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Multilingual video dubbing—a
technology review and current
challenges
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The proliferation of multi-lingual content on today’s streaming services has
created a need for automated multi-lingual dubbing tools. In this article,
current state-of-the-art approaches are discussed with reference to recent
works in automatic dubbing and the closely related field of talking head
generation. A taxonomy of papers within both fields is presented, and the main
challenges of both speech-driven automatic dubbing, and talking head generation
are discussed and outlined, together with proposals for future research to tackle
these issues.
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1 Introduction and background

The problem of Video dubbing is not a recent challenge. Looking back through the
literature in Cao et al. (2005) the authors discuss the complexity of mimicking facial muscle
movements and note that data-driven methods had yielded some of the most promising
results at that time, almost two decades ago. More recently Mariooryad and Busso (2012)
synthesized facial animations based on the MPEG-4 facial animation standard, using the
audiovisual IEMOCAP database (Busso et al., 2008). While the Face Animation Parameters
(FAP) defined in MPEG are useful, such model based approaches are no longer considered as
state of the art (SotA) for photo-realistic speech dubbing or facial animation. Nevertheless,
these earlier works attest to long-standing research on speech-driven facial re-enactment in
the literature.

Today, there have been many new advances in facial rendering and acoustic and speech
models. The requirements of video dubbing are mainly driven by the evolution of the video
streaming industry (Hayes and Bolanos-Garcia-Escribano, 2022) and will be the focus of this
review. The rapid growth of streaming services and the resulting competition has led to a
proliferation of new content, with a significant growth in non-English language content and
a global expansion of audiences to existing and new non-English speaking audiences and
markets. Much of the success of the leading content streaming services lies in delivering
improved quality of content to these new markets with a need for more sophisticated and
semi-automated subtitle and dubbing services.

Subtitle services are well-developed and provide a useful bridge to the growing libraries
of video content for non-English audiences. The leading services have also begun to release
new content with dubbing in multiple languages and to annotate and dub legacy content as
well (Roxborough, 2019; NILESH and DECK, 2023). Auto-translation algorithms can help
here, but typically human input is also needed to refine the quality of the resulting
translations.
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When content is professionally dubbed a voice actor will
carefully work to align the translated text with the original actors
facial movements and expressions. This is a challenging and skilled
task and it is difficult to find multi-lingual voice actors, so often only
the lead actors in a movie will be professionally overdubbed. This
creates an “uncanny valley” effect for most overdubbed content
which detracts from the viewing experience and it is often preferable
to view content in the original language with subtitles. Thus the
overdubbing of digital content remains a significant challenge for the
video streaming industry (Spiteri Miggiani, 2021).

For the best quality of experience in viewing multi-lingual
content it is desirable not only to overdub the speech track for a
character, but also to adjust their facial expressions, particularly the
lip and jaw movements to match the speech dubbing. This requires a
subtle adjustment of the original video content for each available
language track, ensuring that while the lip and jaw movements
change in response to the new language track, the overall
performance of the original language actor is not diminished in
any way. But achieving this seamless audio driven automatic
dubbing is a non-trivial task, with many approaches proposed
over the last half-decade tackling this problem. Deep learning
techniques especially have proven popular in this domain (Yang
et al., 2020; Vougioukas et al., 2020; Thies et al., 2020; Song et al.,
2018; Wen et al,, 2020), demonstrating compelling results on the
tasks of automatic dubbing, and the lesser constrained, more well-
known task of “talking head generation.”

In this article, current state-of-the-art approaches are discussed
with reference to the most recent and relevant works in automatic
dubbing and the closely related field of talking head generation. A
taxonomy of papers within both fields is presented, and current SotA
for both audio-driven automatic dubbing, and talking head
generation are discussed and outlined. Recent approaches can be
broadly classified as falling within two main schools of thought: end-
to-end, or structural-based generation (Liang et al., 2022). It is clear
from this review that much of the foundation technology is now
available to tackle photo-realistic multilingual dubbing, but there are
still remaining challenges which we seek to define and clarify in our
concluding discussion.

2 The high-level dubbing pipeline

Traditionally, dubbing is a costly post-production affair that
consists of three primary steps:

o Translation: This is the process of taking the script of the original
video, and translating it to the desired language(s). Traditionally,
this is done by hiring multiple language experts, fluent in both the
original, and target languages. With the emergence of large
language models in recent years however, accurate automatic
language to language translation is becoming a reality (Duquenne
et al., 2023), and has been adopted into industry use as early as
2020 by the likes of Netflix (Alarcon, 2023). That being said, the
models are not perfect and are susceptible to mistranslations,
therefore to ensure quality an expert is still required to look over
the translated script.

« Voice Acting: Once the scripts have been translated, the next
step is to identify and hire suitable voice actors for each of the
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desired languages. For a high quality dub, care must be taken
to ensure that the voice actors can accurately portray the range
of emotions of the original recording, and that their voices
suitably match the on-screen character. This is a costly, and
time-consuming endeavour, and would benefit immensely
from automation. Despite incredible advances in text-to-
speech, and voice-cloning technologies in recent years, a lot
of work still remains to be able to truly replicate the skill of a
professional voice actor (Weitzman, 2023), however for
projects where quality is not as important, text to speech is
an attractive option due to its reduced cost.

o Audio Visual Mixing: As soon as the new language voice
recordings are obtained, the final step is to combine them with
the original video recording in as seamless a manner as
possible. Traditionally this
editing work in order to properly align and synchronise the

involves extensive manual
new audio to the original video performance. Even the most
skilled of editors however cannot truly synchronise these two
streams. High quality dubbing work is enjoyable to watch yet
oftentimes it is still noticeable that the content is dubbed. Poor
quality dubbing work detracts from the user experience,
oftentimes inducing the “uncanny-valley” effect in viewers.

