigation of
physical control variables used by a clarinettist while performing
music. It first reviews some approaches to measuring a player’s
control variables. Then it describes the measurement apparatus,
and the software toolbox used to process the raw measured data.
Finally, as an example use of MIPCAT, performances of the same
musical excerpt by two expert musicians and one amateur player are

compared.

1.1 Literature review: Measurement of musical
instrument control variables

Analysis of the detailed action of musicians when playing their
instrument has been a focus of research for a few decades, for several
reasons, including pedagogical interest and attempts to improve sound
synthesis models. Articulation (Repp, 1995; Bresin and Umberto Battel,
2000) and finger motion (Goebl and Palmer, 2008; Furuya and Soechting,
2012) in piano performance have been studied in considerable detail, as
these are some of the most important aspects of the interaction between
the pianist and the instrument. For plucked strings, researchers (Pavlidou,
1997; Chadefaux et al., 2012) have focused on the precise contact time and
force distribution of the finger on the string. For continuous control
instruments, one of the most studied is the violin, where researchers must
acquire a larger set of physical variables, including bowing force, speed
and acceleration, position and angles (Schoonderwaldt et al, 2008).
Woodwind instruments are also subject to continuous control, and
some studies have focused on finger motion and force (Almeida et al.,
2009; Chen et al., 2009; Palmer et al., 2009; Hofmann and Goebl, 2016).

With moderate modification of the instrument, some of the
physical variables that musicians use to control the sound have
been measured during wind instrument playing. Such studies
revealed interesting findings concerning certain physical control
variables, such as the variations in the air pressure used to blow
the instrument, the lip and tongue action, and indications of the
acoustic involvement of the player’s vocal tract. A technique using two
rapid-response pressure transducers to measure air pressure both in
the player’s mouth and in the instrument mouthpiece has become
important for understanding the influence of player’s vocal tract
during single reed playing (Scavone et al., 2008; Guillemain et al.,
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2010; Chatziioannou and Hofmann, 2015; Li et al., 2016b; Pamies-Vila
et al., 2018) and brass (Fréour and Scavone, 2013). Meanwhile, force-
sensing resistors attached on the reed surface were also used for
studying reed vibration in instruments such as the clarinet and
saxophone (Pamiés-Vila, 2021). An earlier study (Almeida et al,
2013) showed how the player’s blowing pressure, the force applied
by the lip on the reed and its position affect the sound during the
sustained part of a tone. A later study (Li et al., 2016a) measured
tongue and reed contact using a binary tongue sensor, which showed
the critical coordination between tongue release from the reed and the
rise of blowing pressure for various types of articulation at note start. A
system that contains all these measuring techniques would be ideal to
study a musician’s physical control variables in a thorough and
coordinated manner. (In this paragraph and hereafter, ‘note’ is
used to mean not only a symbol in the score determining pitch
and duration, but also the sound that we identify as being
produced by the musician to convey that pitch and inter-onset
interval.)

1.2 Motion capture of musician’s
performances

The link between the motion of musician and instrument and the
sound produced is probably weaker than in the case of other
parameters such as blowing pressure or reed force. Nevertheless,
the frequency-dependent directivity of wind instruments means
that the timbre of the tone varies according to the angle of the
instrument relative to the listener. Thus, whether consciously or
not, players can use instrument motion to modulate the timbre of
the sound that reaches the audience (Meyer, 2009; Caussé et al., 2015).
Furthermore, as embodied music cognition suggests (Leman et al.,
2018), musical expression cannot be dissociated from bodily motion,
and so plays a role in both the way emotion is produced by a musician
and how it is perceived by a listener. It is therefore useful to examine
motion variables, which may be extracted by analysing specially
arranged video recordings of the player and instrument in situ.

