
4DEgo: ego-velocity estimation
from high-resolution radar data

Prashant Kumar Rai1*, Nataliya Strokina2 and Reza Ghabcheloo1

1Automation Technology and Mechanical Engineering, Faculty of Engineering and Natural Sciences,
Tampere University, Tampere, Finland, 2Computing Sciences, Faculty of Information Technology and
Communication, Tampere University, Tampere, Finland

Automotive radars allow for perception of the environment in adverse visibility and
weather conditions. New high-resolution sensors have demonstrated potential
for tasks beyond obstacle detection and velocity adjustment, such as mapping or
target tracking. This paper proposes an end-to-end method for ego-velocity
estimation based on radar scan registration. Our architecture includes a 3D
convolution over all three channels of the heatmap, capturing features
associated with motion, and an attention mechanism for selecting significant
features for regression. To the best of our knowledge, this is the first work utilizing
the full 3D radar heatmap for ego-velocity estimation. We verify the efficacy of our
approach using the publicly available ColoRadar dataset and study the effect of
architectural choices and distributional shifts on performance.

KEYWORDS

ego-motion estimation, 4D automotive radar, autonomous navigation, transformers,
attention

1 Introduction

Automotive radars have gained significant attention in recent years. New 76–81 GHz high-
resolution sensors (Dickmann et al., 2016; Engels et al., 2017) have shown potential for tasks
beyond obstacle detection and velocity adjustment. Unlike traditional automotive radars, they
can be used for localization (Heller et al., 2021), SLAM (simultaneous localization and mapping)
(Holder et al., 2019), and ego-motion estimation. The estimation of ego-motion can enable other
higher-level tasks such as mapping, target tracking, state estimation for control, and planning
(Steiner et al., 2018). The majority of ego-motion and odometry algorithms relies on onboard
sensors like IMU cameras and lidar. Vision-based methods use a stream of images acquired with
single or multiple cameras attached to the robot for relative transformation (rotation and
translation) estimation (Yang et al., 2020). Lidar has been well explored for these tasks in recent
years and performs extremely well for odometry/ego-motion estimation. Classical lidar-based
odometry methods (Zhang and Singh, 2014; Shan et al., 2020; Shan and Englot, 2018) use ICP
(iterative closest point) (Besl and McKay, 1992) and NDT (normal distributed transform)-based
registration (Magnusson et al., 2007; Zhou et al., 2017).

Despite such advances, optical sensors like cameras and lidar have become unreliable in
visually degraded environments and adverse weather. Automotive radars operate on
millimeter wavelengths, and their emitted radio signal does not degrade much in the
presence of dust, smoke, or adverse weather conditions. The frequency modulation features a
sensor to be used in multiple intrinsic settings to adjust the range and field of view. Radar
data are different from lidar point clouds and camera data and are collected as complex value
tensors (Engels et al., 2017), as shown in Figure 2. Because of its complex nature, interpreting
these data is not trivial. In this study, we converted the raw data to a so-called “heatmap”
before registration. Figure 3 visualizes one radar scan in a three-dimensional radar heatmap,

OPEN ACCESS

EDITED BY

Shobha Sundar Ram,
Indraprastha Institute of Information
Technology Delhi, India

REVIEWED BY

Faran Awais Butt,
University of Management and
Technology, Pakistan
Akanksha Sneh,
Indraprastha Institute of Information
Technology Delhi, India

*CORRESPONDENCE

Prashant Kumar Rai,
prashant.rai@tuni.fi

RECEIVED 31 March 2023
ACCEPTED 08 June 2023
PUBLISHED 27 June 2023

CITATION

Rai PK, Strokina N and Ghabcheloo R
(2023), 4DEgo: ego-velocity estimation
from high-resolution radar data.
Front. Sig. Proc. 3:1198205.
doi: 10.3389/frsip.2023.1198205

COPYRIGHT

© 2023 Rai, Strokina and Ghabcheloo.
This is an open-access article distributed
under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Signal Processing frontiersin.org01

TYPE Original Research
PUBLISHED 27 June 2023
DOI 10.3389/frsip.2023.1198205

https://www.frontiersin.org/articles/10.3389/frsip.2023.1198205/full
https://www.frontiersin.org/articles/10.3389/frsip.2023.1198205/full
https://crossmark.crossref.org/dialog/?doi=10.3389/frsip.2023.1198205&domain=pdf&date_stamp=2023-06-27
mailto:prashant.rai@tuni.fi
mailto:prashant.rai@tuni.fi
https://doi.org/10.3389/frsip.2023.1198205
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org/journals/signal-processing#editorial-board
https://www.frontiersin.org/journals/signal-processing#editorial-board
https://doi.org/10.3389/frsip.2023.1198205

which is data intensity versus range–azimuth–elevation. A bird’s-eye
view of this heatmap is shown in Figures 1, 4.

A major challenge of radar data is the noise that hinders hand-
crafted feature extraction and semantic understanding of the signals.
Several post-processing algorithms for radar point clouds have been
proposed, such as CFAR (constant false alarm rate) (Rohling, 1983),
which is primarily used in obstacle detection and avoidance. CFAR
relies on the identification of high-intensity regions in the heatmap
scans and applies a sliding window-based thresholding approach to
select these regions. Methods like CFAR are better suited for
detecting moving objects but often overlook small static objects
due to their low reflectivity. However, when it comes to ego-motion
estimation, it is crucial to not suppress the features of static targets.
Therefore, this paper used high-resolution heatmaps as input for an
end-to-end learning-based approach for ego-velocity estimation.
We did this by learning a transformation (angular and linear
velocities) between the consecutive pairs of 3D radar heatmaps.
This method used a 3D convolutional neural network (3DCNN)
(Tran et al., 2014) to extract the features associated with the objects
in radar scans. A decoder network later performed the ego-velocity
regression based on the feature matching across the pairs of scans, as
illustrated in Figure 1 and explained in Section 3.2. The major
advantage of our method is that we do not select features by hand;
our network learns them by using pose trajectory ground truth. The
contributions of this paper can be summarized thus:

• Using the full 3D radar heatmap scans for ego-motion
estimation for scan-to-scan registration. The majority of
current state-of-the-art methods seem to use radar point
clouds, hand-crafted features, or additional sensors.

• We propose an end-to-end ego-velocity estimation
architecture, which includes a 3D convolution over all three
channels of the heatmap scan to capture features associated
with the motion and an attention mechanism for selection of
the significant features for regression. Our method achieves
0.037 m/s RMSE (root mean squared error) in linear forward
speed and 0.048 deg/s in heading angle rate, tested on the
publicly available ColoRadar dataset (Kramer et al., 2022).

