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Room impulse responses (RIRs) between static loudspeaker and microphone
locations can be estimated using a number of well-establishedmeasurement and
inference procedures. While these procedures assume a time-invariant acoustic
system, time variations need to be considered for the case of spatially dynamic
scenarios where loudspeakers and microphones are subject to movement. If the
RIR is modeled using image sources, then movement implies that the distance to
each image source varies over time, making the estimation of the spatially
dynamic RIR particularly challenging. In this paper, we propose a procedure to
estimate the early part of the spatially dynamic RIR between a stationary source
and a microphone moving on a linear trajectory at constant velocity. The
procedure is built upon a state-space model, where the state to be estimated
represents the early RIR, the observation corresponds to amicrophone recording
in a spatially dynamic scenario, and time-varying distances to the image sources
are incorporated into the state transition matrix obtained from static RIRs at the
start and end points of the trajectory. The performance of the proposed approach
is evaluated against state-of-the-art RIR interpolation and state-space estimation
methods using simulations, demonstrating the potential of the proposed state-
space model.

KEYWORDS

state-space model, transition matrix, acoustic room impulse response interpolation,
time-varying system, dynamic time warping

1 Introduction

A room impulse response (RIR) is the time-domain representation of the linear time-
invariant (LTI) system that uniquely characterizes the cumulative impact of a room on
sound waves between a specific static source and a microphone’s position, effectively
representing the room’s acoustic environment. This concept is fundamental to various
acoustic signal processing applications, including source localization (Evers et al., 2020),
dereverberation (Naylor and Gaubitch, 2010), echo cancellation (Elko et al., 2003), and
spatial audio reproduction (Schissler et al., 2017). Considerable research has been dedicated
to developing robust measurement (Stan et al., 2002; Szöke et al., 2018) and estimation (Lin
and Lee, 2006; Crocco and Bue, 2015; Ratnarajah et al., 2022) techniques for capturing RIRs,
particularly in scenarios where the source andmicrophone remain static within the acoustic
environment (Stan et al., 2002; Szöke et al., 2018). However, real-world situations often
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involve spatially dynamic scenarios, where sources andmicrophones
are subject to movement. This paper addresses the challenge of
accurately estimating the early part of RIRs along a trajectory in a
time-varying acoustic scenario with a stationary source and a
moving microphone. This can be thought of as a time-varying
system identification problem where the system to be identified
may be referred to as a time-variant RIR.

In this context, it is important to consider the apparent
contradiction between the previously defined RIR as an LTI
system representation and the concept of a time-variant RIR. In
this paper, the acoustic environment itself is assumed to be time-
invariant, in which case an RIR between two static positions indeed
corresponds to an LTI system. RIRs, however, are inherently
location-variant—they depend on the locations of the source and
the microphone. The time-variant RIR, as considered here, can be
defined as the time-varying system representation (Cherniakov,
2003) relating the source signal to the microphone signal if the
microphone moves—that is, has a time-varying location. In discrete
time, this time-variant RIR can also be thought of as a collection of
RIRs in the LTI sense over different time-instances: the location of
the microphone changes at each time step, leading to a new discrete
position in space associated with a time-invariant RIR. Time-variant
RIR estimation, as defined above, has relevance across numerous
acoustic signal processing applications, especially amid the growing
interest in virtual acoustic environments. For instance, Ajdler et al.
(2007) demonstrated the use of time-varying acoustic systemmodels
for enabling the rapid measurement of head-related impulse
responses. Moreover, sub-optimal estimations of time-variant
RIRs can impair the effectiveness of echo-cancellation systems in
telepresence and communication technologies (Nophut et al., 2024).

In order to contextualize our contribution in estimating the early
part of a time-variant RIR, it is necessary to provide a brief outline of
the related literature. In this context, the concept of spatial RIR
interpolation is highly relevant given that we can consider a time-
varying RIR as a collection of RIRs over a discrete set of locations.
RIR interpolation facilitates sound field rendering for dynamic
source–microphone positions by filling spatial gaps in RIR data,
as measurements or simulations are usually limited to sparse grids.
Numerous approaches have been proposed for RIR interpolation,
including compressed sensing methods (Mignot et al., 2013;
Katzberg et al., 2018), spherical harmonics (Borra et al., 2019),
physics-based models (Antonello et al., 2017; Hahmann and
Fernandez-Grande, 2022), directional RIRs (Zhao et al., 2022),
and neural networks (Pezzoli et al., 2022; Karakonstantis et al.,
2024). Haneda et al. (1999) introduced a frequency-domain
approach for interpolating room transfer functions (RTFs), which
is particularly effective at lower frequencies; it was extended by Das
et al. (2021). Additionally, several techniques for the interpolation of
head-related transfer functions (HRTFs), which are critical for
accurate binaural rendering and share some methodological
approaches with RTF interpolation, have been explored (Carty,
2010). For the purpose of this paper, we focus on the
interpolation of an RIR at a point between two microphone
locations given their estimated RIRs for a common stationary
source. Kearney et al. (2009) introduced Dynamic Time Warping
(DTW)-based interpolation, dividing RIRs into early reflections and
diffuse decay. This method temporally aligns and linearly
interpolates early reflections while modeling the tail using the

