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Numerical emulations of the piano have been a subject of study since the early
days of sound synthesis. High-accuracy sound synthesis of acoustic instruments
employs physical modeling techniques which aim to describe the system’s
internal mechanism using mathematical formulations. Such physical
approaches are system-specific and present significant challenges for tuning
the system’s parameters. In addition, acoustic instruments such as the piano
present nonlinear mechanisms that present significant computational challenges
for solving associated partial differential equations required to generate synthetic
sound. In a nonlinear context, the stability and efficiency of the numerical
schemes when performing numerical simulations are not trivial, and models
generally adopt simplifying assumptions and linearizations. Artificial neural
networks can learn a complex system’s behaviors from data, and their
application can be beneficial for modeling acoustic instruments. Artificial
neural networks typically offer less flexibility regarding the variation of internal
parameters for interactive applications, such as real-time sound synthesis.
However, their integration with traditional signal processing frameworks can
overcome this limitation. This article presents amethod for piano sound synthesis
informed by the physics of the instrument, combining deep learning with
traditional digital signal processing techniques. The proposed model learns to
synthesize the quasi-harmonic content of individual piano notes using physics-
based formulas whose parameters are automatically estimated from real audio
recordings. The model thus emulates the inharmonicity of the piano and the
amplitude envelopes of the partials. It is capable of generalizing with good
accuracy across different keys and velocities. Challenges persist in the high-
frequency part of the spectrum, where the generation of partials is less accurate,
especially at high-velocity values. The architecture of the proposed model
permits low-latency implementation and has low computational complexity,
paving the way for a novel approach to sound synthesis in interactive digital
pianos that emulates specific acoustic instruments.
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1 Introduction

Sound synthesis techniques for accurately emulating acoustic musical instruments have
employed physical modeling techniques for almost half a century (Adrien et al., 1988;
Smith, 1991; Välimäki et al., 1995; Smith, 1996; Bilbao et al., 2019). However, most methods
rely on approximations. Sound generation in acoustic instruments is based on nonlinear
mechanisms, especially for the excitation part. Since the early days of sound synthesis, the
trend has been to increase the complexity and precision of the synthesis models to improve
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the fidelity of the synthetic sound. The nonlinearities of vibrating
strings, membranes, and tubes, as well as the nonlinear aspects of
collision interactions between strings, frets, fingers, and
fingerboards, are essential in determining the behavior and
timbre of an instrument. Solving nonlinear differential equations
requires approximations and presents computational challenges
because a stable and efficient numerical scheme must be
formulated. Approximations and numerical rounding have a
negative impact on the accuracy of the generated sound.

Recently, a variety of methods for acoustic instrument modeling
based on deep leanings techniques has been proposed. Most of these
take a black-box approach, modeling the system as a whole without
considering any instrument-specific internal feature. In turn, it is
challenging to assert the accuracy of the generated sound with
quantitative numerical methods; perceptual listening tests are
often used for evaluation. In addition, black box models for
sound synthesis often present significant limitations on the
interactivity and interpretability of internal parameters, which are
detrimental to integrating such models in tools for music
performance and production. The combination of deep learning
in traditional signal processing frameworks—differentiable digital
signal processing (DDSP) (Engel et al., 2020)—can be used to
conceive modular models that take advantage of end-to-end
learning frameworks. With DDSP, specific features of an acoustic
instrument can be considered and explicitly integrated when
designing the model, which in turn can improve the accuracy of
the emulation.

We here introduce a novel hybrid modeling technique based on
DDSP for piano sound synthesis which provides an alternative to
pure physical modeling. Our approach models specific aspects of the
piano sound generation mechanism without considering the
physical causes but only how these affect the produced sound.
We focus on the quasi-harmonic content of the sounds generated
by individual piano keys, which plays a crucial role in creating the
distinct timbre of the instrument. Within this context, nonlinearities
are fundamental in stretching harmonics and generating new ones.
Pianos do not produce a perfectly harmonic sound. Harmonics are
not exact multiples of the fundamental frequency and are,
consequently, referred to as partials. The degree of inharmonicity
in a piano differs based on its strings and tuning characteristics.
These string characteristics also influence how partials decay and
affect other phenomena, such as beating. These aspects are typically
not emulated in ideal or linear piano models but are crucial for high-
fidelity acoustic piano sound synthesis. Our technique utilizes an
additive synthesizer to generate partials based on the known physics
of the piano. These known principles are embedded in the proposed
model as mathematical expressions. However, the coefficients and
parameters of these expressions are fine-tuned to emulate a specific
piano exemplar using an end-to-end deep-learning audio approach.
Guiding the learning process with physics allows us to obtain more
accurate and less computationally demanding models than fully
black-box approaches. Moreover, the proposed architecture is
modular, consisting of two sub-components trained separately.
This structure not only facilitates the model’s learning from
training data but also enables the evaluation of specific emulated
features and simplifies the process for the eventual integration of
additional piano characteristics. Currently, the model synthesizes
only the harmonic content and does not include the noisy

components of the piano sound; thus, examples generated by the
model are not fully representative of the instrument’s timbre.
Consequently, evaluations are based primarily on quantitative
analyses. However, the results demonstrate how the synergy of
knowledge from physics and artificial neural networks can enable
learning of complex piano features using only a compact model
trained with a small dataset.

The remainder of this article is organized as follows: Section 2
reviews recent approaches and emerging trends in sound synthesis
based on deep learning. Section 3 provides an overview of the
physics of the piano instrument, and Section 4 describes our
technique for piano sound synthesis, including the model’s
architecture, losses, and datasets used in our experiments. Section
5 presents results and limitations, while Section 6 concludes the
paper by detailing future work and research directions.

2 Background

In recent years, deep learning (DL) methods based on multi-
layered artificial neural networks (ANNs) have been successfully
employed to train sound-generating models directly from raw audio
data (Dieleman and Schrauwen, 2014). These techniques have
shown promising application, including predicting nonlinear time
series and emulating complex nonlinear analog audio effects.
However, the utilization of these approaches in acoustic
instrument modeling remains limited both in the number of
attempts and in their performances. In a system that models an
acoustic instrument, the input represents the excitation mechanism,
which is generally human-driven and lies in a domain different from
the generated sound. It is challenging for ANNs to learn the
mapping between input and output, particularly for complex
devices such as acoustic musical instruments, because input and
output significantly differ and present distinct characteristics. On
the other hand, recent advances have showcased the potential of DL
methods for sound synthesis. These are reviewed and grouped in the
following four thematic subsections, which present common
advantages and shortcomings for interactive sound synthesis
applications.

2.1 Autoregressive methods

Among the DL approaches utilized for audio generation,
autoregressive models represent some of the earliest methods
investigated. These models are trained to predict subsequent
audio samples using the prior predictions as inputs.
Convolutional and recurrent neural networks (CNNs and RNNs)
are the most commonly used architectures when models work
directly with audio samples as input and/or output. WaveNet
represents the earliest attempt in this field, employing a
convolutional-based autoregressive model. A key strength of this
approach is the use of dilated causal convolution. Dilation increases
the model’s receptive field by skipping input values with a certain
stride, while causality ensures that future context is not considered
when making predictions. A sound synthesis application using a
WaveNet-based architecture is proposed in Engel et al. (2017a),
where the model was trained with the NSynth dataset. Subsequently,
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WaveRNN (Kalchbrenner et al., 2018) introduced RNN integration
into the autoregressive architecture; it has been utilized for text-to-
speech synthesis. Another application of the WaveRNN model,
trained on the NSynth dataset, is used to generate string, brass,
woodwind, and mallet sounds (Hantrakul et al., 2019). In this case,
the synthesis is conditioned by audio features represented as a time
series, with a much lower sampling frequency (250 Hz) compared to
the audio rate.

SampleRNN (Mehri et al., 2016) is an RNN-based model that
uses three modules organized in a hierarchical structure, each
operating at a different temporal resolution. The lowest module
processes individual samples, while each subsequent higher module
operates on an increasingly longer timescale and lower temporal
resolution. Each module conditions the module below, with the
lowest module generating sample-level predictions. The audio
generation is not conditioned by any parameters and hence offers
no means for control or interaction with this sound generator. The
architecture is evaluated on three different datasets: Blizzard (Simon
and Vasilis, 2005), including spoken voice recordings from a single
female, Onomatopoeia (Yuki et al., 2020), including a range of
human vocal sounds, and a third consisting of a collection of
Beethoven’s piano sonatas.