• We investigate the effect of ego-velocity regressor architecture
through extensive experiments on different environments and
speeds. We compare several alternatives for regressor
architecture: without attention, transformer encoder, self-
attention, and channel attention. In two of the selected
results, we show that a) RMSE error increases by only 5%
in the test environment compared to the training
environment, while b) the error increases by 90% for
higher-speed test data.

The paper is organized thus: Section 2 presents the related work;
Section 3 includes problem formulation and network architecture
details; radar data format, heatmap processing, ground truth
calculation, and training are introduced in Section 4; evaluation
of models and result comparison are discussed in Section 5; Section 6
concludes and suggests future work.

2 Related work

Radar has long been a sensor of choice for emergency braking
and obstacle detection due to its capability of perception in visually
degraded environments, such as bad weather (rain, fog, and
snowfall), darkness, dust, and smoke. Initial research with
automotive radars was conducted in the late 1990s (Clark and
Durrant-Whyte, 1998); in the last several years, significant work
has been conducted in radar-based odometry and SLAM (Daniel
et al., 2017; Ghabcheloo and Siddiqui, 2018). Ego-motion estimation
research predominantly focuses on two types of sensors: spinning
radars and Doppler automotive radars (SoC radars).

2.1 Spinning radar

Spinning radars have been widely used for SLAM and odometry
due to their high-resolution image-like data and 360° coverage.
However, these radars are bulky (about 6 kg) and are not energy-
efficient. They provide only 2D scans (azimuth and range) through

FIGURE 1
Proposed method for estimating the linear and angular velocities from consecutive radar scans (Si, Si+1). The feature extractor is a 3DCNN, which
learns the features from the scans; further features are passed to a transformer encoder, and then, a set of linear and angular velocities is obtained via
regression.

Frontiers in Signal Processing frontiersin.org02

Rai et al. 10.3389/frsip.2023.1198205

https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://doi.org/10.3389/frsip.2023.1198205

360 deg spatial coverage. Several spinning radar datasets (Barnes
et al., 2020; Kim et al., 2020; Sheeny et al., 2020; Burnett et al., 2022)
are available for benchmarking the state-of-the-art methods. These
methods usually fall into two categories: learning-based and non-
learning-based. The majority of non-learning-based methods
perform descriptor selection from image-like radar scans,
followed by registration across consecutive frames. In an ego-
motion estimation study, Cen and Newman (2018) used scan
matching with hand-crafted feature points from radar scans.
Adolfsson et al. (2021) proposed a method of selecting an
arbitrary number of the highest intensity returns per azimuth,
and, after oriented surface point calculation, registration was
performed between the final key frame and the current frame.
Some recent learning-based methods have extracted the key
points end-to-end by self-supervised learning (e.g. Barnes et al.,
2019). In Burnett et al. (2021), features were first learned in an
unsupervised way, and then the feature extractor was combined with
classical probabilistic estimators for ego-motion estimation.

2.2 SoC radar

SoC (system-on-chip) radars consume less power and are more
lightweight than spinning radars. With the evolution of SoC radars
over the past five years, new high-resolution sensors have been
introduced. Modern radars provide 4D data (range, azimuth,
elevation, and Doppler). With these radars, ego-motion
estimation falls into two categories: instantaneous (single scan)
and registration-based (multiple scans). Instantaneous ego-
motion estimation relies on the Doppler velocity of targets in the
scan and is solved through non-linear optimization (e.g. Kellner
et al., 2013). The instantaneous approach cannot estimate 6DoF
(three-dimensional linear and angular transformations) ego-motion
from only one radar sensor. To solve full ego-motion, we need
multiple radar sensors (minimum of two), as in Kellner et al. (2014),
or an additional IMU (inertial measurement unit) sensor, as in
Ghabcheloo and Siddiqui (2018). Another approach is to solve the
ego-motion by registration across consecutive radar scans of a single
radar sensor. For example, Almalioglu et al. (2021) used NDT
registration (Magnusson et al., 2007) and an IMU-based motion
model. All these methods operate on so-called radar point clouds
that are pre-processed sparse radar points from the heatmaps. Pre-
processing is performed, for example, by CFAR or simple intensity
thresholding. Our method, on the other hand, uses full radar
heatmaps and performs ego-velocity regression. We also propose
a novel network architecture that has a 3DCNN for feature
extraction and attention layers for selecting significant features
for ego-velocity regression.

Learning-based methods for ego-motion estimation have
emerged in recent years with the evolution of deep neural
networks. State-of-the-art research has shown better performance
than the classical methods for ego-motion estimation, optical-flow
estimation, and SLAM front-end. MilliEgo (Lu et al., 2020) is an
end-to-end approach for solving radar-based odometry. Its
methodology differs from ours in several aspects: 1) milliEgo
takes the radar point cloud as an input, which suppresses some
useful information from the heatmap; 2) our network architecture is
very different in terms of feature extraction and regression; 3)

milliEgo has only been evaluated indoors, while we provide
evaluation on an indoor-to-outdoor and low-speed-to-high-speed
dataset; 4) milliEgo uses three single chip radar sensors (Li et al.,
2022), while our sensor is a high-resolution TI AWR2243 (four-chip
cascade radar; 5) milliEgo uses an additional IMU sensor.

3 Methodology

This section starts with problem formulation in 3.1, where we
formalize the ego-motion problem and introduce the loss function
for supervised learning, and 3.2 explains the network architecture,
including the feature extractor and ego-velocity regressor shown in
Figure 4.

3.1 Problem formulation

The ego-motion of a frame attached to a moving body is the
change in transformation T = (R, t), rotation, and translation,
respectively, over time with respect to a fixed frame. We used
angular and linear 6-DoF twist (V = [Vx, Vy, Vz], ω = [ωx, ωy,
ωz]) to represent ego-motion. We solved this problem by using
registration—geometrically aligning two radar scans, which are in
the form of intensity heatmaps. To solve the registration problem,
we trained a model that takes as input two consecutive radar
heatmaps (Si, Si+1) (Figure 1) and outputs the predictions of the
linear and angular velocities (V̂, ω̂) as follows:

V̂, ω̂ � F Si, Si+1(); θ(), (1)
where F is a neural network with parameters θ.

Our neural network is composed of an encoder (3DCNN feature
extractor) and an ego-velocity regressor network D (Figure 1).
Details of the network architecture are given in Section 3.2. The
objective of the training is to find the set of parameters θ that
minimizes the distance between the network output (V̂, ω̂) and the
ground truth velocities (V, ω) using the following loss:

Loss � 1
N

∑
i∈S

w1‖Vi − V̂i‖22 + w2‖ωi − ω̂i‖22, (2)

where S is the dataset and N = |S| is the number of training data
samples. Each sample includes a pair of heatmaps and a ground
truth velocity vector. Scalar valuesw1 andw2 are weighting factors to
balance the linear and angular regression portion of the loss.