Motion analysis in musical performance has adopted the same
methods as analysis of dance using trackers and sophisticated motion
capture systems (Wanderley et al., 2005; Ferguson et al., 2014), or
using basic video analysis techniques such as the motiongram
(Jensenius, 2006). Camurri and colleagues developed the EyesWeb
platform (Camurri et al., 2004; Camurri et al., 2005; Camurri et al.,
2007) to analyse individual movements for the purpose of linking
them to non-verbal expressive cues. Caramiaux, Wanderley and
colleagues (Wanderley et al, 2005; Caramiaux et al, 2012)
published a program of research investigating the communication
of emotion through expressive nuances and gestures of clarinet
playing specifically, as well as analysis of the music. They sought to
understand how player affected
communication of the music to a listener who is also watching the

movements the expressive
performance, and taking into consideration musical structures.
Motion systems are complex and expensive to set up. In contrast,
motiongrams are simpler but may not always capture the detailed
geometry of the interaction between player and instrument, or their
relative motion (for a review of such systems, see Jensenius (2018)).

For our purpose, we wanted a lightweight, inexpensive system that
could gather data concerning the motion of the instrument relative to
the body. However, we have not found reports of tools that gather
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Schematic diagram (not to scale) of the overall measurement apparatus.
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FIGURE 2
Detail of the mouthpiece with fitted sensors.

motion information, audio and musical data and physical playing
parameters in a reliable and synchronised manner that exploits recent
developments in motion and other domains of expression. For this
reason, we resorted to Google MediaPipe (https://mediapipe.dev)
combined with a set of markers that are easy to identify in software.
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2 Materials and equipment

The measurement apparatus is shown in Figure 1 in schematic form,
and includes two main modules. The first is a modified clarinet
mouthpiece (Yamaha YCL4C model) and barrel fitted with multiple
sensors; these are fitted to the laboratory clarinet (Yamaha YCL250), as
shown in greater detail in Figure 2. The second module involves several
cameras and microphones that record video and allow the determination
of the relative positions of the player and instrument. The most complete
set of data is obtained when the modified mouthpiece with sensors is used
in conjunction with the video and sound recording. However, replacing
the modified mouthpiece with one without sensors still yields useful data.
Of course, in several situations it would not be necessary to include all the
sensors shown in Figure 1.

2.1 Modified clarinet with sensors

The modified clarinet mouthpiece and barrel fitted to the
laboratory clarinet are illustrated schematically in Figure 1. A
photograph of the mouthpiece in Figure 2 shows the most
important sensors in the setup. The apparatus measures the
following variables:

frontiersin.org


https://mediapipe.dev/
https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://doi.org/10.3389/frsip.2023.1089366

Almeida et al.

10.3389/frsip.2023.1089366

FIGURE 3

Synchronised capture of front and side views of player. Green rectangles show the detected ArUco markers tracking the motion of the clarinet.

FIGURE 4

Sample frame from the mouthpiece camera during human
performance. The mm scale and green target are glued to the clarinet
mouthpiece.

o Mouth pressure (P,,): A miniature pressure sensor (8507C-2,
Endevco, Irvine, CA) is fitted into the corner of the mouthpiece
so that its sensing membrane is exposed to the air inside the
player’s mouth during playing. It is connected to a bridge
amplifier (see schematics

Material S1.

« Mouthpiece pressure (P,,;): A second miniature pressure sensor

presented as

is fitted through a hole on the side of the mouthpiece, 30 mm
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away from the mouthpiece tip. It measures mouthpiece pressure
at that point and is connected to a similar bridge amplifier. This
measurement is affected by turbulence. In many of the uses of
this signal, turbulence is not a major problem because it is
averaged out during one window of sampling. For critical uses,
the barrel pressure, which is much less affected by noise, can be
used to estimate pressure at the tip of the mouthpiece, but this is
beyond the scope of the current article.

Reed position (y): A reflective, infrared proximity sensor
(QRE1113, ON Semiconductor, Phoenix, AZ) is mounted
inside the mouthpiece, 5mm from the mouthpiece tip,
directly opposite the reed. It is orientated to measure the
displacement of the reed (with a minimum gap of 1 mm,
achieved when the reed touches the lay and completely closes
the mouthpiece). Its output is connected to a current-to-voltage
converter (see schematics presented as Supplementary Material
S1). A section of the flat side of the reed is painted matte white to
increase diffuse reflection.