Other works inspired by text-to-speech models such as Tacotron
(Shen et al., 2018) and Deep Voice (Ping et al., 2018) predict a Mel-
spectrogram from score and instrument information and use it to
condition a WaveNet-based network that represents a neural
vocoder (Kim et al., 2019; Tan et al., 2020; Dong et al., 2022).
Similarly, in Cooper et al. (2021), a filter-bank based on the MIDI
index and frequency values of notes is used instead of the Mel-
spectrogram. Lastly, a WaveNet model for piano synthesis, directly
conditioned by MIDI data, is used in Hawthorne et al. (2018). To
train the model, the authors developed the Maestro dataset (Curtis
et al., 2018), which includes paired audio and MIDI recordings from
human performances on an acoustic piano outfitted with electronic
sensors. This approach requires two networks: an acoustic model to
produce the conditional features and a neural vocoder to produce
the final raw audio output.

The abilities of CNNs and RNNs to learn temporal
dependencies depend upon the receptive fields of the CNNs
and the internal states of the RNNs. Long receptive fields
mean long input–output latency, while the internal states of
RNNs present limitations on the number of previous time
steps they can track. Transformer models (Vaswani et al.,
2017) aim to overcome these problems by relying on attention
mechanisms to capture the global context rather than a recurrent
unit with memory. This simplifies the capture of temporal
dependencies across long sequences. Transformer models have
demonstrated significant success in language-related tasks and
have been utilized for speech synthesis (Li et al., 2019) in
combination with WaveNet. In this setup, sequences of
phonemes are fed into the transformer that generates Mel-
spectrograms, followed by the WaveNet vocoder that outputs
the audio signal. Similar methodologies applying to audio
modeling, images, and text are also proposed in Child et al.
(2019). A transformer architecture has also been applied to the
automatic generation of counterpoints (Bentsen et al., 2022) and
piano synthesis (Verma and Chafe, 2021) with the training
utilizing real piano recordings scraped from YouTube.

Autoregressive methods enable low-latency implementations as
they predict one or a few samples at a time, leveraging short input
audio frames from previous predictions. On the other hand, they
suffer from significant computational inefficiency and data flow
dependencies, preventing the use of parallel computing. Teacher
forcing is a possible strategy to overcome data dependency, using
ground truth as input instead of the model’s prior output. With this
approach, errors can accumulate quickly along the prediction
sequence. To overcome this issue, a curriculum learning strategy
can be used to change the training process from a fully guided
scheme based on previous true tokens to a less guided scheme
(Bengio et al., 2015), with the disadvantage of significantly extending
the duration of the training phase.

2.2 Latent space-based and
probabilistic methods

Generative adversarial networks (GANs) (Goodfellow et al.,
2014) represent another popular approach for sound generation.
GAN architectures consist of two key components: the generator
and the discriminator. The former generates sound examples,
while the latter classifies them as real or fake as a substitute for the
loss function. These two sub-components function in an
“adversarial” context, where the generator must compete
against the discriminator. Typically, the GAN’s generator
learns to predict examples from random vectors in the latent
space of the training dataset. Unlike autoregressive models, GANs
typically generate one complete audio example in a single pass
rather than in a sequence of inferences. Moreover, GANs do not
model local structures but instead incorporate global latent
conditioning and efficient parallel sample generation.
Pioneering work has been carried out in the field of applying
GANs to the audio domain which has managed to generate raw
audio examples with a duration of 1 s, synthesizing a variety of
sounds such as drums, bird vocalizations, speech, and piano
(Donahue et al., 2018). Improvements have been proposed by
Engel et al. (2019) that demonstrate that working in the spectral
domain can provide higher fidelity and better locally-coherent
sound generation. In Bitton et al. (2019), the adversarial
framework uses Wasserstein autoencoders (WAEs) (Tolstikhin
et al., 2018) and extends the generation by using expressive
modulations of target musical attributes. The Wasserstein
generative adversarial network is also used in Drysdale et al.
(2020), where the network is trained with a small dataset of
drum sounds and is conditioned by high-level parameters to
generate different drum sounds such as kick, snare, and
cymbals. DrumGAN (Nistal et al., 2020) improves drum sound
synthesis by conditioning the model on perceptual features using
generative adversarial networks. Finally, StyleWaveGAN (Lavault
et al., 2022) generates audio examples conditioned on the drum
type and a set of audio descriptors.

WAE and a multi-head convolutional neural network (MCNN)
are utilized in Aouameur et al. (2019) to generate percussive sounds.
The WAE learns to generate Mel-scaled magnitude spectrograms of
the sound signal, while an MCNN estimates the corresponding
audio samples from the magnitude spectrogram. The dataset used to
train this system is a collection of sound examples across 11 drum
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categories: kicks, claps, snares, open and closed hi-hats,
tambourines, congas, bongos, shakers, snaps, and toms.

A feedforward CNN, based on U-Net (Ronneberger et al., 2015),
is used in Ramires et al. (2020) to synthesize percussive sounds by
mapping high-level timbre characteristics of the sound to the
corresponding audio signals. In particular, the probability
distribution of the audio signal is modeled as a function of the
timbral features and time-domain amplitude envelope. The training
dataset used in this case contains percussive audio examples such as
kicks, snares, cymbals, and bells.

Flow-based methods transform a simple initial probability
density into a complex one with a sequence of invertible
transformations (Rezende and Mohamed, 2015), explicitly
learning the data distribution. Diffusion probabilistic models (Ho
et al., 2020) achieve a similar objective by using a Markov chain to
progressively increase the distribution’s complexity, adding random
noise to the data. Since the process is reversible, data examples can
be reconstructed starting from noise. In both methods, loss
functions are usually derived from the log-likelihood estimation.
So far, flow-based and diffusion methods have been adopted
exclusively for speech synthesis, where the generation is
conditioned by Mel-spectrograms or by other acoustic and
linguistic features (Kim et al., 2018; Prenger et al., 2019; Kong
et al., 2020; Ping et al., 2020).

The methods discussed in this subsection can generate sound
examples that closely mimic those in the training datasets.
Unlike autoregressive methods, these examples present a
highly coherent local and global temporal structure despite
the models not relying on previous predictions. This
achievement is also due to these architectures’ intrinsic ability
to output large blocks of audio samples at once. Indeed, an entire
sound example is produced in a single or a few inference steps.
This represents a significant drawback in terms of latency for
interactive sound synthesis applications. However, existing
implementations have demonstrated that real-time audio
computation is feasible.

2.3 Symbolic-to-audio methods

Utilizing symbolic music representation as input for a DL model
that generates audio is an approach that resembles the functioning of
musical sound synthesizers. Most of these methods adapt techniques
from successful text-to-speech synthesis to perform MIDI-to-audio
synthesis. This approach typically consists of two key components:
the acoustic model and a neural synthesizer. The acoustic model’s
function maps the symbolic information to acoustic features. These
features are fed into the neural sound synthesizer to generate the
output audio signal. The neural sound synthesizing can also be based
on the techniques revised in the previous subsections. In fact, MIDI
data are used in the autoregressive methods proposed by Hawthorne
et al. (2018) and Cooper et al. (2021) already detailed in Section 2.1.

Sing (Défossez et al., 2018) is a variational recurrent model based
on a long short-term memory (LSTM) network that generates a
sequence used as input for a decoder, which generates the output
digital audio signal. The model’s inference produces frames of audio
samples from a sequence of parameters, including pitch, velocity,
type of instrument, and time index.

Other related works fall in the category of singing voice synthesis
(SVS) systems. XiaoiceSing (Lu et al., 2020) is based on transformer
architecture. It takes the musical score as input to the encoder and
then feeds the generated acoustic features into the decoder to
synthesize the audio. The synthesis is based on the vocoder
algorithm WORLD (Morise et al., 2016). HiFiSinger (Chen et al.,
2020) is also based on transformers, but here the vocoder is an
autoregressive WaveNet-based network (Oord et al., 2018).