3.2 Network architecture

The network architecture is illustrated in Figure 4. It is
composed of two main building blocks: a 3DCNN feature
extractor and an ego-velocity regressor block. To estimate the
ego-motion for a given pair, we needed to perform feature
matching between consecutive radar heatmaps. Feature matching
is the process of identifying corresponding features between two
radar heatmaps. Corresponding features are those that represent the
same region of interest (salient area with higher intensity) being
tracked in both heatmaps. CNN is capable of learning features in the

Frontiers in Signal Processing frontiersin.org03

Rai et al. 10.3389/frsip.2023.1198205

https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://doi.org/10.3389/frsip.2023.1198205

form of patches, corners, and edges. A fully connected regressor
network can perform descriptor (feature vector) matching by
finding the closest match from one heatmap to the other in the
pair based on geometry (Euclidean distance in our case) (Wang
et al., 2017) (Costante et al., 2016). By incorporating the transformer
encoder in the ego-velocity regressor, we enhance the feature
matching process for more accurate ego-motion estimation.
Details of the network architecture are explained in 3.2.1 and 3.2.2.

3.2.1 Feature extraction
Our input data are three-dimensional, with intensity along

three axes: range (128), azimuth (128), and elevation (32). We

thus use a 3DCNN-based feature extractor to handle these data.
Here, our feature extractor takes a pair of radar heatmaps in
Cartesian form and generates the feature vector for use by the
ego-velocity regressor. This network has nine convolutional
layers, where the number of convolutional filters varies from
64 to 1024. Filter sizes for the first two layers are (7 × 7 × 7) and
(5 × 5 × 5) and for the remaining layers is (3 × 3 × 3). The varying
size of the filter helps the network learn the large- and small-
scale features. We denote a feature vector obtained from the pair
of scans by f. The dimension of f for each batch is (1,2,2,1024),
and it is passed further to a regressor block for further
processing.

TABLE 1 ColoRadar data sequences used in our experiments.

Environment name Speed Type Ground truth Platform Sequence length (seconds)

Longboard Fast Outdoor Lidar-inertial Electric skateboard 170 to 350

Adger Army Slow Mine Lidar-inertial Walking 150 to 480

ARPG Lab, ECR, and Hallway Slow Structured room Lidar-inertial Walking 100 to 250

Outdoor Slow Outdoor Lidar-inertial Walking 100 to 200

Aspen Slow Outdoor night Lidar-inertial Walking 100 to 200

FIGURE 2
Raw radar data formation for a given frame; details explained in 4.2. In each frame are transmitted chirps (blue dotted line, dots as samples) and
received chirps (red lines). Received samples organized for each receiver by running FFT along fast time give us range and along slow time give us
Doppler. We get angles by running FFT on receiver dimension.

Frontiers in Signal Processing frontiersin.org04

Rai et al. 10.3389/frsip.2023.1198205

https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://doi.org/10.3389/frsip.2023.1198205

3.2.2 Feature refinement and regression
The ego-velocity regressor block comprises a feature refinement

block (referred to as the “Transformer Block” in Figure 4), and a
dual-head fully connected decoder (FC decoder). Each decoder head
has three layers, and the last layer gives the final output as a vector of
three elements. In the feature refinement block, we tested the
following attention (Vaswani et al., 2017) strategies:

• 3DCNN + SA + FC, where “SA” is self-attention;
• 3DCNN + CA + FC, where “CA” is channel attention;
• 3DCNN + Transformer + FC, where “Transformer” is
transformer encoder;

• 3DCNN + FC, a model without attention.

The attention mechanism assigns higher weights to significant
features in comparison to other features of the feature vector
obtained from the 3DCNN feature extractor. In the following
paragraphs, we provide details of the tested attention strategies.

3DCNN + Transformer + FC: Transformers benefit from
multi-head attention and have shown better performance than
CNN on vision tasks (Dosovitskiy et al., 2021). Multi-head
attention learns the local and global features from the input
feature vector concatenated with the attention mask. We use the
transformer encoder layers TransEnc with positional encoding PE;
these select significant and stable features with their local and global
context from the input feature vector. Since our input is one instance
of an input pair, we follow positional encoding similar to
Dosovitskiy et al. (2021), which is applied only to spatial
dimensions. The positional encoding takes the feature vector of
an input heatmap pair and generates the positional information for
features in the input feature vector. The output of positional
encoding PE is added element-wise to the feature vector, which
is further passed through two transformer encoder layers (Figure 4).
Each of the transformer encoder layers has eight multi-head

attention units, a layer normalization LayerNorm, a max pooling
MaxPool layer (for aggregating and preserving contextual
information associated with the features), and an activation
function. The output feature vector from the transformer encoder
fout is passed through the FC dual-head velocity regressor.

fout � MaxPool LayerNorm TransEnc PE f() + f()()(). (3)
3DCNN + SA + FC: For the self-attention mechanism, we use

the same attention technique as in Lu et al. (2020). The purpose of
self-attention is to focus on stable and geometrically meaningful
features rather than noisy and less stable features. Applied to the
features obtained from the 3DCNN, this method performs global
average pooling AvgPool to aggregate the features and outputs an
attention mask. The attention mask will further be multiplied with
the feature input through an element-wise multiplication operator ⊗.
Denoting the number of channels in the feature vector
(corresponding to the elevation dimension in the heatmap) by c,
a dense layer with rectified linear unit activation by MLP and the
self-attention by MLP, fout is computed using the following
equations:

S1×1×c � MLP AvgPool f()(), (4)
fout � S ⊗ f. (5)

3DCNN + CA + FC: Channel attention was proposed in Woo
et al. (2018). For a given feature vector, channel attention generates
the attention mask across all channels and learns rich contextual
information with the help of max pooling MaxPool. It still uses
AvgPool for aggregating spatial information in addition to learning
their context. It is a lightweight attention module that is used for
3DCNN feature refinement. C is the channel attention mask, and fout
is computed as follows:

C1×1×c � σ MLP AvgPool f()() +MLP MaxPool f()()(). (6)
σ is the sigmoid function for keeping the values between 0 and 1 in
the attention mask.

fout � C ⊗ f, (7)
where ⊗ is the element-wise multiplication between the attention
mask and the feature vector f.

FC decoder: The final feature vector fout is passed to the two
regressor blocksD1 andD2 for linear and angular velocity regression:

V̂ � D1 fout(), (8)
ω̂ � D2 fout(). (9)

4 Experiments

In this section, we explain the data in 4.1, raw data format and
sensor details in 4.2, the process of heatmap generation in 4.3,
ground truth calculation in 4.4, and model training in 4.5.

4.1 Data

We evaluated ourmodels on the ColoRadar (Kramer et al., 2022)
dataset that was recorded in seven different indoor and outdoor

FIGURE 3
3D heatmap data: here, higher reflection intensities show the
regions with possibility of landmarks (Cartesian plot (range, azimuth,
and elevation are in meters) for simple visualization).