Barrel sound pressure (Pp): A modified cylindrical barrel was
made of plexiglass. A hole of 1 mm in diameter connects the
inside bore of the barrel to a Swagelok adapter, 20.5 mm from
the mouthpiece junction. This adapter holds a 1/4” microphone
(4944A, Britel & Kjeer, Neeru, Denmark) connected to a
conditioning preamplifier (Nexus 2690, Britel & Kjeer, Neeru,
Denmark) to provide calibrated gain. The embouchure camera
is mounted on a frame attached to this barrel.

Sound pressure outside bell (Ppeyr): A bracket attached to the
bell holds a Briiel & Kjeer 1/4” microphone parallel to the
instrument axis and directed towards the player. Not visible in
Figure 2.

Radiated sound pressure (P,qq): A 3/4” microphone (RODE
NT3, Sydney, Australia) mounted on a stand captures the sound
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FIGURE 5

Flowchart of the software processing applied to the signals by MIPCAT. Acquired signals go through some pre-processing steps (conditioning), are
processed to extract time-series of low-level sound features and are then segmented into notes and sub-segmented into transient and sustained portions.

radiated by the instrument. It is mounted at the same height as
the bell and at a distance of 45 cm. Not visible in Figure 2.

o Tongue-reed contact: A thin (80 ym diameter) wire is glued to
the outer side of a synthetic reed (Légére Reeds, Barrie, Ontario)
and insulated with varnish except for the final 2 mm from the tip
of the reed. A small potential difference (1.5V) is present
between this wire and the thumb rest of the clarinet.
Consequently, whenever the reed is tongued and the wire is
touched by the tongue, a small current (~1 pA) flows. This
produces a voltage across a series resistor input to a buffer
amplifier (see schematics in Supplementary Material S1).

The electronic signals from the above sensors are recorded at
512kHz wusing a USB digital acquisition module (National
Instruments DAQ 9234 and 9174) using the MATLAB DAQ toolbox.
The DAQ system was chosen because a conventional audio interface is
unable to capture the low-frequency components or DC offsets of some of
the measurements, for instance, mouth pressure or reed displacement.

All measurements are made in a room designed to reduce
background noise and reverberation. It has a reverberation time of
no more than tens of milliseconds at the frequencies of interest.

For electrical safety, it is essential that the apparatus be completely
isolated from the electrical mains supply. This is achieved by supplying
all the electronics (i.e. Nexus conditioning preamplifier, digital
12V
automotive battery. The measurement computer (a laptop) runs

acquisition module and custom electronics) from a
from its internal battery during measurements.

To reduce the number of cables attached to the instrument, this
version of the apparatus does not include key position sensors. We
have studied key motion in detail previously (Almeida et al., 2009). For
most purposes, the key motion is effectively binary and can be inferred

from the note detected and/or the video (but see also Chen et al., 2009).
2.2 Relative position of player and instrument
2.2.1 Instrument motion

Two small video cameras (one GoPro 4 and one GoPro Hero 5,

GoPro, San Mateo, CA) capture front and side views of the player and
clarinet. The walls of the room and the clarinet are fitted with ArUco
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markers (Garrido-Jurado et al., 2014) as seen in Figure 3. These
markers are analogous to QR codes that encode a single integer
digit. They are easy to track with an automated tracking algorithm
and can be uniquely identified in an image.

2.2.2 Insertion of clarinet into mouth

One small endoscope camera (3.5 mm mini Android, GearBest,
Guang Dong, China, hereafter called mouthpiece camera) is attached
to a bracket mounted on the substitute barrel; it captures a side view of
the clarinet mouthpiece. A coloured tag is glued to the side of the
mouthpiece exposed to the camera, so that the position of the lip
obscuring the tag can be tracked automatically in the video (see next
section). The tag is illuminated by a white LED attached by a bracket to
the substitute barrel. It can be seen in Figures 2, 3.