Due to the recent advancements in deep learning, there is scope
for automation in each of the traditional dubbing steps. Manual
language translation can be carried out automatically by large
language models such as Duquenne et al. (2023). Traditional
voice acting can be replaced by powerful text to speech models
such as Lanicucki (2021); Liu et al. (2023); Wang et al. (2017). Audio-
visual mixing, can then be carried out by talking head generation/
video editing models such as Zhou et al. (2020). Given the original
video and language streams, the following is an example of what
such an automatic dubbing pipeline might look like for dubbing an
English language video into German:

Transcribing and Translating Source Audio: Using an off-the-
shelf automatic speech recognition model, an accurate
transcript can be produced from the speech audio. The
English transcript can then be translated into German
large language BERT or
GPT3 finetuned on the language to language translation task.

using a model such as

Synthesizing Audio: Synthetic speech can be produced by
leveraging a text to speech model, taking the translated
transcript as input, and outputting realistic speech. Ideally
the model would be finetuned on the original actors voice, and
produce high quality speech that sounds just like the original
actor but in a different language.

o 3D Character Face Extaction: From the video stream, detect
and isolate the target character. Map the target characters face
onto a 3D morphable model using monocular 3D

the head

movement, obtaining a static 3D face. Remove the original

reconstruction, and isolate headpose/global
lip/jaw movements, but retain the overall facial expressions
and eye blinks on the character model.

o Facial Animation Generation: Generate the expression
parameters corresponding to the lip and jaw movements on
the 3D face model in response to the driving synthetic German

audio speech signal via a recurrent neural network. Introduce
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FIGURE 1

A high-level diagram depicting the automatic dubbing process described in this section. 3D model image is taken from the work of Cudeiro et al.
(2019), while the subject displayed is part of the Cooke et al. (2006) dataset.

the global head movement information back to the 3D model
to obtain a 3D head whose facial expressions and head pose
correspond to the original performance, but with the lips and
jaws modified in response to the new audio.

Rendering: Mask out the facial region of the character in the
original video, insert the newly generated 3D face model on
top, and utilise an image-to-image translation network to
generate the final photorealistic output frames.

The hypothetical pipeline described above is known as a
structural-based approach, and is Figure 1. The next section shall
go into more detail on popular structural-based approaches, as well
as end-to-end methods for talking head generation, audio driven
automatic dubbing/audio driven video editing.

The scope of this article is limited to discussions surrounding
state of the art works tackling facial animation generation, namely,
we explore the recent trends in talking head generation, and audio
driven automatic dubbing/video editing. The rest of the papers is
organised as follows: Section 3 provides a detailed discussion on
methods that seek to tackle the talking head generation, and
automatic dubbing, classifying them as either end-to-end or
structural-based methods, and discussing their merits and pitfalls.
Section 4 provides details on popular datasets used to train models
for these tasks, as well as a list of common evaluation metrics used to
quantify the performance of such models. Section 5 provides
discussion on open challenges within the field, and how
researchers have been tackling them, before concluding the paper
in Section 6.

3 Taxonomy of talking head generation
and automatic dubbing

Talking head generation can be defined as the creation of a new
video from a single source image or handful of frames, and a driving
speech audio input. There are many challenges associated with this
(Chen et al, 2020a). Not only must the generated lip and jaw
movements be correctly synchronised to the speech input, but the
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overall head movement must also be realistic, eye blinking consistent
to the speaker should be present, and the expressions on the face
should match the tone and content of the speech. While many
talking head approaches have been proposed in recent years, each
addressing some or all of the aforementioned issues to various
degrees, there is plenty of scope for researchers to further the
field, as this article will demonstrate.

As touched upon earlier, the task of audio driven automatic
dubbing is a constrained version of the talking head generation
problem. Instead of creating an entire video from scratch, the goal is
to alter an existing video, resynchronizing the lip and jaw
movements of the target actor in response to a new input audio
signal. Unlike talking head generation, factors such as head motion,
eye blinks, and facial expressions are already present in the original
video. The challenge lies in seamlessly altering the lip and jaw
content of the video, while keeping the performance of the actor as
close to the original as possible, so as to not detract from it.

3.1 End-to-end vs. structural-based
generation

At a high level, existing deep learning approaches to both tasks
can be broken down into two main methods: end-to-end or
structural-based generation. Each method has its own set of
advantages and disadvantages, which we will now go over.

3.1.1 Pipeline complexity and model latency
End-to-end approaches offer the advantage of a simpler
pipeline, enabling faster processing and reduced latency in
generating the final output. With fewer components and
streamlined  computations,  real-time  synthesis  becomes
achievable. However, the actual performance relies on crucial
factors like the chosen architecture, model size, and output frame
size. For example, GAN-based end-to-end methods can achieve real-
time results, but they are often limited to lower output resolutions,
such as 128 x 128 or 256 x 256. Diffusion-based approaches are even

slower, often taking seconds or even minutes per frame, even with
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more efficient sampling methods, albeit at the cost of image quality.
Striking the right balance between speed and output resolution is
essential in optimizing end-to-end talking head synthesis. It is
important to highlight that these same limitations are also
present for structural-based methods, particularly within their
rendering process. However, structural-based methods tend to be
even slower than end-to-end approaches due to the additional
computational steps involved in their pipeline. Structural-based
methods often require multiple stages, such as face detection,
facial landmark/3D model extraction, expression synthesis,
photorealistic rendering and so on. Each of these stages
introduces computational overhead, making the overall process

more time-consuming.

3.1.2 Cascading errors

In structural-based methods, errors made in earlier stages of the
pipeline can propagate and amplify throughout the process. For
example, inaccuracies in face or landmark detection can significantly
impact the quality of the final generated video. End-to-end
approaches, on the other hand, bypass the need for such
intermediate representations, reducing the risk of cascading
errors. At the same time, however, when errors do occur in end-
to-end approaches, it can be harder to identify the source of the
error, as such methods do not explicitly produce intermediate facial
representations. This lack of transparency in the generation process
can make it challenging for researchers to diagnose and troubleshoot
issues when the output is not as expected. It becomes essential to
develop techniques for error analysis and debugging to improve the
reliability and robustness of end-to-end systems.

3.1.3 Robustness to different data

Structural-based methods rely on carefully curated and
annotated datasets for each stage of the pipeline, which can be
End-to-end
approaches are often more adaptable and generalize better to

time-consuming and labor-intensive to create.
various speaking styles, accents, and emotional expressions, as
they can leverage large and diverse datasets for training. This
flexibility is crucial in capturing the nuances and variations

present in natural human speech and facial expressions.