Frontiers in Signal Processing frontiersin.org05

Rai et al. 10.3389/frsip.2023.1198205

https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://doi.org/10.3389/frsip.2023.1198205

environments with a hand-carried sensor rig for the tasks of
localization, ego-motion estimation, and SLAM. The ColoRadar
dataset has a total of 57 sequences. The sensor rig included a high-
resolution radar, a low-resolution radar, a 3D Lidar, an IMU, and a
Vicon motion capture system for indoors. Radar was mounted
front-facing where (x = azimuth, y = range, z = elevation). The
authors provided ground truth poses (position and orientation) in
the body (sensor rig) frame, generated by a 3D lidar-IMU-based
SLAM package (Hess et al., 2016). Ground truths were provided as
pose trajectory with timestamp for each sequence. The data are
organized in Kitti format (Geiger et al., 2013), where the sensor
readings and the ground truth poses are stored with their
timestamps for each data sequence. We used the high-resolution
radar data with the ground truth poses from the dataset. We used a
subset of the data specified in Table 1 for this experiment.

4.2 Radar sensor and raw data format

Radar data were collected with a high-resolution sensor (TI-
MMWAVE Cascade AWR2243 (Swami et al., 2017))—FMCW
(frequency-modulated continuous wave) radar. It has three
vertically placed elevation transmitter antennas with nine
horizontal azimuth transmitter antennas to cover a three-
dimensional field of view. It has 16 receiver antennas to
receive the reflected signal from objects and landmarks in the
environment. This sensor has a field-of-view of 140° in azimuth
and 45° in elevation. It has an angular resolution of 1° in azimuth
and 15° in elevation. As Figure 2 illustrates, the transmitters
transmit the set of N electromagnetic signals known as chirps in
each frame. Within each frame, the transmitted signal increases
linearly with time from starting fc to maximum frequency fc + B,
where B is the bandwidth. Each chirp is sampled in time by the
time difference Ts, or “fast time dimension”. Receivers receive the
reflected signal by a time delay t, which is used to calculate the
range of reflector. In each radar frame, the data are stored as a
two-dimensional matrix of samples and chirps (number of chirps
in the frame known as slow time dimension) for each receiver

antenna. We get a three-dimensional (samples, chirps, and
receivers) complex value tensor as raw data—also known as
“ADC (analog-to-digital converted) data”. In FMCW radars,
spatial resolution of sensors is limited by the number of
receiver antennas. To achieve better spatial resolution in
azimuth and elevation without adding more physical antennas,
a MIMO (multiple input—multiple output) technique is used in
modern radars. MIMO created a virtual receiver array of size
(number of transmitters × number of receivers) (Engels et al.,
2017) for high-resolution angle estimation, with the output data
dimensions becoming (samples, chirps, number of transmitters ×
number of receivers).

4.3 3D heatmap processing

The first step was to perform calibration in phase and frequency
to address the mismatch caused by four radar transceivers on the
cascade board. Calibration parameters vary from sensor to sensor,
and the dataset has those parameters provided. We performed the
calibration with the existing ColoRadar development toolkit.

After the calibration, we performed the post-processing using
fast Fourier transforms in range, Doppler, and angle dimensions
with a velocity compensation algorithm to avoid Doppler
ambiguity caused by the movement of the radar in MIMO
(Bechter et al., 2017). In post-processing, the MIMO ADC
data are passed to a two-dimensional fast Fourier transform to
obtain the range-Doppler heatmap, followed by a phased array
angle processing module to obtain the azimuth and elevation.
The processed data were organized into discrete 3D bins with two
values for each bin (intensity and Doppler velocity). We do not
use the Doppler velocity in the input data. The scan dimensions
are (elevation = 32, azimuth = 128, range = 128), which are the
parameter settings used to collect the dataset (Kramer et al.,
2022). A heatmap scan is shown in Figure 1, representing the
bird’s-eye view (top view) of the 3D heatmap shown in Figure 3.
Figure 3 shows the heatmap data for all elevation layers with
range and azimuth.

FIGURE 4
Proposed method for estimating linear and angular velocities from consecutive radar scans (Si, Si+1); each radar scan has intensity values distributed
in 3D space (el = elevation, az = azimuth, and r = range). Feature extractor is 3DCNN, which learns the features from the radar data; these features are
passed to a transformer encoder and then to a set of linear and angular velocities obtained through an ego-velocity regressor.

Frontiers in Signal Processing frontiersin.org06

Rai et al. 10.3389/frsip.2023.1198205

https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://doi.org/10.3389/frsip.2023.1198205

4.4 Ground truth calculation

The dataset provided ground-truth poses in the sensor rig frame at a
frame rate of 10 FPS. To perform radar-based ego-motion estimation,
the ground truth needed to be in the radar sensor frame. Since radar has
a lower data frequency (5 FPS), we located the ground-truth instances
for the radar timestamps and converted them from the body frame to
the sensor frame using the static transform provided in the dataset.

We then use the following equation (see (Lynch and Park, 2017)
for more details) to calculate ground-truth twist from consecutive
pose transformations:

ωi[] Vi

0 1
[] � T i()−1 _T i(), (10)

where T(i) is the transformation at time index i and [ωi] is the skew
symmetric matrix containing the angular velocity. _T(i) is the time

derivative of T(i) and is calculated approximately using _T(i) �
(T(i + 1) − T(i))/dt.

4.5 Training

We used a pair of radar heatmaps as training samples and
corresponding linear and angular velocities as ground truth.
While processing the data for training, we kept the samples in
temporal order using the timestamps for each sequence. All the
input ground-truth labels have been normalized between 0 and
1 for stable network training. We trained four networks (as
described in Section 3): 3DCNN + FC, 3DCNN + SA + FC,
3DCNN + CA + FC, and 3DCNN + Transformer + FC. These
networks have been trained on the same dataset with similar
hyperparameters. They were trained for 50 epochs on the Nvidia

TABLE 2 Average RMSE errors for each test sequence (trained and tested on the mixed dataset). Smallest errors per sequence are marked in bold.