Videos with sound are recorded separately on each of the three
cameras and synchronised later with the electronic signals using the
audio fingerprinting tool described below.

2.3 Mouthpiece video analysis

The mouthpiece camera is attached to the clarinet barrel, about
60 mm from the mouthpiece. A sample frame captured by this camera
is shown in Figure 4. Image analysis is performed using basic
manipulation functions in the openCV library (Bradski, 2000) to
determine how far the mouthpiece is inserted into the mouth.

Tracking involves identifying the green area in the scale and the
target, which are both glued to the side of the mouthpiece, as shown in
Figure 4. Identification of the green area is done by matching a range of
Hue, Saturation, and Value. The narrowest range is matched on hue,
as this is the most stable of the three colour variables when there are
changes in lighting and orientation.

Although the camera is attached to the instrument, the support is not
completely rigid, and the position of the scale on the frame can change
with the movements of the clarinet. Because of this, the numbers on the
scale are tracked for the length of the recording. The tracking is done
using both an optical flow algorithm (precise to better than one pixel
because it averages the motion of multiple pixels) and template matching
(precise to one pixel). A Kalman filter combines both trackers, also
interpolating the position if either tracker fails.
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FIGURE 6

Example time-series extracted from a recording shown in the applications section (Section 4). The top graph shows the blowing pressure in pascals, the

RMS amplitude of the pressure measured inside the mouthpiece, and the RMS amplitude of the first three harmonics (H1 to H3). The middle graph shows the
ratios of the pressure of nth harmonic amplitude in the mouth to that in the mouthpiece. The bottom graph shows the average reed displacement from
equilibrium (mm, negative values mean closer to the mouthpiece). The time axis is in seconds.

2.4 Motion capture

Two views of the player are recorded using GoPro cameras (see frame
grabs in Figure 3). The instrument is fitted with a set of unique markers
(ArUco markers). These markers can usually be identified in each frame,
allowing tracking of the motion of the clarinet. Each recognised marker in
a frame is used as a template for template matching in the next frame
using a correlation-based algorithm. This allows tracking of the marker
position even if it is blurred by motion. A Kalman filter interpolates for the
position whenever the tags are obscured.

Google MediaPipe is used as an approximate tracker for the
player’s head, which allows the angle between the clarinet and the
musician’s face to be approximately determined. Facial data are used
in the example below to calculate the tilt angle of the instrument
relative to the head.

3 Methods

A set of software tools was developed to process the recorded data
as automatically as possible. Parts may be used in similar contexts,
even independently of the measurement apparatus. We make them
available in a dedicated repository on GitHub (https://github.com/
goiosunsw/mipcat), with additional explanation and technical
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documentation. Data is processed according to the flowchart in
Figure 5: first, all raw signals are synchronized from different
devices; second, several meaningful time series are extracted from
raw signals and from videos (to obtain the lip position at which the
player bites the reed and motion of the clarinet); third, a semi-
automated segmentation is run on one of the audio signals to label
note boundaries; fourth, several descriptive statistics from the time
series are calculated for each note using labelled note boundaries, and
fifth, transients are detected for each note for calculating transient
statistics.

3.1 Synchronisation of signals and video
captures

All the signals from sensors are captured by a digital acquisition
(DAQ) module and are thus synchronised with each other at
acquisition time. Video signals from the general-purpose cameras
are captured independently and thus require post-synchronisation.
This is provided by comparing their audio signals with the audio signal
from an external microphone captured by the DAQ unit using a
fingerprinting algorithm (Cano et al., 2005). By doing this, the videos
are synchronised with all the other signals captured by the DAQ
module.
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A 7-s sample from the applications section (Section 4), overlapping with the time period shown in Figure 6 on an expanded time scale showing six notes
with segmentation boundaries (included in the white region), steady state region in red shading, and 5-segment envelope simplification for characterisation of
each note. "Blowing” means the (DC or slowly varying) blowing pressure in the mouth, “"MP" means mouthpiece, and H1 to H3 indicate fundamental and

harmonics. Transient regions are marked as blue regions (see Figure 8).