3.1.4 Output quality

The quality of output is a critical aspect in talking head synthesis,
as it directly impacts the realism and plausibility of the generated
videos. Structural-based methods excel in this regard due to their
ability to exert more fine-grained control over the intermediate
representations of the face during the synthesis process. With such
methods, the face is typically represented using a set of keypoints (or
3D model parameters), capturing essential facial features and
expressions. These landmarks serve as a structured guide for the
generation of facial movements, ensuring that the resulting video
adheres to the anatomical constraints of a human face. By explicitly
controlling these keypoints, the model can produce more accurate
and realistic facial expressions that are consistent with human facial
anatomy.

End-to-end approaches sacrifice some level of fine-grained
control in favor of simplicity and direct audio-to-video mapping.
While they offer the advantage of faster processing and reduced
latency, they may struggle to capture the intricate details and
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nuances present in facial expressions, especially in more

challenging or uncommon scenarios.

3.1.5 Training data requirements

End-to-end approaches typically require a large amount of
training data to generalize well across various situations. While
structural-based methods can benefit from targeted, carefully
annotated datasets for specific tasks, end-to-end methods may
need a more diverse and extensive dataset to achieve comparable
performance. This, in turn, means longer training times as the model
needs to process and learn from a vast amount of data, which can be
computationally intensive and time-consuming. This can be a
significant drawback for researchers and practitioners, as it
hinders the rapid experimentation and development of new
models. It may also require access to powerful hardware, such as
high-performance GPUs or TPUs, to accelerate the training process.

3.1.6 Explicit output guidance

Structural-based methods allow researchers to incorporate
explicit rules and constraints into different stages of the pipeline.
This explicit guidance can lead to more accurate and controllable
results, which can be lacking in end-to-end approaches where such
guidane is more difficult to implement.

3.2 Structural based generation

Structural based deep learning approaches have been immensely
popular in recent years, and are considered the dominant approach
when it comes to both talking head generation and audio driven
automatic dubbing. As mentioned above, this is due to the relative
ease with which one can exert control over the final output video,
high quality image frame fidelity, and relative speed with which
animations can be driven for 3D character models.

Instead of training a single neural network to generate the
desired video given an audio signal, the problem is typically
broken up into two main steps: 1) Training a neural network to
drive the facial motion from audio of an underlying structural
representation of the face. The structural representation is
typically either a 3D morphable model or 2D/3D keypoint
representation of the face. 2) Rendering photorealistic video
frames from the structural model of the face using a second
neural rendering model. Please see Table 1 for a summary of
relevant structural-based approaches in the literature.

3.2.1 2D/3D landmark based methods

In this section we discuss methods that rely on either 2D or 3D
face landmarks as an intermediate structural representation for
producing facial animations from audio. Some of the discussed
methods use the generated landmarks to animate a 3D face model,
these methods shall also be considered “landmark-based.” Figure 2
depicts a high level overview of what a typical landmark-based
approach could look like.

Suwajanakorn et al. (2017), Taylor et al. (2017) were among the
first works to explore using deep learning techniques to generate
speech animation. The former trained a recurrent network to
generate sparse mouth key points from audio before compositing
them onto an existing video, and the latter presenting an approach
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TABLE 1 Table summarising some of the most relevant structural-based approaches in the literature.

Method

Animation network
architecture

Audio input

Intermediate
representation

Additional
inputs

Head
motion

10.3389/frsip.2023.1230755

Rendering network

architecture

Suwajanakorn et al. LSTM MECC PCA mouth coefficients None No AAM-based rendering
(2017)
Taylor et al. (2017) Feed forward Phoneme transcript Face model animation None No Video compositing
parameters approach
Eskimez et al. LSTM Mel spectrograms 2D landmarks None No Not applicable
(2018)
Chen et al. (2019) LSTM MECC 2D landmarks None No GAN
Das et al. (2020) GAN Deep speech features 2D landmarks None No GAN
Zhou et al. (2020) LSTM Learned speech 2D landmarks None Yes GAN
embeddings
Lu et al. (2021) LSTM Learned speech 2D Landmarks None Yes GAN
embeddings
Wang et al. (2021) LSTM MFCC + FBANK Keypoints—dense motion None Yes CNN
features field
Ji et al. (2021) LSTM Learned speech 2D landmarks + 3D face Driving video From video GAN
embeddings model
Bigioi et al. (2022) Recurrent LSTM Mel spectrogram 2D landmarks None Yes Not applicable
Karras et al. (2017) CNN Autocorrelation 3D vertex positions of face Emotional State No Not applicable
features mesh
Cudeiro et al. CNN Encoder-Decoder DeepSpeech features Flame face model None No Not applicable
(2019)
Thies et al. (2020) CNN DeepSpeech features | 3D expression parameters None No CNN
Chen et al. (2020b) CNN Raw Audio 3D keypoints Reference frames Yes GAN
Yi et al. (2020) LST™M MEFCC 3D expression parameters Driving video Yes GAN
Wu et al. (2021) Encoder-Decoder + Unet | DeepSpeech features = 3D expression parameters Driving video Yes GAN
Zhang et al. (2021b) GAN Learned speech 3D expression parameters Reference image Yes GAN
embeddings
Zhang et al. (2021a) GAN DeepSpeech features | 3D expression parameters Driving video Yes GAN
Song et al. (2022) LSTM + Unet MECC 3D expression parameters Driving video No UNet
Wen et al. (2020) GAN MEFCC 3D expression parameters Driving video No GAN
Lahiri et al. (2021) CNN Spectrograms 3D vertex positions Driving video No CNN

for generalised speech animation by training a neural network
model to predict animation parameters of a reference face model
given phoneme labels as input. The field has come a long way since
then, with Eskimez et al. (2018) presenting a method for generating
static (no headpose) talking face landmarks from audio via a LSTM
based model, and Chen et al. (2019) expanding the work by
conditioning a GAN network on the landmarks to generate
photorealistic frames. Similarly, Das et al. (2020) also employed a
GAN based architecture to generate facial landmarks from
deepspeech features extracted from audio, before using a second
GAN conditioned on the landmarks to generate the photorealistic
frames.