Test sequence Method Vx, m/s Vy, m/s Vz, m/s ωx, deg/s ωy, deg/s ωz, deg/s

Outdoor 3DCNN + Transformer + FC 0.048 0.037 0.120 0.084 0.140 0.048

3DCNN + CA + FC 0.061 0.052 0.167 0.108 0.135 0.082

3DCNN + SA + FC 0.049 0.040 0.144 0.097 0.096 0.063

3DCNN + FC 0.055 0.044 0.127 0.097 0.124 0.075

ECR 3DCNN + Transformer + FC 0.048 0.038 0.084 0.161 0.156 0.047

3DCNN + CA + FC 0.078 0.072 0.149 0.128 0.254 0.118

3DCNN + SA + FC 0.069 0.147 0.221 0.277 0.505 0.125

3DCNN + FC 0.052 0.040 0.082 0.071 0.074 0.055

Hallway 3DCNN + Transformer + FC 0.064 0.072 0.150 0.122 0.225 0.098

3DCNN + CA + FC 0.080 0.097 0.153 0.185 0.162 0.141

3DCNN + SA + FC 0.103 0.108 0.308 0.369 0.551 0.197

3DCNN + FC 0.088 0.100 0.164 0.186 0.163 0.129

ARPG 3DCNN + Transformer + FC 0.054 0.037 0.128 0.113 0.119 0.069

3DCNN + CA + FC 0.078 0.072 0.149 0.128 0.254 0.118

3DCNN + SA + FC 0.072 0.075 0.188 0.198 0.395 0.121

3DCNN + FC 0.082 0.087 0.153 0.123 0.230 0.112

TABLE 3 Generalization test (performance of models trained on indoor data and tested on distribution data, outdoor night sequence (Aspen)). Smallest errors per
velocity component are marked in bold.

3DCNN + transformer + FC 3DCNN + CA + FC 3DCNN + SA + FC 3DCNN + FC

Vx, m/s 0.050 0.053 0.052 0.052

Vy, m/s 0.037 0.052 0.040 0.041

VZ, m/s 0.11 0.17 0.137 0.140

ωx, deg/s 0.134 0.130 0.190 0.191

ωy, deg/s 0.136 0.130 0.341 0.350

ωz, deg/s 0.064 0.080 0.10 0.12

Frontiers in Signal Processing frontiersin.org07

Rai et al. 10.3389/frsip.2023.1198205

https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://doi.org/10.3389/frsip.2023.1198205

RTX 3080 platform with Adam optimizer (Kingma and Ba, 2014)
and learning rate 10–4. We chose 8000 heatmap pairs from four
environments. From these samples, we chose 80% data for
training and rest for validation and testing (10% each). In the
feature extractor, we used dropout (Srivastava et al., 2014)
(0.2 until eighth layer, 0.5 in last layer) in all layers to avoid
overfitting by randomly dropping the weights. For stable and
faster training, we used batch normalization in the 3DCNN (Ioffe

and Szegedy, 2015) in each layer. We also used LeakyReLu (Xu
et al., 2015) with 0.01 hyperparameter as an activation function in
layers. This activation function is good for avoiding the vanishing
gradient problem in network architecture with a higher number
of layers. The number of parameters and layers for our ego-
velocity regressor and models with attention mechanism are
explained in 3.2.2 and shown in Figure 4. We chose a small
subset of data and did not use the whole dataset.

FIGURE 5
RMSE error distribution for each liner velocity component (trained and tested on themixed dataset). Models include (A) 3DCNN+ Transformer + FC,
(B) 3DCNN + CA + FC, (C) 3DCNN + SA + FC, and (D) 3DCNN + FC). Each box accounts for errors from all four test sequences. The green line is the
median, and green triangle is the mean value.

FIGURE 6
RMSE error distribution for each angular velocity component (trained and tested on themixed dataset). Models include (A) 3DCNN + Transformer +
FC, (B) 3DCNN + CA + FC, (C) 3DCNN + SA + FC, and (D) 3DCNN + FC). Each box accounts for errors from all four test sequences. The green line is the
median, and the green triangle is the mean value.

Frontiers in Signal Processing frontiersin.org08

Rai et al. 10.3389/frsip.2023.1198205

https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://doi.org/10.3389/frsip.2023.1198205

5 Results

We used the following training datasets in our experiments:

• Mixed data: indoor structured (two sequences), indoor
unstructured (one sequence), and outdoor (one sequence),
low speed

• Indoor data: indoor structured (two sequences) and indoor
unstructured (one sequence)

and RMSE (root mean squared error) metric, defined by

RMSE �
���������������
ΣN
i�1 Xpred −Xgt()2

N

√
, (11)

where N is the number of the data samples. We calculate the RMSE
for each element of the twist separately. In the tables, the linear
velocity (Vx, Vy, Vz) errors are in meter per second, and the angular
velocity (ωx, ωy, ωz) errors are in degree per second.

We evaluated our models with the following experiments:

• Trained and tested on mixed data: results reported in Table 2
and explained in Section 5.1

• Trained and tested on mixed–tested stationary and
moving separately: results in Tables 5 and 4, and
explained in 5.2

• Trained on mixed low speed–tested on mixed high speed:
results in Table 6 and explained in 5.3.2

• Trained on indoor data–tested on outdoor data: results in
Table 3 and explained in 5.3.1

The results of these experiments are presented and discussed in
the following paragraphs.

5.1 Trained and tested on mixed data

We took four sequences for evaluating the mixed (indoor +
outdoor) training. Those sequences were selected from ARPG, ECR,
Hallway, and outdoor environments. We chose three sequences for
training and one for testing from each environment. We used the
models trained on the mixed datasets; we ran each model on all four
test sequences and compared the predicted values for all six ego-
velocity components with the ground truth calculated (see Section
4.4). On Table 2, all four test sequences were collected by a person
walking with the sensor rig. Sequence length for ARPG, Hallway,
and outdoor environments is 100–120 s. ECR sequence length is
276 s. On the outdoor test sequence, significant differences were
observed in the performance of models. From the results in Table 2,
the model that uses transformer layers in the velocity regressor
(3DCNN + Transformer + FC) provides a lower RMSE error than
other models. In the other two indoor sequences—Hallway and
ARPG—we also see similar performance. On the ECR sequence,
where the indoor environment was different in structure and
contained less training data, the transformer model (3DCNN +
Transformer + FC) performed worse than other models for angular
velocity components. We used boxplot for visualization, where the
values are plotted as a distribution of errors in each element of ego-
velocity for all models from Table 2; Figure 5 represents linear ego-
velocities, and Figure 6 represents angular ego-velocities. These plots
show the errors as boxes where mean values are shown as green

TABLE 4 Evaluation on only the static part of the sequence (performance of the models trained on indoor data and tested on mixed test sequences (indoor +
outdoor), and mean and standard deviation of RMSE errors are presented). Smallest errors per velocity component are marked in bold.

Values 3DCNN + transformer + FC 3DCNN + CA + FC 3DCNN + SA + FC 3DCNN + FC

Vx, m/s 0.066, 0.0006 0.080, 0.0048 0.108, 0.0083 0.520, 0.0240

Vy, m/s 0.120, 0.0073 0.092, 0.0093 0.066, 0.0032 0.352, 0.0012

VZ, m/s 0.190, 0.0199 0.137, 0.0167 0.310, 0.1061 0.513, 0.0728

ωx, deg/s 0.137, 0.0054 0.126, 0.0082 0.400, 0.2258 0.351, 0.0071

ωy, deg/s 0.230, 0.0355 0.139, 0.0154 0.597, 0.3760 0.122, 0.0064

ωz, deg/s 0.126, 0.0175 0.124, 0.0143 0.177, 0.0225 0.5416, 0.0018

TABLE 5 Evaluation on only the moving part of the sequence (performance of models trained on indoor data and tested on mixed test sequences (indoor +
outdoor), and mean and standard deviation of RMSE errors are presented. Smallest errors per velocity component are marked in bold.