DiffSinger (Liu et al., 2022) uses the diffusion model, and,
instead of optimizing the acoustic model to generate acoustic
features, it utilizes a Markov chain conditioned on the musical
score. The encoder and decoder are transformer-based, while the
denoiser is a WaveNet conditioned by the Mel-spectrogram. Other
SVS systems approach modeling differently. In Hono et al. (2021),
time-lag and duration models are added to determine the phoneme
duration while considering the note length constraints and timing
fluctuations. On the other hand, the system proposed in Zhuang
et al. (2021) uses an encoder consisting of non-autoregressive
WaveNet blocks and a decoder that employs a generative
adversarial architecture.

Symbolic-to-audio methods generate audio directly from MIDI
data and are particularly effective. They have been successfully
adopted for low-latency and interactive speech and singing
synthesis. By utilizing MIDI data or alternative symbolic musical
representations, they eliminate the need to capture the signal’s large-
scale temporal structures of the signal, focusing instead on its local
structure. However, these methods present additional challenges,
such as the requirement to train two different networks. Moreover,
input–output mapping from two domains—symbolic and raw
audio—requires significant effort and poses challenges to
designing low-latency models capable of tracking long-term
sound structures working with short-time input frames. This
aspect could be even more challenging for acoustic instruments
where the sound production mechanism is particularly complex.

2.4 Hybrid physics-informed methods

Deep learning has shown promising results in simulating
physical phenomena (Paganini et al., 2018; Rasp et al., 2018;
Moseley et al., 2020b; Brunton et al., 2020). Combining deep
learning techniques with physical constraints is a relatively recent
development that aims to leverage the strengths of both theoretical
physics and machine learning. Physics-informed neural networks
(Raissi et al., 2017) (PINNs) are a type of ANN that can embed the
knowledge of any physical laws governing a given dataset used for
their training. PINNs are trained to solve partial differential
equations, using the underlying equations as loss functions
during the training process. The finite difference and spectral
element methods are among the most popular for solving wave
equations. The equations are discretized, and iterative time-stepping
schemes are used to solve them. As discussed in Section 1, the
fundamental difficulties when using these methods are the
computational costs and discretization errors, which PINNs aim
to overcome. The introduction of PINNs has prompted several
investigations, and it has been proven that they can learn solutions
that are far outside of the boundary data used to train them (Moseley
et al., 2020a; Cai et al., 2021). Direct applications in the audio
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domain have not yet been proposed, but PINNs appear suitable for
solving the nonlinear partial differential equations underlying
acoustic instruments.

Residual networks, like PINNs, can be employed as a black-box
differential equation solver for ordinary differential equations (Chen
et al., 2018). They have been used in structures like RNN to solve
acoustic problems, such as the 2D wave equation for linear and
nonlinear strings (Parker et al., 2022). Moreover, ANNs have been
integrated into the popular port-Hamiltonian framework to learn
dynamical systems (Desai et al., 2021).

Hybrid models are often trained on synthetic datasets derived
from physics simulations, making them particularly useful for
developing faster and more efficient solvers for existing digital
models. However, this approach cannot synthesize aspects of
known acoustic phenomena that lack available mathematical
models or are unsolvable with current numerical techniques.

2.5 Differentiable digital signal
processing methods

Recent advances in machine learning have introduced a range of
modeling options, including those that integrate machine learning
with traditional techniques, such as signal processing and physics-
based approaches. In particular, these kinds of approaches exploit
the backpropagation neural network training process to tune the
parameters of digital signal processing blocks.

In an early application of this method, radial basis function
networks are utilized to model the nonlinear components in an
exciter–resonator scheme, emulating the sounds of violins and oboes
(Drioli and Rocchesso, 1998). This led to the development of a
system that, instead of explicitly defining a signal processing
structure, could learn the shape of the nonlinearity to reproduce
target sounds.

In more recent examples that integrate machine learning with
signal processing techniques, Wilkinson (2019) used the Gaussian
process to learn physical modal synthesis parameters from sound
recordings. This approach models nonlinear audio spectral
mappings using examples of natural sounds. The author
estimated the exponential decay rates for the vibrational models
of various instruments, including the clarinet, oboe, and piano, as
well as metal and wooden impact sounds. Neural networks have also
been leveraged to estimate physical model parameters (Gabrielli
et al., 2017; 2018). In particular, a CNN is linked with the physical
model of a pipe organ, which includes an exciter that simulates wind
jet oscillation, a resonator that uses a digital waveguide structure to
replicate the bore, and a noise model that simulates air noise
modulated by the wind jet.

Another approach for sound synthesis is based on a source-filter
model with parameters tuned using end-to-end training in the audio
domain. The earliest neural source-filter approach was successfully
applied to speech synthesis (Wang et al., 2019). In this case, the
neural source-filter is trained using spectrum-based criteria that
return acoustic features as conditioning. It then uses a trainable filter
module to transform a sine-based excitation signal into the model’s
output. In Wang et al. (2019), the input and output pairs were audio
signals of 5 ms. Later, a framework integrating classic signal
processing elements with deep learning and allowing an

interpretable and modular approach to generative modeling was
released (Engel et al., 2020), and the term “differentiable digital
signal processing ” (DDSP) was coined.

This concept has been adapted to model the acoustic piano
(Renault et al., 2022), where the system architecture is designed
using high-level acoustic knowledge of the instrument and allows
the generation of polyphonic sound. This architecture generates
audio at a 16 kHz sampling rate and was trained using the Maestro
dataset and conditioned by MIDI data, including inputs from pedals
and a piano ID to emulate different types of piano. The model
generates the quasi-harmonic and noisy components for all
individual voices and applies the estimated impulse response of
the recording environment to their sum. The components of the
model emulate the mechanism of sound generation in a piano. In
this context, each sub-model contributes to the overall timbre of the
sound. The inharmonicity sub-model, for instance, incorporates the
partials of a piano key, which are not pure harmonics of the key’s
fundamental frequency—primarily because of the stiffness of piano
strings. Meanwhile, the detuner model accounts for the partials’
beating caused by the presence of multiple strings per key. Finally, a
monophonic networkmodels the spectral envelopes of the notes and
tracks their temporal evolution.

A differentiable subtractive-based synthesizer has been
proposed for singing-voice synthesis (Wu et al., 2022). The
harmonic voice part is synthesized by filtering a sawtooth source
signal with a linear time-variant finite impulse response filter. The
filter’s coefficients are estimated by the neural networks using the
Mel-spectrogram as input. Similarly, digital IIR filters have been
integrated into deep-learning networks, where Kuznetsov et al.
(2020) linked IIR filters and RNNs, presenting as an application
example a Wiener–Hammerstein model using differentiable IIRs.

The advantage of DDSP methods lies in the flexibility and
interpretability of models that result from integrating neural
network frameworks with explicit signal processing techniques.
These models benefit from incorporating external knowledge or
manually adjustment, given their comprehensible internal structure,
unlike black-box models. They can be developed using various
machine learning techniques discussed in this section, thus
potentially inheriting those techniques’ disadvantages. DDSP
models for sound synthesis applications can achieve
computational efficiency and low latency. Nevertheless, it is
crucial to possess and apply specific knowledge about the
problem when designing a signal processing block capable, at
least theoretically, of synthesizing the desired sound.

3 The physics of the piano

This section presents an overview of the physical behavior of the
piano, focusing on aspects that significantly characterize its sound
generation process. The piano is a hammered-string instrument,
where the sound is initiated when a hammer collides with a string.
When pressing a key, the corresponding hammer moves through a
mechanical linkage called action. The hammer, typically made with
one or more layers of felt, is accelerated to a speed of typically a few
meters/second (1–6 m/s) and is then released from the action.When
the string is deformed, the hammer and string are in contact for a
few milliseconds. While an exhaustive mathematical description is
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beyond the scope of this section, interested readers can find an
example of such a description in Chabassier et al. (2014).