Zhou et al. (2020)’s approach was among the first to generate
talking face landmarks with realistic head pose movement from
audio. They did this by training two LSTM networks, one to handle
the lip/jaw movements, and a second to generate the headpose,

Frontiers in Signal Processing

before combining the two outputs and passing them through an off-
the-shelf image-to-image translation network for generating
photorealistic frames.

Luetal. (2021)’s approach also simulated headpose and upper
body motion using a separate auto regressive model trained on
deepspeech audio features before generating realistic frames
using an image-to-image translation model conditioned on
feature maps based on the generated landmarks. While also
proposing an approach for the head pose problem, Wang
et al. (2021) tackled the challenge of stabilising non-face
(background) regions when generating talking head videos
from a single image.

Unlike the previous methods which were all approaches at
solving the talking head generation task, the following papers fall
into the audio-driven automatic dubbing category that seek to
modify existing videos. Ji et al. (2021) were among the first to
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A high-level 3d model based pipeline, where monocular facial reconstruction is performed on a source video to extract expression, pose, and
geometry parameters. A separate audio to expression parameter prediction network is then trained. The predicted expression parameters are then used
to replace the original ones, to generate a new 3D facial mesh, which is then rendered into a photorealistic video via a neural rendering model.

tackle the problem of generating emotionally aware video portraits
by disentangling speech into two representations, a content-aware
time dependent stream, and an emotion-aware time independent
stream, and training a model to generate 2D facial landmarks. It may
be considered a “hybrid” structural approach, as from both the
predicted and ground truth landmarks they perform monocular 3D
reconstruction to obtain two 3D face models. They then combine the
pose parameters from the ground truth with the expression and
geometry parameters of the predicted to create the final 3D face
model before extracting edge maps and generating the output frames
via image-to-image translation. Bigioi et al. (2022) extracted ground
truth 3D landmarks from video, and trained a network to alter them
directly given an input audio sequence without the need to first
retarget them to a static fixed face model before animating it and
then returning the original headpose.

3.2.2 3D model based methods

In this section we discuss methods that use 3D face models as
intermediate representations when generating facial animations.
In other words, we talk about methods that train models to
produce blendshape face parameters from audio signals as
input. Figure 3 above depicts a high-level overview of one such
model.

Frontiers in Signal Processing

Karras et al. (2017) were among the first to use deep learning to
learn facial animation for a 3D face model from limited audio
data. Cudeiro et al. (2019) introduced a 4D audiovisual face
dataset (talking 3D models), as well as a network trained to
generate 3D facial animations from deepspeech audio features.
Thies et al. (2020) also utilised deepspeech audio features to train
a network to output speaker independent facial expression
parameters that drive an intermediate 3D face model before
generating the photorealistic frames using a neural rendering
model. Chen et al. (2020b)’s approach involved learning head
motion from a collection of reference frames, and then
combining that information with learned PCA components
denoting facial expression in a 3D aware frame generation
network. Their approach is interesting because their pipeline
within talking head
generation such as maintaining the identity/appearance of the

addresses various known problems
head consistent, maintaining a consistent background, and
generating realistic speaker aware head motion. Yi et al.
(2020) presented an approach to generate talking head videos
using a driving audio signal by training a neural network to
predict pose and expression parameters for a 3D face model from
audio, and combining them with shape, texture, and lighting
parameters extracted from a set of reference frames. They then
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render the 3D face model to photo realism via a neural renderer,
before fine tuning the rendered frames with a memory
augmented GAN. Wu et al. (2021) presented an approach to
generate talking head faces of a target portrait given a driving
speech signal, and “Style Reference Video.” They train their
model such that the output video mimics the speaking style of
the reference video but whose identity corresponds to the target
portrait. Zhang et al. (2021b) presented a method for one shot
talking head animation. Given a reference frame and driving
audio source they generate eyebrow, head pose, and mouth
motion parameters of a 3D morphable model using an
encoder-decoder architecture. A flow-guided video generator
is then used to create the final output frames. Zhang et al.
(2021a) synthesize talking head videos given a driving speech
input and reference video clip. They design a GAN based module
that can output expression, eyeblink, and headpose parameters of
a 3D MM given deepspeech audio features.

While the previously referenced methods are all examples of
pure talking head generation approaches, the following are in the
automatic dubbing category. Both Song et al. (2022) and Wen et al.
(2020) presented approaches to modify an existing video using a
driving audio signal by training a neural network to extract 3D face
model expression parameters from audio, and combining them with
pose and geometry parameters extracted from the original video
before applying neural rendering to generate the modified
photorealistic video. To generate the facial animations, Song
et al. (2021) employ a similar pipeline to the methods referenced
above, however they go one step further, and transfer the acoustic
properties of the original video’s speaker onto the driving speech via
an encoder-decoder mechanism, essentially dubbing the video.
Richard et al. (2021) provided a generalised framework for
generating accurate 3D facial animations given speech, by
learning a categorical latent space that disentangles audio-
correlated (lips/jaw motion), and audio un-correlated (eyeblinks,
upper facial expression) information at inference time. Doing so,
they built a framework that can be applied to both automatic
dubbing, and talking head generation tasks. Lahiri et al. (2021)
introduced an encoder-decoder architecture trained to decode 3D
vertex positions [similar to Karras et al. (2017)], and 2D texture
maps of the lip region from audio and the previously generated
frame. They combine these to form a textured 3D face mesh which
they then render and blend with the original video to generate the
dubbed video clip.

We would also like to draw attention to the works of Fried et al.
(2019) and Yao et al. (2021). These are video editing approaches
which utilise text, in addition to audio, to modify existing talking
head videos. The former approach works by aligning phoneme labels
to the input audio, and constructing a 3D face model for each input
frame. Then, when modifying the text transcript (e.g., dog to god),
they search for segments of the input video where the visemes are
similar, blending the 3D model parameters from the corresponding
video frames to generate a new frame which is then rendered via
their neural renderer. The latter approach builds off this work, by
improving the efficiency of the phoneme matching algorithm, and
developing a self-supervised neural retargeting technique for
transferring the mouth motions of the source actor to the target
actor.
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3.3 End-to-end generation

Though less popular in recent times than their structural based
counterparts, the potential to generate or modify a video directly
given an input audio signal is one of the key factors that make end-
to-end approaches an attractive proposition to talking head
researchers. These methods aim to learn the complex mapping
between audio, facial expressions and lip movements using a
single unified model that combines the traditional stages of
talking head generation into a single step. By doing so, they
eliminate the need for explicit intermediate representations, such
as facial landmarks, or 3D models, which can be computationally
expensive and prone to error. This ability to directly connect the
audio input to the video output streamlines the synthesis process
and can enable real-time or near-real-time generation. Please see
Table 2 for a summary of relevant end-to-end based approaches in
the literature.