Values 3DCNN + transformer + FC 3DCNN + CA + FC 3DCNN + SA + FC 3DCNN + FC

Vx, m/s 0.156, 0.0363 0.14, 0.0217 0.076, 0.0024 0.436, 0.1332

Vy, m/s 0.135, 0.0234 0.225, 0.0638 0.092, 0.0050 0.291, 0.0542

VZ, m/s 0.301, 0.1338 0.260, 0.0735 0.215, 0.0313 0.383, 0.0978

ωx, deg/s 0.27, 0.0727 0.323, 0.1221 0.194, 0.0371 0.334, 0.0201

ωy, deg/s 0.137, 0.0079 0.221, 0.0501 0.309, 0.1072 0.375, 0.1029

ωz, deg/s 0.235, 0.0812 0.296, 0.1077 0.166, 0.0154 0.469, 0.1451

Frontiers in Signal Processing frontiersin.org09

Rai et al. 10.3389/frsip.2023.1198205

https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://doi.org/10.3389/frsip.2023.1198205

triangles, the green line as median, and lower and upper boundaries
show the standard deviation for each ego-velocity element. We
observed that model C (3DCNN + SA + FC) clearly performs worse
than other models for some velocity components. The main
differences are for the velocity components that do not vary
significantly across the selected dataset—for example, linear
velocity in x and z dimensions (Vx, Vz) and angular velocity in x
and y dimensions (ωx, ωy). Model C uses the simplest attention
mechanism, just one layer of self-attention, and can thus cause more
errors, especially when the actual values of ego-velocity components
are small—for example, ωy, ωz < 0.5 deg/sec.

5.2 Evaluation of static and dynamic parts of
the sequence

In Section 5.1, we evaluated the whole length of the
sequences. However, in each data sequence, the sensor
platform was stationary for a short period at the beginning
and end of the sequence. To test the accuracy of the models in
the static and dynamic parts of sequence, we evaluated the
models separately in two cases: 1) evaluating only the static
part of the sequences where the sensor platform was not
moving, and 2) evaluating the part of the sequences where the
sensor platform was moving. Tables 4 and 5 present the results
for the static and moving parts of the sequences, respectively.
Results are reported as the mean and standard deviation of the
RMSE for all four sequences. Results show that the static part
prediction contained smaller errors than the moving part, where
predictions have higher errors for all the models. In the case of
the moving platform, the self-attention model (3DCNN + SA +
FC) performed better than other models. However, in the static
parts of the sequences, it predicts values with larger errors than
other models. This experiment helps us understand the source of
errors for the self-attention model in Section 5.1—the small
values of velocity components having small variations in the
training set.

5.3 Distribution shift

To evaluate the generalizability of the models, we tested two
different distribution shifts: a) using a different environment for
training and testing while maintaining the same sensor platform

speed and b) utilizing a high-speed test sequence for the model
trained on low-speed training data. We observed that changes in
velocity pose significant challenges to generalization. However, we
found that an environmental change has only minimal impact.

5.3.1 Trained on indoor data–tested on outdoor
data

In the first distribution shift test, we assessed the models’
ability to generalize to a different environment. In this case, we
trained the models using indoor data and tested them using an
outdoor sequence. Table 3 presents the RMSE of all the models.
The 3DCNN + Transformer + FC model demonstrated superior
performance for all the velocity components except ωx and ωy,
where 3DCNN + CA + FC performed slightly better. The results
show little difference in errors compared to the mixed evaluation.
This indicates that the models are not considerably impacted by
the change in environment, implying that they have learned
transferable features. This therefore indicates that the models
have the ability to capture features that can be applied across
different environments. Moving forward, we intend to investigate
the utilization of these learned features for additional tasks such
as mapping.

5.3.2 Trained onmixed low speed–tested onmixed
high speed

In the second distribution shift test, the performance of the
models trained on the mixed dataset was evaluated on a relatively
high-speed test sequence. Note that all the mixed dataset sequences
used in the training were low-speed (recorded while walking). The
high-speed test sequence was collected by a person moving on an
electric skateboard. Table 6 presents the results. None of the trained
models showed satisfactory performance in this experiment. This
result indicates that the models need retraining if they are to be used
in scenarios with significantly different speeds or types of motion.
Our model is learning the ego-motion based on the transformation
between similar features extracted from a pair of heatmaps. In the
higher-speed sequences, the platform travels greater distances
between the instances of data, causing larger displacements
between the features in the heatmap pairs. The dataset we used
has only one environment with a higher platform speed, which is
insufficient for training a model. Further exploration can be
performed to train the models with self-supervised schemes for
better generalization across different environments and varying
speed settings.

TABLE 6 Generalization test (performance of the models trained on low-speed data and tested on distribution data, high speed sequence (Longboard)). Smallest
errors per velocity component are marked in bold.

Values 3DCNN + transformer + FC 3DCNN + CA + FC 3DCNN + SA + FC 3DCNN + FC

Vx m/s 0.31 0.43 0.35 0.530

Vy m/s 0.29 0.52 0.29 0.329

VZ m/s 0.067 0.17 0.094 0.077

ωx deg/s 0.197 0.257 0.274 0.255

ωy deg/s 0.728 1.359 1.247 1.228

ωz deg/s 0.107 0.112 0.105 0.110

Frontiers in Signal Processing frontiersin.org10

Rai et al. 10.3389/frsip.2023.1198205

https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://doi.org/10.3389/frsip.2023.1198205

6 Conclusion

We presented an end-to-end ego-velocity estimation method
from high-resolution radar data. We avoided the heavy processing
of radar data to obtain point clouds, which is computationally
expensive and causes loss of useful information. Our proposed
architecture consists of a 3DCNN based on FlowNet capturing the
features associated with motion and an attention mechanism for the
selection of significant features for regression. We tested three
attention architectures and compared them with the option
without attention, as explained in Section 5 We trained and
evaluated the models on a subset of a publicly available ColoRadar
dataset and studied the effect of distribution shift. Although the
performance does not degrade greatly when transferring models
from indoor to outdoor, the generalizability is rather poor in the
varying speed experiment. Our training and evaluation settings have
shown that use of transformer encoder layers can improve the
performance of end-to-end radar-based ego-motion estimation
using deep neural networks. It could be better with an increased
amount of data. Future work will explore the applicability of this
method in other high-level tasks like mapping and SLAM.