Synchronisation of two signals is usually achieved by finding the
delay between two signals. The fingerprint of each audio signal is based
on the peak bins of each spectrogram (FFT window size:
1,024 samples, i.e. 20 ms). The algorithm then matches peak pairs
in the source signal with peak pairs in the reference signal according to
their frequencies and time difference. For each matching peak pair, the
delay between the peak pair in the reference signal and its
corresponding pair in the target signal is recorded. When running
through both signals, the distribution of the delays between matching
pairs will exhibit a maximum value corresponding to the true delay
between the two signals.

3.2 Time series calculation
Several time series are calculated from the raw signals:
 Fundamental frequency fo: This is calculated from the chosen
signal using the Yin algorithm implemented in librosa (https://
librosa.org), a Python library for audio analysis, producing a

time series of fundamental frequency values at a rate of
100 values per second.
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DC values of the mouth pressure and reed signals: A low pass filter
with a cut-off frequency of 10 Hz is applied in the frequency domain.
RMS amplitude of all pressure signals and the reed signal:
Calculated as the standard deviation of the samples in a
windowed portion of the signal. A Hann window is used and
the value of the sum of the squared windowed signal is divided
by the sum of the window so that the RMS value is correctly
normalised. The window is 1,024 samples or 20 ms long.
Spectral centroid of the pressure signals: Calculated from a
spectrogram of the signals. Each frame is a Short-Time
Fourier Transform and from it the centroid is calculated as
the amplitude-weighted average of the bin frequencies.
Harmonic amplitudes and phases: Pressure and reed signals are
heterodyned with sinusoids (complex exponentials) at multiples
of the fundamental frequency, and then summed over windows,
as for the calculation of the RMS envelope. A complex time
series is obtained, whose absolute value corresponds to the
amplitude of the nth harmonic and whose phase is relative to
the heterodyning sinusoid. This allows comparison of relative
phases of different signals, for example the phase difference
between the acoustic pressures measured in the mouth P,, and
mouthpiece Py, (which is usually close to, but not exactly, 180°).
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Transient detection steps exemplified for a single note. Top: spectrogram, bottom: amplitude envelope (solid blue line). Dashed lines indicate the slopes
subtracted from the envelope in order to find corner positions (red) which are maxima of the subtracted signal. Note boundaries (green) are detected from the
minima before the corner point. Note that for this moderately high note, the even harmonics are not weak.

Many other parameters could be calculated, including several
related to timbre (roughness, sharpness, etc.). We chose to include
only brightness and the first five harmonics here, as they are the ones
that are easiest to relate to the player parameters. Figure 6 illustrates an
example of these time-series with some of the subsequent processing
described below.

3.3 Semi-automated segmentation of time
series at note level

The recordings are segmented at the level of individual notes using
the frequency and amplitude time series extracted from one of the
audio signals, the choice depending on the available channels in the
setup. For the instrument used in the example below, the barrel signal
is used because it is less affected by turbulence, and the fundamental of
each note has a larger amplitude relative to higher harmonics, making
automated extraction of fundamental frequency more reliable. For an
instrument without fitted sensors, the signal from the radiated sound
pressure microphone can be used.

The segmentation process starts by using the time series of
fundamental frequency values at a rate of 100 values per second.
This time series is smoothed using a median filter with a window
length of 100 ms; this prevents short frequency changes due to wrong
octave detections from being detected as very short notes. Frequency
values are then quantized to an integral number of equal-tempered
semitones, first with respect to a reference of 440 Hz for A4. A
distribution of the deviations from integer semitones is calculated
for each recording, and the average deviation is used to calculate a new
reference value for A4 and to calculate a new set of integer pitch values.
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An amplitude time series is also extracted as the RMS value of a
windowed portion of the signal. Dips in the RMS amplitude that are larger
than 3 dB are recorded as possible indicators of note boundaries, to be
used later when aligning with a musical score. The segmentation into
notes happens in two stages: The first stage uses the changes in pitch (as
integer semitone values) and the dips in amplitude. In the examples
shown here (Figure 7), amplitude dips that occur within 100 ms of a pitch
change are interpreted as indicators of the same note boundary, because
pitch change is usually accompanied by an amplitude dip.