Chung et al. (2017) proposed one of the first end-to-end talking
head generation techniques. Given a reference identity frame and
driving speech audio signal, they succeeded in training an encoder-
decoder based architecture to generate talking head videos,
additionally demonstrating how their approach could be applied
to the dubbing problem. Their approach was limited however as it
only generated the cropped region around the face, discarding any
background.

Chen et al. (2018) presented a GAN based method of generating
lip movement from a driving speech source and reference lip frame.
Similar to the above method, theirs was limited to generating just the
cropped region of the face surrounding the lips. Song et al. (2018)
presented a more generalised GAN-based approach for talking head
generation that also took the temporal consistency between frames
into account by introducing a recurrent unit in their pipeline,
generating smoother videos. Zhou et al. (2019) proposed a model
that could generate videos based on learned disentangled
representations of speech and video. The approach is interesting
because it allowed authors to generate a talking head video from a
reference identity frame, and driving speech signal or video. Mittal
and Wang (2020) disentangled the audio signal into various factors
such as phonetic content, and emotional tone, and conditioned a
talking head generative model on these representations instead of
the raw audio, demonstrating compelling results. Vougioukas et al.
(2020) proposed an approach to generate temporally consistent
talking head videos from a reference frame and audio using a GAN-
based approach. Their method generated realistic eyeblinks in
addition to synchronised lip movements in an end-to-end
(2020) “lip-sync
discriminator” for generating more accurate lip movements on

manner. Prajwal et al introduced a
talking head videos, as well as proposing new metrics to evaluate
lip synchronization on generated videos. Eskimez et al. (2020)
proposed a robust GAN based model that could generate talking
head videos from noisy speech. Kumar et al. (2020) proposed a
GAN-based approach for one shot talking head generation. Zhou
et al. (2021) proposed an interesting approach to exert control over
the pose of an audio-driven talking head. Using a target “pose”
video, and speech signal, they condition a model to generate talking
head videos from a single reference identity image whose pose is
dictated by the target video.
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TABLE 2 Table summarising some of the most relevant end-to-end approaches in the literature.

Architecture Audio input Additional inputs Head Photorealistic frame

motion rendering

Chung et al. (2017) Encoder- MFCC Reference identity No Yes
Decoder
Chen et al. (2018) GAN Mel spectrogram Reference lip image No Limited to lip region only
Song et al. (2018) GAN MECC Reference image No Yes
Mittal and Wang (2020) LSTM + GAN Learned speech Reference image No Yes
embeddings
Zhou et al. (2019) GAN MFCC Reference frames No Yes
Vougioukas et al. (2020) GAN Raw audio Reference image No Yes
Prajwal et al. (2020) GAN Mel spectrogram Driving video Yes Yes
Kumar et al. (2020) GAN DeepSpeech features None Yes Yes
Eskimez et al. (2020) LSTM + GAN Raw audio Reference image No Yes
Zhou et al. (2021) GAN Spectrograms Driving video + reference frame Yes Yes
Styputkowski et al. Diffusion Unet Learned speech Reference image Yes Yes
(2023) embeddings
Shen et al. (2023) Diffusion Unet Learned speech Reference image + face Yes Yes
embeddings landmarks
Bigioi et al. (2023) Diffusion Unet Mel spectrograms Reference image Yes Yes

While GAN-based Goodfellow et al. (2014) methods such as the
approaches referenced above have been immensely popular in
recent years, they have been shown to have a number of
limitations by practitioners in the field. Due to the presence of
multiple losses and discriminators their optimization process is
complex and quite unstable. This can lead to difficulties in
finding a balance between the generator and discriminator,
resulting in issues like mode collapse, where the generator fails to
capture the full diversity of the target distribution. Vanishing
gradients is another issue, which occurs when gradients become
too small during back propagation, preventing the model from
learning effectively, especially in deeper layers. This can
significantly slow down the training process and limit the overall
performance of the model. With that in mind, we would like to draw
special attention to diffusion models (Sohl-Dickstein et al., 2015, Ho
et al., 2020, Dhariwal and Nichol, 2021, Nichol and Dhariwal, 2021),
a new class of generative model that has gained prominence in the
last couple of years due to strong performance on a myriad of tasks
such as text based image generation, speech synthesis, colourisation,
body animation prediction, and more.

3.4 Diffusion-based generation

We dedicate a short section of this paper towards diffusion based
approaches, due to their recent rise in use and popularity. Note that
within this section, we describe methods found from both the end-
to-end, and structural-based schools of thought as at this time, there
are only a handful of diffusion-based talking head works.

For a deeper understanding of the diffusion architecture, we
direct readers to works of Sohl-Dickstein et al. (2015); Ho et al.
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(2020); Dhariwal and Nichol (2021); Nichol and Dhariwal (2021), as
these are the pioneering works that contributed to their recent
popularity and wide-spread adoption. In short however the diffusion
process can be summarised as consisting of two stages 1) the forward
diffusion process, and 2) the reverse diffusion process.

In the forward diffusion process, the desired output data is
gradually “destroyed” over a series of time steps by adding Gaussian
noise at each step until the data becomes just another sample from a
standard Gaussian distribution. Conversely, in the reverse diffusion
process, a model is trained gradually denoise the data by removing
the noise at each time step, with the loss typically being computed as
a distance function between the predicted noise vs. the actual noise
that was added at that particular time step. The combination of these
two stages enables diffusion models to model complex data
distributions without suffering from mode collapse unlike GANS,
and to generate high-quality samples without the need for
adversarial training or complex loss functions.