Data availability statement

The original contributions presented in the study are included in
the article/supplementary material; further inquiries can be directed
to the corresponding author.

Author contributions

Idea and conceptualization: PR and RG; experimental design
and evaluation: PR and NS; data visualization and result

representation: PR and NS; implementation: PR; draft writing:
PR; final manuscript: PR, NS, and RG; supervision: RG and NS;
funding acquisition, resources, and project administration: RG. All
authors contributed to the article and approved the submitted
version.

Funding

This project was supported by the European Union’s Horizon
2020 research and innovation program under the Marie
Sklodowska-Curie grant agreement No. 858101 and by the
Academy of Finland (project320 no. 336357, PROFI 6—TAU
Imaging Research Platform).

Conflict of interest

The author declare that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Author SR declared that they were an editorial board member of
Frontiers at the time of submission. This had no impact on the peer
review process and the final decision.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors, and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Adolfsson, D., Magnusson, M., Alhashimi, A., Lilienthal, A. J., and Andreasson, H.
(2021). “Cfear radarodometry - conservative filtering for efficient and accurate radar
odometry,” in IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). doi:10.1109/IROS51168.2021.9636253

Almalioglu, Y., Turan, M., Lu, C. X., Trigoni, N., and Markham, A. (2021). Milli-rio:
Ego-motion estimation with low-cost millimetre-wave radar. IEEE Sensors J. 21,
3314–3323. doi:10.1109/JSEN.2020.3023243

Barnes, D., Gadd, M., Murcutt, P., Newman, P., and Posner, I. (2020). “The oxford
radar robotcar dataset: A radar extension to the oxford robotcar dataset,” in IEEE
International Conference on Robotics and Automation (ICRA).

Barnes, D., Weston, R., and Posner, I. (2019). Masking by moving: Learning
distraction-free radar odometry from pose information. ArXiv.

Bechter, J., Roos, F., and Waldschmidt, C. (2017). Compensation of motion-induced
phase errors in tdmmimo radars. IEEEMicrow.Wirel. Components Lett. 27, 1164–1166.
doi:10.1109/LMWC.2017.2751301

Besl, P., and McKay, N. D. (1992). “Amethod for registration of 3-d shapes,” in IEEE
Transactions on Pattern Analysis and Machine Intelligence. doi:10.1109/34.121791

Burnett, K., Yoon, D. J., Schoellig, A. P., and Barfoot, T. D. (2021). “Radar odometry
combining probabilistic estimation and unsupervised feature learning,” in Robotics:
Science and systems (RSS).

Burnett, K., Yoon, D. J., Wu, Y., Li, A. Z., Zhang, H., Lu, S., et al. (2022). Boreas: A
multi-season autonomous driving dataset. arxiv preprint (2022).

Cen, S. H., and Newman, P. (2018). “Precise ego-motion estimation with
millimeter-wave radar under diverse and challenging conditions,” in IEEE
International Conference on Robotics and Automation (ICRA). doi:10.1109/
ICRA.2018.8460687

Clark, S., and Durrant-Whyte, H. F. (1998). “Autonomous land vehicle navigation
using millimeter wave radar,” in IEEE International Conference on Robotics and
Automation(ICRA). doi:10.1109/ROBOT.1998.681411

Costante, G., Mancini, M., Valigi, P., and Ciarfuglia, T. A. (2016). Exploring
representation learning with cnns for frame-to-frame ego-motion estimation. IEEE
Robotics Automation Lett. 1, 18–25. doi:10.1109/LRA.2015.2505717

Daniel, L., Phippen, D., Hoare, E., Stove, A., Cherniakov, M., and Gashinova, M.
(2017). “Low-thz radar, lidar and optical imaging through artificially generated fog,” in
IET International Conference on Radar Systems.

Dickmann, J., Klappstein, J., Hahn, M., Appenrodt, N., Bloecher, H. L., Werber, K.,
et al. (2016). “Automotive radar the key technology for autonomous driving: From
detection and ranging to environmental understanding,” in IEEE Radar Conference
(RadarConf). doi:10.1109/RADAR.2016.7485214

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T.,
et al. (2021). “An image is worth 16x16 words: Transformers for image recognition at
scale,” in International Conference on Learning Representations (ICLR).

Engels, F., Heidenreich, P., Zoubir, A. M., Jondral, F. K., and Wintermantel, M.
(2017). “Advances in automotive radar: A framework on computationally efficient high-
resolution frequency estimation,” in IEEE Signal Processing Magazine.

Geiger, A., Lenz, P., Stiller, C., and Urtasun, R. (2013). Vision meets robotics: The kitti
dataset. Int. J. Robotics Res. (IJRR) 32, 1231–1237. doi:10.1177/0278364913491297

Ghabcheloo, R., and Siddiqui, S. (2018). “Complete odometry estimation of a vehicle
using single automotive radar and a gyroscope,” in IEEE Mediterranean Conference on
Control and Automation (MED).

Heller, M., Petrov, N., and Yarovoy, A. (2021). A novel approach to vehicle pose
estimation using automotive radar. arxiv preprint. doi:10.48550/ARXIV.2107.09607

Frontiers in Signal Processing frontiersin.org11

Rai et al. 10.3389/frsip.2023.1198205

https://doi.org/10.1109/IROS51168.2021.9636253
https://doi.org/10.1109/JSEN.2020.3023243
https://doi.org/10.1109/LMWC.2017.2751301
https://doi.org/10.1109/34.121791
https://doi.org/10.1109/ICRA.2018.8460687
https://doi.org/10.1109/ICRA.2018.8460687
https://doi.org/10.1109/ROBOT.1998.681411
https://doi.org/10.1109/LRA.2015.2505717
https://doi.org/10.1109/RADAR.2016.7485214
https://doi.org/10.1177/0278364913491297
https://doi.org/10.48550/ARXIV.2107.09607
https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://doi.org/10.3389/frsip.2023.1198205

Hess, W., Kohler, D., Rapp, H., and Andor, D. (2016). “Real-time loop closure in 2d
lidar slam,” in IEEE International Conference on Robotics and Automation (ICRA).
doi:10.1109/ICRA.2016.7487258

Holder, M., Hellwig, S., and Winner, H. (2019). “Real-time pose graph slam based on
radar,” in IEEE Intelligent Vehicles Symposium. doi:10.1109/IVS.2019.8813841IV

Ioffe, S., and Szegedy, C. (2015). “Batch normalization: Accelerating deep network
training by reducing internal covariate shift,” in International Conference on Machine
Learning (ICML).

Kellner, D., Barjenbruch, M., Klappstein, J., Dickmann, J., and Dietmayer, K. (2013).
“Instantaneous ego-motion estimation using Doppler radar,” in IEEE International
Conference on Intelligent Transportation Systems (ITSC). doi:10.1109/ITSC.2013.6728341

Kellner, D., Barjenbruch, M., Klappstein, J., Dickmann, J., and Dietmayer, K. C. J.
(2014). “Instantaneous ego-motion estimation using multiple Doppler radars,” in IEEE
International Conference on Robotics and Automation (ICRA).