Nonlinear models of string vibration are essential for
understanding the complex behavior of piano strings. These
models are typically based on the principles of Kirchhoff (1891)
and Carrier (1945) or the Euler–Bernoulli beam equations (Chaigne
and Askenfelt, 1994). While these models provide accurate
descriptions of string motion, they do not always capture the full
complexity of real piano strings. Recently, Timoshenko beam
equations have been proposed as an alternative due to their
ability to better account for real-world effects. These models have
shown good agreement with experimental data (Chabassier
et al., 2013).

When modeling real piano strings, tension modulation is one of
the most important and extensively studied sources of nonlinearity.
This modulation arises from the interaction between the string’s
mechanical stretching and its viscoelastic response. Unlike a purely
elastic spring, the tension modulation in a piano string allows for the
generation of shear deformation, resulting in changes in its length
during oscillation. Therefore, the tension is not constant during the
oscillation and can be approximated according to Hooke’s law (Bank
and Sujbert, 2005). An important effect of tension modulation is the
creation of transverse motion in the bridge that has different
consequences. First, it can excite the mode of the string initially
absent from the vibration (typically, this happens over a time of
order 1 s); second, it creates another transverse polarization that
gains energy through coupling; lastly, the nonlinear coupling with
the two possible transverse polarizations of the string vibration
induces the creation of forced-response longitudinal waves
(Etchenique et al., 2015).

Real piano strings vibrate in two transverse planes, not
necessarily perpendicular, and also present a longitudinal motion.
Longitudinal waves and transverse waves are coupled due to the
influence of transverse vibrations on string tension and contribute to
generating the so-called phantom partials in strings vibrating at high
amplitudes. The exact generation process of phantom partials is still
unclear and could also be affected by the piano’s non-string
components (Neldner, 2020). However, experiments show a
relationship between the transverse and longitudinal
displacements: if wn and wm are two transversal modal
frequencies of a string, additional partials will be generated at
2wn, 2wm, and wn ± wm. Partials at 2wn and 2wm exhibit decay
times that are halved compared to those at wn and wm (Legge and
Fletcher, 1984; Bank, 2009). This phenomenon, often referred to as
the generation of double frequencies, is included in our model
detailed in Section 4.

Longitudinal vibrations are also created by the stretching of the
string during its collision with the hammer. When the hammer is in
contact with the string, it is elongated slightly compared to its initial
length. This stretching is just a displacement along the longitudinal
direction and creates free-response longitudinal waves. The
amplitude of these waves is small compared to the transverse
ones. Experiments indicate that the amplitude of longitudinal
displacements is proportional to the square of transverse ones.
Even if small, the effect of these displacements can be observed
on the soundboard motion and sound spectrum. Lastly, the speed of
longitudinal waves is approximately 3000 m/s which is ten times
greater than that of transverse waves. This implies that the initial

motion of the bridge and soundboard, as well as the initial portion of
the sound (known as the “attack”), results solely from the
longitudinal motion of the string.

Furthermore, a crucial role is played by coupling—an important
phenomenon in piano strings that is evident on keys with multiple
strings (Weinreich, 1977). Imperfections in the hammers lead the
strings to vibrate with slightly differing amplitudes. Two strings
initially move in phase, and yet each string loses energy faster than
when it vibrates alone. As the amplitude of the string initiating at a
smaller amplitude approaches zero, the bridge remains excited by
the movement of the other string. Consequently, the initial string
that ceased vibrating reabsorbs energy from the bridge, creating a
vibration of the opposite phase. This antisymmetric motion of the
strings produces the piano’s aftersound. Any misalignment in the
tuning between the strings contributes to this effect. The
phenomenon becomes particularly important in the use of the
una corda pedal. This pedal shifts the entire keyboard, so a
hammer hits only two of the three strings in a triplet. In this
scenario, the untouched string absorbs energy from the moving
bridge and vibrates immediately in phase with the other two strings,
causing antisymmetric motion from the onset and amplifying the
aftersound. Lastly, the bridge’s motion can cause the vibration of one
string to influence others, affecting their decay rates. As vertical
displacement is larger than displacement parallel to the soundboard,
energy is transferred more to the soundboard, which then decays
more quickly. This effect creates the characteristic double decay in
piano notes.

String stiffness leads to another significant aspect that
characterizes piano sound: the inharmonicity of its spectrum.
The motion of the stiff piano string perpendicular to the
soundboard is described by the following equation:

∂2y

∂t2
� c2

∂2y

∂x2
− ϵc2L ∂

4y

∂x4
− 2b1

∂y

∂t
+ 2b3

∂3y

∂t3
, (1)

where ϵ is the string’s stiffness parameter, c is the transverse wave
velocity of the string in the case where the last term can be
neglected, and L is the length of the string. The stiffness
parameter ϵ is equal to K2ES

L2T , with E as Young’s modulus, S as
the circular cross-section, and K as the radius of gyration. The
natural frequencies can be derived from the lossless dispersion
relation (with b1 = b3 = 0), which results from substituting a
harmonic wave, y (x, t) = y0 exp i (ωt − kx), into Eq. 1. This yields
ω2 � c2k2(1 + ϵLk2), where k is the wave number and ω is the
angular frequency (Podlesak and Lee, 1988). The wave velocity of
the string can now be found from the dispersion relation via
c(ω) = ω/k. The result is that there is a shift of the overtones in the
spectra, such that their frequencies do not have an integer
multiple relationship. For this reason, they are called partials
instead of harmonics. Indeed, for pinned strings y (0, t) = y (L,
t) = 0, the shape of mode j at position x is y(x) = sin (jxπ/L), and
the natural angular frequencies are computed by Eq. 2.

wj � πc ω( )/L � 2πjF0
������
1 + Bj2

√( ). (2)

The frequency of the first partials of the string without stiffness
is F0 = c/2L, and the inharmonicity factor is B � π2ESK2

TL2 .
If b1 and b3 in Eq. 1 are not equal to zero, we can account for the

internal losses due to the stiffness. In particular, if b3 ≠ 0, the
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damping is frequency-dependent (Chaigne and Askenfelt, 1994) and
is equal to

σj � 1
τj

� b1 + b3ω
2
j , (3)

where ωj is the angular frequency. This equation is an
approximation of the actual physics, but it ensures that the decay
time of partials decreases with the increase of frequency, accounting
for internal and air losses.

Finally, by adding the term f (x, x0, t) to Eq. 1, we can include the
hammer excitation and account for all nonlinear effects given by the
hammer system. In the case of the piano, the nonlinearity in the
hammer–string collision is critical and significantly complex. This
aspect has been studied for several decades (Yanagisawa and
Nakamura, 1982; Suzuki and Nakamura, 1990; Stulov, 1995;
Conklin and Harold, 1996; Giordano and Winans, 2000). A
piano hammer acts as a nonlinear spring: when the outer
covering of the hammer is compressed by an amount z as it
collides with a string, the hammer exerts a corresponding force
on the string. The force is not proportional to the compression but
varies nearly as the function F(u) ~H0u

p, whereH0 is the stiffness of
the hammer and p is typically in the range 2.5−4 (Russell and
Rossing, 1998), from bass to treble hammers, respectively. This
nonlinearity affects how many and by howmuch the frequencies are
excited by the hammer at different velocities. Given fmax—the
frequency at which a piano hammer is most capable of exciting a
string mode—as the hammer velocity increases, fmax also increases
but not proportionally and depending on the value of p (Russell and
Rossing, 1998).

Another important aspect to consider is the bending of the
hammer shank, which implies that the force the hammer applies to
the string is not constant. Additionally, the time required for the
force to transmit from the outer edge of the hammer to its core is
significant (Suzuki, 1987; Askenfelt and Jansson, 1991).
Furthermore, the hammer makes multiple contacts with the
string before it rebounds from it (Yanagisawa et al., 1981;
Yanagisawa and Nakamura, 1982; Hall, 1987).