Within the context of talking head generation, and video editing
there are a number of recent works that have explored using diffusion
models. Specifically, Styputkowski et al. (2023), Shen et al. (2023), and
Bigioi et al. (2023) being among the first to explore their use for end-
to-end talking head generation and audio driven video editing. All
three methods follow a similar auto-regressive frame-based approach
where the previously generated frame is fed back into the model along
with the audio signal and a reference identity frame to generate the
next frame in the sequence. Notably, Shen et al. (2023) condition their
model with landmarks, and perform their training within the latent
space to save on computational resources, unlike that of Styputkowski
et al. (2023) and Bigioi et al. (2023). Stypulkowski et al. (2023)
approach can be considered a true talking head generation
method, as their method does not rely on any frames from the
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original video to guide their model (except for the initial seed/identity
frame), and their resultant video is completely synthetic. Bigioi et al.
(2023) perform video editing by modifying an existing video sequence
by teaching their model to inpaint on a masked out facial region of the
video in response to an input speech signal. Shen et al. (2023)’s
approach is similar, where they perform video editing rather than
talking head generation by modifying an existing video with the use of
a face mask designed to cover the facial region of the source video.

While the above approaches are currently the only end-to-end
diffusion based methods, a number of structural based approaches, that
leverage diffusion models have also been proposed in recent months.
Zhang et al. (2022) proposed an approach that used audio to predict
landmarks, before using a diffusion based renderer to output the final
frame. Zhua et al. (2023) also utilised a diffusion model similarly, using
it to take the source image and the predicted motion features as input to
generate the high-resolution frames. Du et al. (2023) introduced an
interesting two stage approach for talking head generation. The first
stage consisted of training a diffusion autoencoder on video frames, to
extract latent representations of the frames. The second stage involved
training a speech to latent representation model, with the idea being that
the latents predicted by the speech, could be decoded by the pretrained
diffusion autoencoder to image frames. The method achieves
impressive results, outperforming other relevant structural-based
methods in the field. Xu et al. (2023) use a diffusion-based renderer
conditioned on multi-model inputs to drive the emotion, and pose of
the generated talking head videos. Notably their approach is also
applicable to the face swapping problem.

Within the realm of talking heads, diffusion models have shown
incredibly promising results, often producing videos with
demonstratively higher visual quality, and similar lip sync
performance compared to more traditional GAN-based methods.
One major limitation, however, lies in their inability to model long
sequences of frames without the output degrading in quality over
time due to their autoregressive nature. It will be exciting to see what
the future holds for further research in this area.

3.5 Other approaches

There are certain approaches that do not necessarily fit into the
aforementioned subcategories, that are still relevant and worth discussing.

Viseme based methods such as Zhou et al. (2018) are early
approaches at driving 3D character models. The authors presented
an LSTM based network capable of producing viseme curves that could
drive JALI based character models as described by Edwards et al. (2016).

Guo et al. (2021) is a unique method for talking head generation
that instead of relying on traditional intermediate structural
representations such as landmarks or 3DMMs, instead generates
a neural radiance field from audio from which a realistic video is
synthesised using volume rendering.

4 Popular datasets and evaluation
metrics

In this section we describe the most popular metrics for
measuring the quality of videos generated by audio-driven talking
head, and automatic dubbing models.
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4.1 Evaluation metrics

Quantitatively evaluating both talking head, and dubbed videos
is a non-straight forward task. Traditional perceptual metrics such as
SSIM, or distance-based metrics such as the L2 Norm, or PSNR,
which seek to quantify the similarity between two images, are
inadequate. Such metrics do not take into account the temporal
nature of video, with the quality of a video being affected not only by
the individual quality of frames, but also by the smoothness and
synchronisation of the frames as they are played back in the video.

Although these metrics may not provide a perfect evaluation of
video quality, they are still important for bench marking purposes as
they provide a good indication of what to expect from the model. As
such, when there is access to ground truth samples to compare a
model’s output with, the following metrics are commonly used:

PSNR (Peak Signal to Noise Ratio): The peak signal to noise ratio
between the ground truth and the generated image is computed. The
higher the PSNR value, the better the quality of the reconstructed
image.

Facial Action Units (AU) Ekman and Friesen (1978)
Recognition: Song et al. (2018) and Chen et al. (2020b)
popularised a method for evaluating reconstructed images with
respect to ground truth samples using five facial action units.

ACD (Average Content Distance) (Tulyakov et al., 2018): As
used by Vougioukas et al. (2020), the Cosine (ACD-C) and
Euclidean (ACD-E) distance between the generated frame and
ground truth image can be calculated. The smaller the distance
between two images the more similar the images.

SSIM (Structural Similarity Index) (Wang et al., 2004): This is a
metric designed to measure the similarity between two images by
looking at the luminance, contrast, and structure of the pixels in the
images.

Landmark Distance Metric (LMD): Proposed by Chen et al.
(2018), Landmark Distance (LMD) is a popular metric used to
evaluate the lip synchronisation of a synthetic video. It works by
extracting facial landmark lip coordinates for each frame of both the
generated, and ground truth videos using an off-the-shelf facial
landmark extractor, calculating the euclidean distance between
them, and normalising based on the length of video and number
of frames.

Unfortunately, when generating talking head or dubbed videos,
oftentimes it is impossible to use the metrics discussed above as there
is no corresponding ground truth data with which to compare the
generated samples. Therefore, a number of perceptual metrics
(metrics which seek to emulate how humans perceive things)
have been proposed to address this problem. These include:

CPBD (Cumulative Probability Blur Detection) (Narvekar and
Karam, 2011): This is a perceptual based metric used to detect blur in
imageness and measure image sharpness. Used by Kumar et al.
(2020); Vougioukas et al. (2020); Chung et al. (2017) to evaluate
their talking head videos.

WER (Word Error Rate): A pretrained lip reading model is used
to predict the words spoken by the generated face. Works such as
Kumar et al. (2020) and Vougioukas et al. (2020) use the LipNet
Assael et al. (2016) model which is pre-trained on the GRID data set
and achieves 95.2 percent lip reading accuracy.

SyncNet Based Metrics: These are perceptual metrics based on
the SyncNet model introduced by Chung and Zisserman (2017b)
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that evaluate lip synchronisation in unconstrained videos. Prajwal
et al. (2020) introduced two such metrics: 1) LSE-D which is the
average error measure calculated in terms of the distance between
the lip and audio representations, and 2) LSE-C which is the average
confidence score. These metrics have proven popular since their
introduction, with a vast majority of recent papers in the field using
them for evaluating their videos.