approach of Masterson et al. (2009) and laying the foundation
for subsequent developments. Garcia-Gomez and Lopez (2018)
expanded on Kearney’s work, enhancing algorithm robustness
and computational efficiency while retaining the core
interpolation technique. Building on this, Bruschi et al. (2020)
refined peak finding and matching aspects of the interpolation
technique. Geldert et al. (2023) proposed a novel approach using
partial optimal transport for interpolation, enabling non-bijective
mapping of sound events between the early part of RIRs. It is
important to highlight that these interpolation approaches operate
outside of a conventional system identification framework. Instead,
they use a limited set of measured RIRs and predominantly rely on a
room acoustic sound propagation model such as the image source
method (ISM) (Allen and Berkley, 1979). As opposed to
interpolation strategies, fully data-driven approaches for
estimating time-variant RIRs have also been investigated. In this
case, the estimation relies directly on the source and microphone
signals and can be framed as a system identification or adaptive
filtering problem. This approach has been largely motivated by the
need to obtain rapid measurements of head-related impulse
responses (Enzner, 2008; Hahn and Spors, 2015) and for echo
cancellation (Antweiler and Symanzik, 1995; Enzner, 2010),
where a typical scenario involves an excitation signal being
continuously captured by a moving microphone. Using carefully
designed excitation signals (Hahn and Spors, 2015; Kuhl et al.,
2018), time-variant RIRs can be estimated using a normalized least
mean squares (NLMS) algorithm (Enzner, 2008; Antweiler et al.,
2012) or more generally using a Kalman filter (Enzner, 2010). In the
context of this paper, a Kalman filter is of particular interest as it is
derived from a state-space model of the dynamic system where the
state to be estimated is the time-variant RIR (Enzner, 2010). In such
a state-space model, the evolution of the time-variant RIR is
explicitly modeled using a first-order difference equation, which
allows more modeling flexibility than other adaptive algorithms
such as NLMS. One popular choice for the first-order difference
model is to relate the states at two time instants by a transition factor
and an additional process noise term. The transition coefficient and
process noise covariance are typically set according to the expected
variability of the state, influencing the convergence behavior of the
Kalman filter. For instance, in Nophut et al. (2024), the transition
coefficient was modeled as a function of the microphone velocity.

We here consider the problem of estimating the early part of the
time-variant RIR between a stationary source and a microphone
moving on a linear trajectory at constant velocity. We propose
integrating RIR interpolation, derived from a room acoustic model,
into a state-space-based framework for RIR estimation, therebymerging
data-driven approaches with physical modeling. More specifically,
rather than relying solely on a state transition factor within the state
equation, we propose incorporating the ISM into a state transition
matrix between the early segments of consecutive RIRs. We derive an
analytical model for this transition matrix and subsequently propose
estimating it from static RIRs at the trajectory’s start and end points
using a DTW-based algorithm. The proposed approach’s performance
is evaluated through simulations by comparing it to two alternatives:
one that relies solely on the state equation for RIR estimation,
resembling a pure interpolation method with the ISM-based
transition matrix, and another that uses a conventional state-space
estimation with a simple state transition factor. Our findings suggest
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that the proposed state-space model outperforms both alternatives in
terms of normalized misalignment between the simulated “ground-
truth” RIRs and estimated RIRs.

The subsequent sections of this paper are organized as follows.
Section 2 introduces the signal model and provides an overview of
the most pertinent state-of-the-art methods. Section 3 elaborates on
the proposed RIR state-space model and outlines the update
equations of the Kalman filter used to recursively estimate the
defined state. Section 4 offers detailed derivations of the
proposed room acoustic model-based state transition matrix.
Finally, Section 5 presents experimental validation through
simulations, followed by a discussion of the results.