The hysteresis also influences the hammer–string interaction:
the loading and unloading processes of the hammer felt are not
identical. The hammer is still deformed after the acting force has
ceased. The force and the compression display a hysteresis effect
primarily due to wool fibers, which are slipped during slow and
significant amplitude compression (Dunlop, 1983), and the
parameters H0 and p take different values for compression and
relaxation. The nonlinear hysteretic model of the piano hammer is
discussed in (Stulov, 1995) and described in the Eq. 4

F u t( )( ) � H0 up t( ) − ϵ
τ0
∫t

0
up ξ( )exp ξ − 1

τ0
( )dξ[ ], (4)

where F(u) is the force exerted by the hammer, and u is the
compression. H0 is the hammer stiffness, and p is the nonlinear
exponent that together describes the elastic parameters of the
hammer. The hereditary parameters are ϵ, the hereditary
amplitude is constant, and τ0 is the relaxation time. Air humidity
also considerably influences hammers (H0 and τ0 are particularly
sensitive), and their parameters change across the piano’s compass.
Another aspect to consider is the possibility of voicing a piano.

Voicing means softening the hammers, using needles to prick the
felts of the hammers, or reshaping the hammers by shaving off some
of the felt (again, H0 and τ0 are particularly sensitive).

4 Methods

As discussed in previous sections, black-box deep learning
models present limitations when considering interactive
implementations. Generative models usually infer audio samples
in large blocks, which is necessary for achieving good accuracy or
sound quality but significantly detrimental to interactive sound
synthesis applications. Autoregressive models alone perform well
in emulating individual and independent sound events, such as
single notes produced by an instrument, but present limitations in
learning long-term complex sound structures and nuances that are
generated when a performer continuously interacts with the
instrument. Hybrid physical-informed models rely on digital
datasets and time/space discretization and are affected by the
same problem faced in physical modeling approaches. The
symbolic-to-audio approach may present a solution to these
limitations. However, it is unknown whether, and how, these
approaches can work with the small temporal input/output
frames required for low-latency interactive applications.

The DDSP framework can be used to combine elements of
physical modeling, digital signal processing, and deep learning
which allow it to overcome the challenges and limitations
previously outlined. The hammer–string collision, as previously
mentioned, is essential to piano modeling yet is complex to
understand and explicitly model. Additive synthesis shifts the
focus to the sound spectrum produced rather than to the
mechanisms of the sound source. Physical knowledge can be
employed to guide the generation of the partials. Lastly, deep
learning facilitates the tuning of model parameters that are
challenging to measure or only approximate the real-world
behavior of the instrument.

Here, we adopt the DDSP framework to design an additive
synthesis-based model. We tune the model’s parameters using an
end-to-end training approach, from symbolic information such as
the frequency and velocity of the key to the quasi-harmonic
content of the piano note. This strategy aims to model the
features of the instruments, including the spectrum and
amplitude envelope of individual notes. In this context,
“tuning” is to be understood as how the physical characteristics
of the instrument affect the sound. This strategy allows us to
bypass consideration of the complex physical sources that create
these effects. The components of the model are designed based on
known information about the instrument’s sound generation
process. The model generates sinusoidal signals representing the
partials of the played key. This approach allows for a focus on the
spectral contents of the target sound and facilitates the
combination and tuning of quasi-harmonic information.

Starting from the key’s fundamental frequency F0, the model
predicts the inharmonicity factor B, which is influenced by the
string’s stiffness and characterizes the degree of inharmonicity.
Notably, when B = 0, indicating a string with no stiffness, F0
corresponds precisely to the first partials’ frequency f1. B ranges
from 0.0002 for bass strings up to 0.4 for treble strings
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(Hinrichsen, 2012), and it causes the deviation of the key’s
fundamental frequency and its harmonics. The deviation is
computed thus:

fj � jF0
������
1 + Bj2

√
, with 1≤ j≤Q, (5)

where j is the partial’s index and Q indicates the number of partials
considered in the model. With j equal to 1, the first partial f1
indicated the frequency of the stretched string for a specific key.

The physical knowledge included in the model is represented by the
influence of b1 and b3, which appear in Eq. 3.Moreover, σj represents the
exponent of the exponential decay envelope. To provide more flexibility
to the model, b1 and b3 are time-variant, and an additional coefficient α
scales the exponential. Themodel predicts αj for each partial, whereas the
parameters b1 and b3 remain constant across all partials. The resulting
decay is equal to αj(h)e−n/τj(h), where h is the discrete time index
according to the input control data sampling rate and n is the discrete
time index according to the output audio sampling rate.

The beating phenomena are taken into consideration,
generating a sinusoidal signal with a frequency close to the f1. In
this way, we focus on the imperfect tuning of the key’s sub-strings,
considering only one detuned string, which accounts for the possible
imperfect tuning of all the sub-strings. After computing the
frequency fb

1 of the first detuned partial, we generate the
frequencies of the remaining ones fb

j using the inharmonicity

Eq. 5. Consequently, the partials fb
j associated with the beatings

are already not in tune with those computed starting from f1. The
partials fb

j produced from the detuned string are processed in the
same way as those in tune since the strings share the same
parameters, and have, in turn, the same b1 and b3 coefficients.

Some of the longitudinal wave effects are also included. The so-
called double frequencies, created by the coupling due to the two
transverse vibrations and exciting string modes at 2wj, with j being
the transverse mode, are computed by doubling the partials’
frequency and halving their decay times. The criteria for
generating the other phantom partials still need clarification, so
we have left this for future investigation.

Lastly, the string–hammer collision does not need to be
considered since all the information we need is on the energy
produced in the final part of the impact, represented by the velocity.

Because of the high complexity of the problem, we consider the
quasi-harmonic and noisy contents of the sound separately. Here,
we focus on the features that influence the generation of harmonic
contents only, leaving the noisy components for the future.

4.1 Architecture

Figure 1 illustrates the architecture of the proposed physics-
informed DDSPmodel, which produces the quasi-harmonic content

FIGURE 1
Proposed architecture. Themodel takes as input the key’s fundamental frequency F0 (derived from the MIDI note number), the key velocity vel, and
the relative time index h, which represents how long the key has been pressed. F0 is fed to a fully connected network followed by the rectified linear unit
activation that computes the inharmonicity factor B. The partial frequencies f1, f2, . . ., fQ are calculated using Eq. 5 and then are sent to an oscillator bank to
generate the sinusoidal signals s1, s2, . . ., sQ. The key frequency F0, velocity vel, and the index h are the inputs of three LSTM-based networks that
predict the values needed to compute exponents and the base for the decay envelope according to Eq. 3. F0 and vel are also the inputs of a fully
connected network with tanh activation function that computes the δF, which is the frequency deviation of the main string creating the beating effect.
The δF is added to F0 and uses Eq. 5 to calculate the partials’ frequencies fb1 , f

b
2 , . . . , f

b
Q. These are used to generate the sinusoidal signals sb1 , s

b
2 , . . . , s

b
Q that

share the same decay values of s1, s2, . . ., sQ. The partials’ frequency vector is also used to compute the double frequency effect due to the longitudinal
waves. The partials’ frequency values are doubled to obtain fl1 , f

l
2 , . . . , f

l
Q . The oscillator bank generates the signals sl1 , s

l
2 , . . . , s

l
Q that have a halved decay

time. Finally, all sinusoidal signals related to key frequency, beating, and phantom partials are summed in the output frame of audio samples.
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of the piano sound, generating the partials of the note. The model
works like a multi-rate system, where input and output present
different sampling rates. In particular, the input control data are
sampled at an integer fraction of the output audio sampling rate.
Consequently, the model generates a frame of audio samples at the
output for each input sampling period. The model utilizes key
frequency F0, key velocity vel, and a relative time index h as
input control data, with h indicating how many input sampling
periods have passed since the key was pressed.

Assuming D as the level of model polyphony, the input will have
a dimension of D×3. The F0 values are directed to a fully-connected
(FC) ANN, which computes the inharmonicity coefficient B. The
value of B varies for each piano note due to differing string lengths
and is not time-dependent. In this scenario, an FC network with a
single hidden layer with linear activation functions, followed by an
output layer with rectified linear unit (ReLU), is adequate to predict
B, the value of which can be 0 for certain keys. B is then used to
calculate the frequencies fj using Eq. 5. These are fed to the
sinusoidal oscillator bank generating the partials.