4.2 Benchmark Datasets

There are a number of benchmark datasets used to evaluate
talking head and video dubbing models. They can be broadly
categorised as being either “in-the-wild,” or “lab conditions” style
datasets. In this section we list some of the most popular ones, and
briefly describe them.

o VoxCeleb 1 and 2 (Nagrani et al., 2017; Chung et al., 2018):
This dataset contains audio and video recordings of celebrities
speaking in the wild. It is often used for training and evaluating
talking head generation, lip reading, and dubbing models. The
former  contains 150,000  utterances from
1,251 celebrities, and the latter over 1,000,000 utterances
from 6,112 celebrities.

o GRID (Cooke et al., 2006): The GRID dataset consists of audio
and video recordings of 34 speakers reading 1,000 sentences in

over

lab conditions. It is commonly used for evaluating lip-reading
algorithms but has also been used for talking head generation
and video dubbing models.

o LRS3-TED (Afouras et al., 2018): This dataset contains audio
and video recordings of over 400 h of TED talks, which are
speeches given by experts in various fields.

o LRW (Chung and Zisserman, 2017a): The LRW (Lip Reading
in the Wild) dataset consists of up to 1,000 utterances of
500 different words, spoken by hundreds of different speakers
in the wild.

o CREMA-D (Cao et al., 2014): This dataset contains audio and
video recordings of people speaking in various emotional
states (happy, sad, anger, fear, disgust, and neutral). In total
it contains 7,442 clips of 91 different actors recorded in lab
conditions.

o TCD-TIMIT (Harte and Gillen, 2015): The Trinity College
Dublin Talking Heads dataset (TCD-TIMIT) contains video
recordings of 62 actors speaking in a controlled environment.

o« MEAD Dataset (Wang et al.,, 2020): This dataset contains
videos featuring 60 actors talking with eight different emotions
at three different intensity levels (except for neutral). The
videos are simultaneously recorded at seven different
perspectives with roughly 40 h of speech recorded for each
person.

o RAVDESS Dataset (Wang et al., 2020): The Ryerson Audio-
Visual Database of Emotional Speech and Song is a corpus
consisting of 24 actors speaking with calm, happy, sad, angry,
fearful, surprise, and disgust expressions, and singing with
calm, happy, sad, angry, and fearful emotions. Each expression
is produced at two levels of emotional intensity, with an
additional neutral expression. It contains 7,356 recordings
in total.
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o CelebV-HQ (Zhu et al., 2022): CelebV-HQ is a dataset
containing 35,666 video clips involving 15,653 identities
and 83 manually labeled facial attributes covering aspects
such as appearance, action, and emotion

5 Open challenges

Although significant progress has been made in the fields of
talking head generation and automatic dubbing, these areas of
research are constantly evolving, and several open challenges still
need to be addressed, offering plenty of opportunities for
future work.

5.1 Bridging the uncanny valley

Despite existing research, generating truly realistic talking heads
remains an unsolved problem. There are various factors that come
into play when discussing the topic of realism and how we can bridge
the “Uncanny Valley” effect in video dubbing. These include:

« Visual quality: Realistic talking head videos should have high-
quality visuals that accurately capture the colors, lighting, and
textures of the scene. This requires attention to detail in the
rendering process. Currently, most talking head and visual
dubbing approaches are limited to generating videos at low
output resolutions, and those that do work on higher
resolutions are quite limited both in terms of model
robustness, and generalisation (more on that later). This is
due to several reasons: 1) the computational complexity of
deep learning models rises significantly when generating high-
resolution videos, both in terms of training time, and inference
speed; this, in turn, has an adverse effect on real-time
performance; 2) generating realistic talking head videos
requires the model to capture intricate details of facial
expressions, lip movements, and speech patterns; as the
output resolution of the video increases, so too does the
demand for more fine-grained details, making it more
difficult for models to achieve high degrees of realism; 3)
Storage and bandwidth limitations; high-resolution videos
require both of these in abundance, limiting high resolution
generation to researchers who have access to state of the art in
hardware systems. Some approaches that have sought to tackle
this issue are the works of Gao et al. (2023), Guo et al. (2021),
and Shen et al. (2023), who’s approaches are capable of
outputting high resolution frames.

« Motion: Realistic talking head/dubbed videos should have

realistic motion, including smooth and natural movements

of the face in response to speech, and realistic head motion
when generating videos from scratch. This is a continuous
topic of interest, with many works exploring it such as Chen
et al. (2020b), Wang et al. (2021), and more recently Zhang
et al. (2023).
Disembodied Voice: The phenomenon of a Disembodied

Voice is characterized by a jarring mismatch between a
speaker’s voice and their physical appearance, which is a
commonly encountered issue in movie dubbing. Despite its
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significance, this issue remains relatively unexplored within
the realm of talking head literature, thereby presenting a
promising avenue for researchers to investigate further. The
work conducted by Oh et al. (2019) demonstrated that there is
an inherent link between a speaker’s voice and their
appearance that can be learned, thus lending credence to
the idea that dubbing efforts
synchronization of voice and appearance.

should prioritize the

o Emotion: Realistic videos should evoke realistic emotions,
including facial expressions, body language, and dialogue.
Achieving realistic emotions requires careful attention to
acting and performance, as well as attention to detail in the
animation and sound design. Recent works seeking to
incorporate emotion into their generated talking heads
include Ma et al. (2023), Liang et al. (2022), Li et al. (2021).

5.2 The data problem: single vs.
multispeaker approaches

As mentioned previously there are two primary approaches to
video dubbing—structural and end-to-end. In order to train a model
to generate highly photorealistic talking head videos with current
end-to-end methods, many dozens of hours of single-speaker
audiovisual content are required. The content should be of a
high quality with factors such as good lighting, consistent
framing of the face, and clear audio data. The quantity of data
on an individual speaker may be reduced when methods are trained
on a multi-speaker dataset, but sufficiently large datasets are only
starting to become available. At this point in time it is not possible to
estimate how well end-to-end methods might generalize to multiple
speakers, or how much data may eventually be required to fine-tune
a dubbing model for an individual actor in a movie to achieve a
realistic mimicry of their facial actions. The goal should be of the
order of tens of minutes of data, or less, to allow for the dubbing of
the majority of characters with speaking roles.