2 Signalmodel, problem statement, and
related state of the art

2.1 Signal model and problem statement

We first introduce the signal model to formally define the
concept of an RIR as employed in this paper. When we
henceforth use the term “RIR”, it will specifically pertain to the
early part of the RIRs, as we do not address the estimation of the late
reverberant tail. We also assume that the source location remains
static. Let k denote the time index, and let the location of the
microphone relative to the linear trajectory be denoted by the one-
dimensional location index l. If the microphone location is time-
variant, an RIR defines the LTI system relating a source signal x(k)
to an observed signal y(l, k). Let the RIR for microphone location l
be denoted by h(l, n), where n indexes the time-shift of the RIR
samples. The signals x(k) and y(l, k) are then related by

y l, k( ) � ∑N−1

n�0
h l, n( )x k − n( ) + v k( ), (1)

where v(k) is a noise term that we generally assume to be present in
the observed signal and may include late reverberation. Now,
defining the vectors x(k) and h(l) as

x k( ) � x k( ) x k − 1( ) . . . x k −N + 1( )( )T, (2)
h l( ) � h l, 0( ) h l, 1( ) . . . h l,N − 1( )( )T, (3)

the convolution in Equation 1 can alternatively be written as

y l, k( ) � xT k( )h l( ) + v k( ). (4)

Within the scope of this paper, we assume a linear microphone
trajectory of length d, divided into L equidistant locations spaced by
Δd and indexed as l � 0, . . . , L − 1, as illustrated in Figure 1, such
that L � d/Δd + 1.We consider the problem of estimating h(l) using
the source signal x(k) and the observed signal y(l, k) if the
microphone moves along the trajectory at a constant velocity
μrx—that is, if l varies over time. For this, we make the
assumptions that h(0) and h(L − 1) are known, and that the
time intervals which the individual reflections occupy within the
time-variant RIR over the range of the trajectory do not overlap. An
example of h(0) and h(L − 1) including only first-order reflections
is shown in Figure 2, where peaks corresponding to the same source
or reflection are labeled by the same number in each RIR.

2.2 Related state of the art

Before introducing the proposed approach, it is instructive to
briefly introduce the most relevant concepts used in the state of the
art. On the one hand, we consider RIR interpolation approaches
that estimate h(l) from h(0) and h(L − 1) only based on a room
acoustic sound propagation model, without making use of an
observed signal y(l, k). On the other hand, we consider data-
driven approaches that estimate h(l) in an adaptive manner from a
data set containing x(k) and y(l, k) over multiple time indexes k
for a moving microphone, but without exploiting a room acoustic
sound propagation model.

As previously mentioned, some RIR interpolation approaches
(Kearney et al., 2009; Geldert et al., 2023) are motivated by the ISM
for room acoustic sound propagation, which expresses an RIR as a sum
of contributions from the original source and so-called image sources
representing reflections from the boundaries of the room. Based on this
model, RIR interpolation approaches infer the location-variant time of
arrival (TOA) as well as the amplitude of the direct component and
individual reflections (or equivalently, source and image source
components) at a particular location l using the RIRs h(0) and
h(L − 1). The general principle can be described as follows.
Assuming that reflections corresponding to the same image source
in h(0) and h(L − 1) can be identified, let nr(0) and nr(L − 1) be
vectors collecting the respective time-shift indices of the direct
component and these reflections in h(0) and h(L − 1). The
corresponding time-shift indices of h(l) can be interpolated as

nr l( ) � nr 0( ) + round β l( ) nr L − 1( ) − nr 0( )( )( ), (5)

FIGURE 1
Linear microphone trajectory of length d divided into L equidistant locations spaced by Δd and indexed as l � 0, . . . , L − 1 such that d � (L − 1)Δd.
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where nr(L − 1) − nr(0) can be conceived as sample-based time
differences of arrival (TDOAs), β(l) ∈ [0, 1] with β(0) � 0 and
β(L − 1) � 1, and round(·) defines a rounding operation. The
function β(l) can be defined such that the interpolation is correct
for the direct component (Kearney et al., 2009). Applying a similar
interpolation rule for the amplitudes of the direct component and
reflections, an estimate of h(l) can then be obtained. The collections
of corresponding indices nr(0) and nr(L − 1) can, for instance, be
found by means of Dynamic Time Warping with h(0) and h(L − 1)
as inputs (Kearney et al., 2009; Bruschi et al., 2020). Here, an

accurate identification of all corresponding reflections requires
that their order of arrival is the same in h(0) and h(L − 1).

Data-driven approaches (Enzner, 2010) to the estimation of
location- or time-variant RIRs do not rely on explicit modeling of
room acoustic sound propagation, but instead perform adaptive
system identification given a data set containing x(k) and y(l, k)
over multiple time indexes k. For the moment, let us assume that the
moving microphone crosses one location l at each time instant k,
such that the location-variant RIR h(l) can equivalently be thought
of as a time-variant RIR h(k) with k � l. The convolution in
Equation 1 then becomes

y k( ) � ∑N−1

n�0
h k, n( )x k − n( ) + v k( ). (6)