F0 and vel are inputs of an FC network with no hidden layers and
tanh activation function on the output layer. This FC predicts the
values representing the δF difference in frequency accounting for the
detuning of the sub-strings and creating the beating. Detuning is
considered a time-invariant but only key-dependent. The output of
the second FC network δF is added to the key’s fundamental
frequency F0 and used in Eq. 5 to calculate the frequencies fb

j of
a new set of sinusoids. These are added to the previous group
producing the beatings. Both groups of sinusoids assume the same
decay values as they are expected to be excited similarly by the
hammer. The values fj are also utilized to produce the phantom
partials from the longitudinal waves. In this case, their frequencies
are computed as fl

j � 2fj.
F0, vel, and h are sent to three parallel LSTM networks to

compute the decay envelopes. The first two LSTM networks
predict the coefficients b1 and b3 required to compute the
decay rate of the key. The last LSTM computes the coefficients
αj. We opted for LSTM networks for these three parameters since
the model must track time accurately in order to model the
percussive envelope of the piano’s sound. The computed decay
values are then applied to all sinusoidal signals generated by the
oscillator bank. For the phantom partials, the decay rate has a
duration that is halved. Finally, the model generates a frame of
audio samples by summing all sinusoids related to the key’s
frequency, beating, and phantom partials. Continuity of the
sinusoidal signals across frames is ensured by an internal
audio-rate time index, which is reset at the onset of each note.

4.2 Losses

Three loss functions are used in the training process. The first is
the log mean-squared-error (logMSE) loss, utilized in the quasi-
harmonic module. The logMSE compares the model’s predicted
frequency for the first partial f1 with the target frequencyf̂1, which is
obtained through a fundamental frequency estimation from the
dataset recordings, as detailed in Section 4.3. We refer to this metric
as the F loss when presenting results, and it is calculated using the
Eq. 6:

logMSE f1, f̂1( ) � MSE log2 f1 + δ( ), log2 f̂1 + δ( )( ), (6)

where δ is used to avoid the zero argument of the logarithm, which in
our case is fixed to 1. We use log2 because this is also used in the cent
scale, which is the logarithmic unit of measure for musical intervals.

Using the F loss, the model can be anchored to the first partial
and helped to match the other partials. The second loss is the mean-
squared-error (MSE) of the root-mean-square (RMS) values
computed on the whole target and predicted audio frame. This
helps the network predict a sequence of audio frames that match the
target amplitude envelope. The third is a multi-resolution STFT loss
that guides the prediction of the frequency and amplitude envelope
of each partial. Both losses are computed on the model’s output
sound. The multi-resolution STFT (Engel et al., 2020) loss is defined
as in Eq. 7. This loss compares the linear and logarithmic absolute
values of STFT with different frequency resolutions using the
L1 norm, calculated as the sum of the absolute vector values. We
select the window length m to be 512, 1,024, and 2,048.

LSTFT y, ŷ( ) � ∑
m

‖|STFTm y( )| − |STFTm ŷ( )|‖1
+∑

m

‖log |STFTm y( )|( ) − log |STFTm ŷ( )|( )‖1. (7)

4.3 Datasets

The dataset used in our experiments includes individual piano
notes recorded from a Yamaha Disklavier MX100A, which was
controlled via MIDI messages. The piano was tuned using 440 Hz as
the reference pitch for the A4 key before the dataset was collected.
Sound recording was carried out using a MOTUM41 audio interface
connected to an Earthworks M50 measurement microphone2. The
microphone was placed inside the piano case a few centimeters away
from the instrument strings to minimize the adverse effect of the
room acoustic on the recorded data. The interval between each pair
of MIDI note-on and note-off messages was fixed to 2 s. This implies
that the piano keys were depressed for a duration of 2 s, while each
audio recording has a duration of 2.5 s, including 0.5 s after the key
release. This duration was sufficient to capture the great majority of
the decay’s sound in the selected octaves. Our study focused on the
central keyboard range of the piano, considering two octaves of keys
from C3 to B4 played at seven different velocities ranging from 60 to
120 with a step of 10. The recording was taken with a sampling rate
of 48 kHz and down-sampled to 24 kHz for the training. We choose
not to vary the key holding time because this does not affect the
natural decay time of the sound nor the parameters influencing the
decay rates. Indeed, when the key is released, the string is just
damped. Eventually, this feature can be integrated with a separate
ADSR block, tuned either manually or with parameters derived by
neural modeling.

We computed input vectors starting from the MIDI data,
including the key’s fundamental frequency F0, velocity vel, and

1 https://motu.com/en-us/products/m-series/m4/

2 https://earthworksaudio.com/measurement-microphones/m30/
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time index h. Values of F0 are derived from the MIDI note number
as 2(MIDInumber−69)/12 · 440 Hz. Values for h are the discrete-time index
corresponding to the rate we use to sample MIDI data, yielding
indices representing note lengths. The sampling rate of the MIDI
data is contingent upon the selected length of the output audio frame
and output audio sampling rate, detailed in the following subsection.
Input vectors are normalized to the [0,1] range. Finally, we estimate
the targetf̂1 of the F loss, which represents the frequency of the first
partial from the target recordings, using the pYIN algorithm
(Mauch and Dixon, 2014) designed for estimating fundamental
frequencies.

4.4 Experiments and learning

The model is trained using the Adam (Kingma and Ba, 2014)
optimizer with gradient norm scaling of 1 (Pascanu et al., 2013)
and an initial learning rate of 10–6. Models are trained for
50 epochs. Test losses are computed with the model’s weights
that minimize the validation loss throughout the training epochs.
With only 168 note-recording examples in total, the dataset is
relatively small. These examples encompass seven different
velocities for each of the 24 unique keys. We built two training
and test sets to evaluate two different scenarios. In the first
scenario, the training set includes recordings of all datasets,
excluding those related to the key in the middle of the
dataset’s range—D4. The recordings of D4 at different
velocities are used as the test set. This represents the most
challenging case as it evaluates how the model predicts the
sound of an unseen key at various velocities. In the second
scenario, we train the network using recordings of all keys in
the dataset but exclude all middle-velocity examples, which are
the recordings at a velocity of 90 for each key used as the test set.
Here, the network’s performance is assessed based on its ability to
predict the sound produced by seen keys at unseen velocity values.
In both scenarios, the validation set consists of 10% of the shuffled
training set. Ideally, if aiming at high modeling fidelity, the
training should employ a much larger dataset, extended with
more velocity and key examples. In practice, we use such a small
dataset in two specific testing scenarios to evaluate the ability of
our proposed model to interpolate between unseen keys and
velocity values. Finally, we also cross-validate the model by
repeating the first testing scenario 24 times, each time with a
different unseen key, and the second testing scenario 7 times, each
with a different unseen velocity value. Models in the cross-
validation are trained for 50 epochs.

We have chosen to experiment by sampling the MIDI data at
100 Hz and at 1 kHz, meaning that eachMIDI note is broken down
in a sequence of samples. We utilize an audio sampling rate of
24 kHz. Thus, each sample drawn from the MIDI data, which we
use as model input, aligns with frames of either 240 or 24 audio
sample. Therefore, the model’s inference produces frames of 240 or
24 audio samples at a time. This arbitrary choice is a good trade-off
between computational complexity and stimulus-to-sound
latency. It thus demonstrates the suitability of this modeling
technique for low-latency interactive applications, particularly
in sound synthesis.

The actual inputs to the model are vectors, each consisting of
triplets comprising F0, vel, and h values. Based on the sampling rates
specified above, a 2.5-s recording in our dataset corresponds to a
sequence of 250 input vectors when dealing with output audio
frames that contain 240 samples, and to a sequence of 2,500 input
vectors when dealing with output audio frames that
contain 24 samples.

The selected number Q of partials is set to 24 because, in the
octave region of our dataset, keys usually produce approximately
20–30 partials (Russell and Rossing, 1998). The fully connected layer
consists of 32 units, while the LSTM layers present the same number
of units as the number of partials. Finally, like Renault et al. (2022),
we adopted two stages of learning. First, we tuned the inharmonicity
factor using the F loss and, in turn, produced partials as close as
possible to the target. Second, we allowed the model to learn the
partials’ amplitude envelope using the STFT and RMS losses. During
the first phase, only the FC’s weights were trainable, while, in the
second, we trained the layers’ weights predicting the decay
coefficient b1, b3, αj, and δF. Early experiments showed that this
order leads to better accuracy.