5.3 Generalisation and robustness

Developing a model that can generalize across all faces, and
audios, under any conditions such as poor lighting, partial occlusion,
or incorrect framing, remains a challenging task yet to be fully
resolved.

While supervised learning has proven to be a powerful approach
for training models, it typically requires large amounts of labeled
data that are representative of the target distribution. However,
collecting diverse and balanced datasets that cover all possible
scenarios and variations in facial appearance and conditions is a
challenging and time-consuming task. Furthermore, it is difficult to
anticipate all possible variations that the model may encounter
during inference, such as changes in lighting conditions or facial
expressions.

To address these challenges, researchers have explored
alternative approaches such as self-supervised learning, which
aims to learn from unlabelled data by creating supervisory
signals from the data itself. In other words, self-labelling the data.
Methods such as Baevski et al. (2020); Hsu et al. (2021), which fall
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under the self-supervised learning paradigm, have gained popularity
in speech-related fields due to their promising results in improving
the robustness and generalization of models. These methods may
help overcome the limitations of traditional supervised learning
methods that rely solely on labeled data for training. That being said,
Radford et al. (2022) showed that while such methods can learn
high-quality representations of the input they are being trained
on,“they lack an equivalently performant decoder mapping those
representations to useable outputs, necessitating a finetuning stage
in order to actually perform a task such as speech recognition”. The
authors demonstrate that by training their model on a “weakly-
supervised” dataset of 680,000 h of speech, their model performs
well on unseen datasets without the need to finetune. What this
means for talking head generation/dubbing is that a model trained
on large amounts of “weakly-supervised,” or in other words,
imperfect data, may potentially acquire a higher level of
generalization. This can be particularly valuable for tasks like
talking head generation or dubbing, where a system needs to
understand and replicate various speech patterns, accents, and
linguistic nuances that might not be explicitly present in
labeled data.

5.4 The multilingual aspect

In the realm of talking head generation, it is fascinating to
observe the adaptability of models trained exclusively on English-
language datasets when faced with speech from languages they have
not encountered during training. This phenomenon can be
attributed to the models’ proficiency in learning universal
acoustic and linguistic features. While language diversity entails a
wide array of phonetic, prosodic, and syntactic intricacies, there
exists an underpinning foundation of shared characteristics that
traverse linguistic boundaries. These foundational aspects, intrinsic
to human speech, include elements like phonetic structure and
prosodic patterns, which exhibit commonalities across languages.
Talking head generation models that excel in capturing these
universal attributes inherently possess the ability to generate lip
motions that align with a range of linguistic expressions, irrespective
of language.

While the lip movements generated by models trained on
English-language datasets may exhibit a remarkable degree of
fidelity when applied to unseen languages, capturing cultural
behaviors associated with those languages is a more intricate
endeavor. Cultural gestures, expressions, and head movements
often bear an intimate connection with language and its subtle
intricacies. Unfortunately, these models, despite their linguistic
adaptability, may lack the exposure needed to capture these
culturally specific behaviors accurately. For instance, behaviors
like the distinctive head movements indicative of agreement in
certain cultures remain a challenge for these models. This
underscores the connection between language and culture,
highlighting the need for models to not only decipher linguistic
components but also to appreciate and simulate the cultural nuances
that accompany them. As such, we believe that further research is
necessitated to ensure a unified representation of both linguistic and
cultural dimensions in the realm of talking head generation and
automatic dubbing, leaving this an open challenge to the field.
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5.5 Ethical and legal challenges

Lastly we mention that the modification of original digital media
content is subject to a wide range of ethical and data-protection
considerations. While it is expected for most digital content that the
work of paid actors is considered as “work for hire,” there are
broader considerations if auto-dubbing technology becomes broadly
adopted. Even as we write there is a large-scale strike of actors in
Hollywood, fighting for rights with respect to the use of AI generated
acting sequences. A full discussion of the broad ethical and
property Al
technologies mature into sophisticated end-products for digital

intellectual implications arising as today’s
content creation would require a separate article.

Ultimately there is a clear need for advanced IP rights
management within the digital media creating industry. Past
efforts

fingerprinting or encryption (Kundur and Karthik, 2004) but

have focused on media manipulation, such as
were ultimately unsuccessful. More recently researchers have
proposed techniques such as blockchain might be used in the
context of subtitles (Orero and Torner, 2023), while legal
researchers have provided a broader context for the challenge of
digital copyright in the context of the evolution of the Metaverse
(Jain and Srivastava, 2022). Clearly, multi-lingual video dubbing
represents just one specific sub-context of this broader ethical and
regulatory challenge.

Looking at ethical considerations for the focused topic of multi-
lingual video-dubbing one practical approach is to adopt a
methodology that can track pipeline usage. One technique
adopted in the literature is to build traceability into the pipeline
itself, as discussed by Pataranutaporn et al. (2021). These authors
have included both human and machine traceability methods into
their pipeline to ensure safe and ethical use thereof. Their human
traceability technique was inspired by fabrication detection
techniques drawn from other media paradigms (e.g., text, video)
and incorporates perceivable traces like signatures of authorship,
distinguishable appearance or small editing artefacts into the
generated media. Machine traceability, on the other hand,
involves incorporating traces imperceptible to humans, such as

non-visible noise signals.

6 Concluding thoughts

In this paper we have attempted to capture the current state-of-
art for automated, multi-lingual video dubbing. This is an emerging
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field of research, driven by the needs of the video streaming industry
and there are may interesting synergies with a range of neural
technologies, including auto-translation services, text-to-speech
synthesis, and talking-head generators. In addition to a review
and discussion of the recent literature we have also outlined
some of the key challenges that remain to blend today’s neural
technologies into practical implementations of tomorrow’s digital
media services.

This work may serve both as an introduction and reference
guide for researchers new to the fields of automatic dubbing, and
talking head generation, but also seeks to draw attention to the latest
techniques and new approaches and methodologies for those who
already have some familiarity with the field. We hope it will
encourage and inspire new research and innovation on this
emerging research topic.
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