On a second stage, the fundamental frequencies of the first-stage
segmented notes are matched with the original score; this process is
looped for a variable number of times. The number of repetitions is
adjusted until the match is optimal; this reveals how many times the
musical excerpt is played in a recording (how many recording “takes”).
Notes that are unmatched and contiguous with a matched note having
the same pitch are included with the matched note because they
possibly indicate false detection of note change from an amplitude
dip. From the second pass segmentation, a Praat (Boersma and
Weenink, 2020) TextGrid file that labels all the detected note
boundaries is produced; the note boundaries can be edited by hand
to correct any boundaries placed incorrectly by the segmentation
algorithm. In many cases no adjustment is required.

3.4 Note and excerpt descriptors

Descriptive statistics are gathered from the time series through the
duration of the notes segmented, as described above. In general,
central tendencies are extracted using the median value and a
variability measure is assigned using the interquartile range.
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FIGURE 9

Example data from two expert clarinettists playing an excerpt from Mozart's Clarinet Concerto (two takes by each player). Images are pixelated to
preserve player anonymity. The top two graphs show the fundamental frequency in Hz and the RMS amplitude of the sound inside the mouthpiece in pascals.
The third shows the blowing pressure inside the mouth, measured in pascals. The fourth shows the DC component of the normalised distance between reed
and mouthpiece with a larger value indicating a larger aperture. The fifth shows the relative angle between the head and the instrument, in degrees. The

sixth shows the amount of mouthpiece (MP) covered by the lips i.e., the unobscured green area in pixels, indicating lip position.

Transients are detected in three steps (see Figure 8):

o The global maximum of the note envelope is found (blue vertical
line).

« Envelope minima before and after the note are found as the
global minimum between two consecutive notes (green vertical
lines).

o One of two lines of constant slope (dashed blue lines) is
subtracted from the envelope. Maxima in this function are
found between the boundaries found in steps 1 and 2 for
attack and release corners. Subtraction of lines with positive
and negative slopes ensures that a maximum is found near the
beginning or end of the note, respectively. The slope of the
line subtracted for the attack is +40 dB/s and that for the
release is —80 dB/s. These values, found by manually testing
on a dozen examples, are a compromise between minimum
typical attack slopes and maximum slopes in the bulk of
the note.

This method is relatively robust for the detection of starting

transients (attacks) but less so for end note transients, which can
have much larger variations in shape.
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4 Empirical application
4.1 Background

We applied MIPCAT to examine and compare measurements
from two expert (professional) clarinettists and an amateur each
playing a short excerpt of music from the classical repertoire, using
the laboratory instrument and apparatus. The apparatus outputs
showed what physical variable control was used to achieve their
musical aims; this allowed us to compare different performances of
the same piece.

In this sample study, a few variables that seem important to
characterise a musical interpretation are selected. Some audio
features (fundamental frequency and amplitude) are common to
many instruments. Blowing pressure and reed position are two
fundamental parameters in a physical model of a clarinet. Finally,
visual parameters extracted from the videos are important in a
multimodal setting.

Two professional musicians were engaged to play short music
excerpts as samples for a practical test of the equipment’s
functionality. Both players have held positions with leading
national orchestras and have extensive solo experience nationally
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FIGURE 10

Comparison of excerpts played by three different players, including one amateur player. Such plots allow the identification of notable differences

between an amateur player and a pair of expert, professional players.

and internationally. The amateur player was part of the research team
and had 4 years’ experience playing the clarinet.