5 Results

The first evaluation of the model is based on the test losses
obtained in the two test scenarios: in the first, the model predicts the
sound of an unseen key during training at different velocities; in the
second, the model predicts an unseen velocity for all seen training
keys. In the first case, the unseen key is D4 with its associated seven
different velocities. In the second case, the unseen velocity is 90. The
STFT, F0, and RMS loss values, as defined in Section 4, are reported
in Tables 1, 2. F loss values are small for predicted D4 velocities. We
computed an approximation of the respective cent deviation (Ellis,
1880), this average also being reported in Table 1 with a max value of
4.46 · 10–1. Considering that the distance from the previous and next
keys is 100 cents, we evaluate the error as perceptually negligible.
Table 1 also reports the MSE of the inharmonicity factor B. This is
calculated from Eq. 5, with the partial’s index j equal to 1, as follows:

TABLE 1 F loss, cent deviation (mean), and BMSE on the test set across two
scenarios: unseen key (a) and unseen velocity (b).

Scenario F loss Cent deviation (mean) BMSE

a 4.73 · 10–6 5.67 · 10–3 9.34 · 10–6

b 9.41 · 10–6 1.12 · 10–2 1.85 · 10–5

TABLE 2 STFT and RMS losses on the test set for models generating output
frames with 240 and 24 audio samples across two scenarios: unseen key (a)
and unseen velocity (b).

Scenario Frame size STFT loss RMS loss

a 240 12.16 3.79 · 10–4

24 3.73 · 10–4 3.82 · 10–4

b 240 26.42 8.14 · 10–4

24 9.02 · 10–4 8.24 · 10–4
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BMSE � MSE B, B̂( ), where B̂ � f̂1/F0( )2

− 1. (8)

The BMSE values in Table 1 demonstrate that the model effectively
predicts the estimated inharmonicity factor B, even for unseen keys. It
should be noted that these inharmonicity factors (B, B̂) in Eq. 8 are
estimated from the dataset recordings and they represent an
approximation of true values. The mean of B values obtained in the
considered range of keys is 8.63 · 10–3. The estimated B values are
slightly larger than those reported in Rigaud et al. (2011), although data
were collected from a different upright Disklavier model. The F loss is
unaffected by the number of audio samples in the output frame, as f1 is
determined by the predicted inharmonicity factor B, which the model
computes using only the input F0 value. Table 2 presents the STFT and
RMS losses for all the cases. The prediction in the second scenario is
more challenging when considering the RMS loss—expected since all
the notes were seen during training. However, the RMS loss, in both
cases, is small enough to indicate that the model predicts relatively
closely to the general amplitude envelope.

The absolute value of the STFT loss is smaller in the first scenario,
which could be attributed to the relative ease of interpolating between

inharmonicity factors of different keys compared to interpolating
between the amplitude envelopes at different velocities. Inharmonicity
factors typically exhibit nearly linear changes across keys, whereas the
energy of partials is subject to more substantial nonlinear variations.
However, the absolute value of STFT loss has limited significance in
this context because we do not model the noisy component of the
piano sound. As a result, the sound generated by the quasi-harmonic
module differs perceptually from the actual piano sound.We note that
when the model produces only 24 output samples at a time, we
observe an even further reduction in STFT loss. Generating fewer
samples per iteration is advantageous for the model as it allows for
more precise control over the temporal evolution of the partials. A
model configured to produce smaller outputs can update its
parameters every 1 ms (24 samples), in contrast to every 10 ms
(240 samples) for a model that generates larger outputs.
Conversely, the RMS loss does not exhibit a notable change in
relation to the number of output samples.

To further evaluate the spectral reconstruction capability of the
models, we present the spectrograms for both scenarios in Figures 2, 3.
Inspection of these figures reveals that the models have successfully
learned the temporal unfolding of the partials’ amplitudes without

FIGURE 2
Comparison of spectrograms of the model’s output versus the test recordings for key (D4) at velocity values of 60, 80, 100, and 120. The plots
compare the recorded notes with the prediction of only their harmonic content. The STFT is computed using windows of 2,048 samples with
75% overlap.
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requiring a large neural network. This efficiency is due to the models’
intrinsic understanding of the general shape of the partials’ evolution
over time. Despite this, the models exhibit a slight underestimation of
the decay time for the higher partials, resulting in a slower decay rate.
Moreover, there is a slight underestimation of the amplitudes, which is
visible in the logarithmic decibel-scale magnitude spectra with a
logarithmic frequency axis (Figures 4, 5). The plots focus on the
frequency range [100, 8,000] Hz to better highlight the frequencies of
interest, and the FFT frequency resolution set is 2 Hz. In the higher
regions of the spectrum, components not yet included in the model,
such as noise and other phantom partials, significantly impact the
resulting frequency distribution and are expected to cause
mismatches. Indeed, the plots compare recorded piano notes with
only their predicted harmonic contents. The models accurately
predict the first nine partials, while the error increases for higher
partials. During experiments, we noted that anchoring f1 with the loss
benefits the networks since they then approximate B to align all the
partials. However, errors in the inharmonicity factor increase at high
frequencies due to the square term in Eq. 5. In the first scenario, the
model appears to overestimate the energy in the higher part of the
spectrum, while, in the second scenario, it underestimates it, especially
for lower notes. The model does not account for all the piano

components that affect the sound. It thus lacks the flexibility to
accurately emulate the high-frequency part of the spectrum.
Consequently, the model exploits the main and phantom partials
that it can generate to cover that frequency range, reducing its overall
accuracy. On the other hand, the amplitudes are adjusted using
LSTMs, which did not completely converge within the 50 training
epochs used in our experiments, suggesting that accuracy might
improve with additional training epochs.

The final feature of the model we evaluated is its ability to simulate
the decaying envelopes characteristic of the piano sound. Figure 6
includes plots of the RMS envelopes for the same examples considered
in the previous figures across scenarios involving unseen keys and
velocities. Generally, the model’s predictions follow the target sound’s
decay, characterized by two distinct rates: an initial rapid decline
followed by a slower decay rate. However, these two phases are less
pronounced in the model’s predictions compared to the actual test
notes. Specifically, there is a notable discrepancy in the starting
amplitude in the second scenario, which is consistent with the
quantitative losses and expectations, considering that the second
scenario’s training involved a limited number of velocity examples.
Remarkably, with a relatively small training dataset containing only
seven different velocity values, themodel successfully tracked the decay

FIGURE 3
Comparison of spectrograms of the model’s output compared versus the test recordings for velocity 90 and keys C3#, G3#, B3, and E4. The plots
compare the recorded notes with the prediction of only their harmonic contents. The STFT is computed using windows of 2,048 samples with 75% overlap.
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changes. Additionally, the lack of noise component modeling in the
attack phase of the sound contributed to the observed discrepancies.

5.1 Cross-validation

Table 3 presents the average STFT loss, RMS loss, and F loss
computed on the cross-validation test sets for the unseen key and
unseen velocity scenarios. During the cross-validation, keys and
velocities at the dataset’s edges were also used as test sets, requiring
the model to extrapolate slightly beyond the dataset. The STFT loss
values are marginally higher in the unseen key scenario, which
differs from the previous evaluation based solely on the D4 test set.
Conversely, the trends of RMS and F loss are similar. The unseen key
scenario continues to pose greater challenges for RMS accuracy,
while the F0 estimates are more precise.

Figures 7, 8 illustrate the STFT and RMS losses obtained in the
cross-validation, the averages of which are detailed in Table 3. The
losses in Figure 7 refer to the model that produces output frames
containing 240 audio samples. This figure illustrates losses from the
24 training sessions featuring different unseen keys and resulting from
seven training sessions, each with a unique, unseen velocity value.