Kim, G., Park, Y. S., Cho, Y., Jeong, J., and Kim, A. (2020). “Mulran: Multimodal range
dataset for urban place recognition,” in IEEE International Conference on Robotics and
Automation (ICRA).

Kingma, D., and Ba, J. (2014). “Adam: A method for stochastic optimization,” in
International Conference on Learning Representations.

Kramer, A., Harlow, K., Williams, C., and Heckman, C. (2022). Coloradar: The direct
3d millimeter wave radar dataset. Int. J. Robotics Res. 41, 351–360. doi:10.1177/
02783649211068535

Li, P., Cai, K., Saputra, M. R. U., Dai, Z., Lu, C. X., Markham, A., et al. (2022).
Odombeyondvision: An indoor multi-modal multi-platform odometry dataset beyond the
visible spectrum. arXiv preprint. doi:10.48550/ARXIV.2206.01589

Lu, C. X., Saputra, M. R. U., Zhao, P., Almalioglu, Y., de Gusmao, P. P., Chen, C., et al.
(2020). “milliego: single-chip mmwave radar aided egomotion estimation via deep
sensor fusion,” in ACM Conference on Embedded Networked Sensor Systems (SenSys).

Lynch, K. M., and Park, F. C. (2017). Modern robotics: Mechanics, planning, and
control 1st edn. USA: Cambridge University Press.

Magnusson, M., Lilienthal, A., and Duckett, T. (2007). Scan registration for
autonomous mining vehicles using 3d-ndt. J. Field Robotics 24, 803–827. doi:10.
1002/rob.20204

Rohling, H. (1983). “Radar cfar thresholding in clutter and multiple target situations,”
in IEEE transactions on aerospace and electronic systems, 608–621. doi:10.1109/taes.
1983.309350

Shan, T., and Englot, B. (2018). “Lego-loam: Lightweight and ground-optimized lidar
odometry and mapping on variable terrain,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS).

Shan, T., Englot, B., Meyers, D., Wang,W., Ratti, C., and Daniela, R. (2020). “Lio-sam:
Tightly-coupled lidar inertial odometry via smoothing and mapping,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).

Sheeny, M., De Pellegrin, E., Mukherjee, S., Ahrabian, A., Wang, S., and Wallace, A.
(2020). Radiate: A radar dataset for automotive perception. arXiv preprint arXiv:
2010.09076.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R.
(2014). Dropout: A simple way to prevent neural networks from overfitting.
J. Mach. Learn. Res.

Steiner, M., Hammouda, O., and Waldschmidt, C. (2018). “Ego-motion estimation
using distributed single-channel radar sensors,” in IEEE MTT-S International
Conference on Microwaves for Intelligent Mobility (ICMIM). doi:10.1109/ICMIM.
2018.8443509

Swami, P., Jain, A., Goswami, P., Chitnis, K., Dubey, A., and Chaudhari, P. (2017).
“High performance automotive radar signal processing on ti’s tda3x platform,” in IEEE
Radar Conference (RadarConf). doi:10.1109/RADAR.2017.7944409

Tran, D., Bourdev, L. D., Fergus, R., Torresani, L., and Paluri, M. (2014). C3D: Generic
features for video analysis. arxiv preprint.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., et al.
(2017). “Attention is all you need,” in Advances in neural information processing systems
(NurIPS).

Wang, S., Clark, R., Wen, H., and Trigoni, N. (2017). “Deepvo: Towards end-to-end
visual odometry with deep recurrent convolutional neural networks,” in IEEE
International Conference on Robotics and Automation (ICRA). doi:10.1109/ICRA.
2017.7989236

Woo, S., Park, J., Lee, J., and Kweon, I. S. (2018). Cbam: Convolutional block attention
module. arxiv preprint.

Xu, B., Wang, N., Chen, T., and Li, M. (2015). Empirical evaluation of rectified
activations in convolutional network. arxiv preprint.

Yang, N., von Stumberg, L., Wang, R., and Cremers, D. (2020). “D3vo: Deep depth,
deep pose and deep uncertainty for monocular visual odometry,” in IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). doi:10.1109/
CVPR42600.2020.00136

Zhang, J., and Singh, S. (2014). “Loam: Lidar odometry and mapping in real-time,” in
Robotics: Science and Systems Conference (RSS).

Zhou, B., Tang, Z., Qian, K., Fang, F., and Ma, X. (2017). “A lidar odometry for
outdoor mobile robots using ndt based scan matching in gps-denied environments,” in
IEEE International Conference on CYBER Technology in Automation, Control, and
Intelligent Systems (CYBER). doi:10.1109/CYBER.2017.8446588

Frontiers in Signal Processing frontiersin.org12

Rai et al. 10.3389/frsip.2023.1198205

https://doi.org/10.1109/ICRA.2016.7487258
https://doi.org/10.1109/IVS.2019.8813841
https://doi.org/10.1109/ITSC.2013.6728341
https://doi.org/10.1177/02783649211068535
https://doi.org/10.1177/02783649211068535
https://doi.org/10.48550/ARXIV.2206.01589
https://doi.org/10.1002/rob.20204
https://doi.org/10.1002/rob.20204
https://doi.org/10.1109/taes.1983.309350
https://doi.org/10.1109/taes.1983.309350
https://doi.org/10.1109/ICMIM.2018.8443509
https://doi.org/10.1109/ICMIM.2018.8443509
https://doi.org/10.1109/RADAR.2017.7944409
https://doi.org/10.1109/ICRA.2017.7989236
https://doi.org/10.1109/ICRA.2017.7989236
https://doi.org/10.1109/CVPR42600.2020.00136
https://doi.org/10.1109/CVPR42600.2020.00136
https://doi.org/10.1109/CYBER.2017.8446588
https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://doi.org/10.3389/frsip.2023.1198205

	4DEgo: ego-velocity estimation from high-resolution radar data
	1 Introduction
	2 Related work
	2.1 Spinning radar
	2.2 SoC radar

	3 Methodology
	3.1 Problem formulation
	3.2 Network architecture
	3.2.1 Feature extraction
	3.2.2 Feature refinement and regression

	4 Experiments
	4.1 Data
	4.2 Radar sensor and raw data format
	4.3 3D heatmap processing
	4.4 Ground truth calculation
	4.5 Training

	5 Results
	5.1 Trained and tested on mixed data
	5.2 Evaluation of static and dynamic parts of the sequence
	5.3 Distribution shift
	5.3.1 Trained on indoor data–tested on outdoor data
	5.3.2 Trained on mixed low speed–tested on mixed high speed

	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References