The players were asked to play an excerpt (see Figure 9) from the
second Movement of Wolfgang Amadeus Mozart’s Clarinet Concerto
K. 622. They played the sample twice using the same, sensor-fitted
instrument. The repetition was done shortly after the first
performance, with a short break (whose duration was not stipulated).

4.2 Results

Time series data from four performances are shown in Figure 9,
showing two takes from each of two professional clarinettists. The time
series extracted from the sensors and the cameras are aligned note by note:
for every note, time is stretched or compressed linearly in one of the
recordings to keep the note boundaries aligned with a steady metronome,
corresponding to the number of beats from the beginning of the excerpt.

The output of the reed sensor changes for different reeds and for
the different reed positions that result when players adjust the
mouthpiece to their satisfaction. For this reason, the values in this
time-series are normalised so that 0 corresponds to the closed reed,
and 1 to the rest position.

Visual inspection of the MIPCAT outputs can also be used to
compare the amateur player against the two professionals for the same
excerpt discussed above. Apart from obvious note misses seen in the
top panels (third and second last note of the extract), Figure 10 shows
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that for this amateur player, the amplitude of the notes varies less than
that of the experts, and in different ways.

There are audible differences in the sound produced by the two expert
players and larger differences between the amateur and the experts. The
musical ‘shape’ of the phrases is indicated by amplitude; the amplitude
envelopes are also different for some notes. These differences are not
always easy to relate to measured player variables, though the differences
in the rise in blowing pressure and note amplitude throughout the longer
notes are systematic. Further, the systematic amplitude differences when
two expert players play the same note (Figure 11 are accompanied by
systematic differences in blowing pressure).

It is interesting to note also how expert player B produces less
motion with the clarinet than player A, even though the plots of the
amplitude envelope appear—to the eye—very similar (Figure 9).
Player B keeps the bite position relatively constant; in contrast,
player A varies it during these phrases. This is interesting because
teachers disagree on whether one should aim to keep a ‘fixed bite’, or
whether it is an acceptable control variable for expression (Almeida
etal, 2022). The DC reed position is an indicator of bite force (a larger
bite force produces smaller aperture).

4.3 Discussion

With researchers running the current prototype toolbox, the outputs
from MIPCAT could be applied in several ways. The data can be used to
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One note from Figure 8 shown on an expanded time scale.

model the physical parameters involved in playing—for example the ideal
approach taken by professional players, and to relate these to the
corresponding musical characteristics, and even the affective
intentions of the player and responses of the listener. Further nuanced
applications could involve examining how different performer
approaches can be traced back to their physical parameter origins.
MIPCAT can also be used by clarinet teachers and students for
pedagogical purposes. For example, a database of excerpts played by
expert players would provide a set of good quality performances where
the different solutions they each impart can be examined in a novel, high
precision setting. Student performances could then be compared to these
performances and notable differences identified and addressed at the level
of physical interaction with the clarinet, rather than, or in addition to

more abstract descriptions of how to play.

5 Conclusion

The MIPCAT system reported here measures player-controlled
variables, including blowing pressure, tongue-reed contact, sound
pressures in the mouth and instrument, details of the embouchure, and
the position in which the instrument is held. These and the output sound
are recorded. A suite of software tools extract features from the time-course
of these variables. This rich set of audio, visual and player-control features
allows more detailed and quantitative study on music performance,
opening a range of possibilities for music performance research and
pedagogy. This study demonstrates how MIPCAT could be applied to
provide new insights into relations among variables in the sound and the
simultaneously occurring physical aspects of playing that have not
previously been available to the research community. This are likely to
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lead to increased understanding of performance nuance that has
applications for music pedagogy and psychology. For example, students
could use MIPCAT to visualise both audio and player-control parameters
in a quantitative way and compare their performances with those by expert
players; students could also learn how to better convey different emotions
in music performances.

Although MIPCAT was here applied to clarinet playing, it (or parts of
it) could be easily adapted to other reed instruments, or to other families of
instruments. Future improvements of the toolbox could include
modularising different parts of the MIPCAT toolbox so that each
module is more independent and adaptable to other instruments.
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