Conversely, Figure 8 presents analogous data but shows losses
associated with the model that generates output frames with only
24 audio samples. Although the losses are generally minimal in the
unseen key scenario, the trendmay not appear uniform at first sight. In
particular, predictions for certain keys, especially from D3# to F3#,
seem to be less accurate. However, upon inspection of the audio
recordings in the dataset, it is evident that the associated signals exhibit
higher amplitudes despite having identical MIDI velocities. This is
likely due to a loss of calibration in the actuators of the Yamaha
Disklavier MX100A used to collect the data, which had been in use for
almost 30 years. Amplitude mismatches in the dataset may also arise
from other external factors, such as the room’s acoustic response.
Nonetheless, the relative error remains comparatively constant when
considered in relation to the absolute target amplitude. In the unseen
velocity scenario, the STFT and RMS losses consistently increase with
the velocity value. On the one hand, the error relative to the target
amplitude remains fairly constant, as discussed in the previous
scenario. However, larger errors at high velocities are also expected
because phenomena such as bridge-string coupling and differing string
polarization tend to become more dominant, affecting the resulting
sound. Trends remain consistent in both scenarios, regardless of
whether the model produces output frames containing 240 or

FIGURE 4
Comparison of magnitude spectra of the model’s output versus test recordings for key (D4) at velocity values of 60, 80, 100, and 120. The plots
compare the recorded notes (blue) with the prediction (red) of only their harmonic contents. The plots utilize a logarithmic scale on both axes, with
frequency limited to the range [100, 8,000] Hz.
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FIGURE 5
Comparison of magnitude spectra of the model’s output versus the test recordings for velocity 90 and keys C3#, G3#, B3, and E4. The plots
compare the recorded notes (blue) with the prediction (red) of only their harmonic contents. The plots utilize a logarithmic scale on both axes, with
frequency limited to the range [100, 8,000] Hz.

FIGURE 6
Comparison of the RMS of the model’s output versus the test recordings for key (D4) at velocity values of 60, 80, 100, and 120 (left), and for velocity
90 and keys C3#, G3#, B3, and E4 (right). The plots compare the recorded notes (green) with the prediction (blue) of only their harmonic contents. The
RMS is computed using windows of 2,400 samples with 75% overlap.
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TABLE 3 Mean of the STFT loss, RMS loss, and F loss computed on the test set across the 24 cross-validation trainings in scenario a with unseen keys and
across the 7 cross-validation trainings in scenario b with unseen velocities, with models trained for 50 epochs.

Scenario Frame size STFT loss (mean) RMS loss (mean) F loss (mean)

a 240 24.52 7.34 · 10–4 4.79 · 10–5

24 8.30 · 10–4 7.40 · 10–4 -

b 240 23.53 7.14 · 10–4 5.61 · 10–5

24 8.13 · 10–4 7.18 · 10–4 -

FIGURE 7
STFT loss (green) and RMS loss (blue) for models generating output frames with 240 audio samples, compared across the cross-validation for
unseen velocities (left) and unseen keys (right).

FIGURE 8
STFT loss (green) and RMS loss (blue) for models generating output frames with 24 audio samples, compared across the cross-validation for unseen
velocities (left) and unseen keys (right).

TABLE 4 Number of trainable parameters, FLOPs for audio frame inference, and FLOPs per audio sample for the models with different output frame sizes
and polyphony.

Frame size Polyphony Trainable parameters FLOPs FLOPs/smp

24 1 3,428 13,587 567

- 88 - 793,368 33,057

240 1 - 49,875 208

- 88 - 3,986,712 16,611
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24 audio samples. Overall, as observed earlier, the model demonstrates
better accuracy when working with smaller frames.

5.2 Computational efficiency

Table 4 provides the number of trainable parameters and FLOPs
required for model inference. We considered models generating
output frames with 24 and 240 audio samples, polyphony levels of
1 and 88, with the latter representing the case of a full-sized piano
keyboard. As expected, polyphony has a significant impact on
computational complexity, especially when the model produces
smaller output frames. On the other hand, the model has lower
input-to-sound latency when it produces smaller frames. In our case,
when using 24 samples, the architecture has a latency of 1 ms, while,
with 240 samples, latency is still reasonable at approximately 10 ms
because the time required for the hammer to travel and hit the
strings is approximately 7 ms at high speeds. For practical
applications, latency values in this range can be acceptable,
contributing to reducing the required number of operations per
audio sample. Comparing this with similar work, the model in
Renault et al. (2022) has 281.5k trainable parameters (excluding
those related to the reverb) with a polyphony level of 16. In contrast,
our model has only 3,428 trainable parameters at the same level of
polyphony. However, we expect our model to grow when modeling
the noisy components and the coupling between close keys.

6 Discussion

We introduced a method for modeling piano instruments using
knowledge of physics and the DDSP framework. The model uses end-
to-end learning to tune the parameters, informed by mathematical
formulas derived from a comprehensive understanding of the
instrument’s physics. We focused on the singular key’s quasi-
harmonic content, informing the model with the inharmonicity
factor, partials’ decay times, partials’ generation due to longitudinal
displacements, and beating. Furthermore, our approach is modular.
Therefore, the model is extendable: additional features based on
physical knowledge can be introduced and learned from existing,
pre-trained models. The results showed that our model can learn
complex features in the quasi-harmonic content from the target
recordings using small datasets and networks with a small number
of trainable parameters. In addition, the model appears to be capable
of good generalization, consistently learning from data across different
keys and velocities. However, some discrepancies remain in target
spectrogram matching, especially prominent in higher frequencies,
where the energy decay of partials is harder to track. The discrepancies
are primarily attributable to the model’s incompleteness and potential
biases in our small dataset. The losses associated with the
inharmonicity factor B are contingent upon accurately estimating
the frequency of the first partial. Any imprecision in this estimation
can significantly impact the generation of the higher partials.
Therefore, enhancing the estimation of B could potentially lead to
improved performance of the model. Additionally, the piano itself
may have defects due to age or mistuning, which pose challenges for
inclusion in the model. In future work, we aim to explore alternative
methods for estimating B, such as determining its value by fitting a

larger set of partials extracted from the dataset with robust tracking
algorithms. Additionally, exploring the integration of a more accurate
equation for the inharmonicity factor (Fletcher and Rossing, 2012)
could potentially improve the high-frequency match.

The proposed approach offers an alternative to physical modeling,
preventing the need of solving nonlinear partial differential equations
while still taking them into account. It also addresses problems
associated with the black-box model of traditional deep learning
techniques. Moreover, the DDSP framework allows the design of
low-latency architectures with less computational complexity. By
integrating principles of physics, the model enhances efficiency and
accuracy while minimizing training time. Hybrid modeling methods
can bypass challenges related to tracking long and complex temporal
structures in the audio signal, which are often encountered when
modeling musical devices, and facilitate achieving good performances
even when utilizing relatively smaller networks and datasets.
Additionally, a decrease in the size of the inference output audio
frame does not compromise the model’s accuracy, as evidenced in the
results. This modular method embraces flexibility and reusability, as
many instruments share similar sound production processes.

The work presented here does not constitute a comprehensive
model; hence, the audio generated does not closely emulate the
sound of a real acoustic piano. However, when informally listening
to the generated sound, the tonality, inharmonicity, and percussive
nature of the sound are clearly recognizable. Future work will also
include the development of the piano’s noise component. This
component, created largely by the initial hammer–string collision
and subsequent piano structure vibrations, is crucial for achieving
sound fidelity, particularly in the initial audio transient of the piano.
While previous methods have used ANNs to predict the filter for a
noise source, integrating knowledge of physics in modeling the
hammer–string collision could yield beneficial results.

Another aspect to integrate into our work is the damping that
affects string vibrations when the key is released. This damping
could be separately modeled with an ADSR block, which can be
designed using classic DSP algorithms or exploiting machine
learning techniques. While we considered the double-frequency
effect due to longitudinal displacements, other partials generated
by the combined effect of sum and difference of the modes, bearing
in mind transverse waves, should also be included, allowing the
model to generate these additional sinusoids. Finally, the model
must consider more complex scenarios such as simultaneous note
playing, which would involve modeling the interaction between
different keys via the bridge where vibrations of strings can influence
the generation of modes in strings belonging to other keys.

The audio examples, dataset, source code, and trained models
described in this paper are available online3.
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