This can be expressed similarly to Equation 4 using the definitions in
Equations 2 and 3. A popular approach to adaptively estimate h(k)
is the Kalman filter, whose update equations are obtained from a
state-space model where h(k) is the state. A commonly used state-
space model can be defined as

h k( ) � αh k − 1( ) + w k( ), (7)
y k( ) � xT k( )h k( ) + v k( ), (8)

where the state equation in Equation 7 models the evolution of the
state as a first-order difference equation, and the observation
equation (Equation 8) relates the state to the observation y(k)
and is identical to Equation 6. The model commonly chosen in
Equation 7 defines a factor α, referred to as the “forgetting” or
“transition” factor, and a noise term w(k), referred to as “process
noise”, for which the covariance matrix is required in the Kalman
filter. In practice, the choice of α and the covariance matrix of w(k)
is typically not directly motivated by a physical model of the RIR
evolution. Instead, they are often considered tuning parameters that
can be used to control the convergence behavior of the Kalman filter,
although they can be tuned depending on physical parameters such
as the velocity of the microphone (Nophut et al., 2024).

FIGURE 2
An example of simulated RIRs, h(0) and h(L − 1), including only first-order reflections. Peaks corresponding to the same source or reflection are
labeled by the same number in each RIR.

FIGURE 3
(a) Location-variant transition matrix model A(l) providing
mapping between two RIRs h(l) and h(l − 1) along a given trajectory.
(b) Location-invariant transition matrix model A that approximates the
mapping between two RIRs h(l) and h(l − 1) along a given
trajectory where the assumptions detailed in Section 4.2 hold.
(c) Equivalent transitionmatrix models, A(1) and A, for the special case
of L � 2—that is, a transitionmatrix between the start and end points of
the trajectory.
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3 Proposed RIR state-space model

In the proposed approach, we aim to include prior knowledge
on room acoustic sound propagation into a state-space model for

time-variant RIR estimation. To this end, rather than resorting to a
scalar factor as in Equation 7, we assume that the relation between
two RIRs h(l) and h(l − 1) on the trajectory can approximately be
modeled by a location-invariant transition matrix A as

FIGURE 4
An example of an analytical location-variant transition matrix A(l) constructed from the early segments of two impulse responses, h(l) and h(l − 1).
The grid lines indicate the positions of the respective reflection TOAs.

FIGURE 5
Illustration of the far-field assumption used to mitigate the dependence of Δr(l) on l.
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FIGURE 6
Illustration of the analytical transition matrices for a toy problem along a trajectory with L � 3, with 2ϵ

Ts
� 3 and integer reflection TOAs. Subfigures

(a) and (b) show the location-variant matrices A(l) for l � 1 and l � 2, respectively. Subfigure (c) shows their product, A(2) A(1). Subfigure (d) shows the
location-invariant matrix A, while (e) depicts A2 (i.e., AL−1 for L = 3).

FIGURE 7
(a) Location-invariant matrix A for the special case of L � 2 and (b) accumulated distance matrix D constructed from h(0) and h(L − 1) overlaid with
DTW warp path (white line).
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h l( ) ≈ Ah l − 1( ) (9)

for l � 1, . . . , L − 1. The transition matrix A will be used to
model changes in the TOA of the direct component and the
early reflections between the neighboring locations l and l − 1
and will be applied in the state equation of the proposed state-
space model. As described in Section 4, the analytical definition
of A will be based on the ISM, which also serves as the
foundation of the RIR interpolation approaches discussed in

Section 2.2. Furthermore, we will show that the transition
matrix A can be modeled as location-invariant if the time
intervals which the individual reflections occupy in the time-
variant RIR over the range of the trajectory do not overlap,
which is also implicitly assumed in Kearney et al. (2009) and
Geldert et al. (2023). In practice, an estimate of A can be
obtained from the presumed knowledge of the RIRs h(0) and
h(L − 1) at the start and the end of the trajectory, as will be
discussed in Section 4.3.

FIGURE 8
Illustration of the analytical transition matrices for a toy problem along a trajectory with L � 3, with 2ϵ

Ts
� 3 and integer reflection TOAs. Subfigure (a)

shows the location-invariant matrix A, while (b) depicts A2 (i.e., AL−1 for L � 3). Subfigures (c) and (d) respectively present the matrix W, derived from the
DTW warp path, and the estimated location-invariant matrix Âdtw.

TABLE 1 Description of the algorithms compared in the experimental results.

Algorithm name Algorithm description

LI − A Linear interpolation equivalent to Kalman filter update Equations 12–16 with the analytical transition matrix A derived in Section 4.2 and
yΩ(l) � 0 and xΩ(l) � 0

KF − α Kalman filter update Equations 12–16 with A replaced with α � 1

KF − A Kalman filter update Equations 12–16 with the analytical transition matrix A derived in Section 4.2

KF − Âdtw Kalman filter update Equations 12–16 with an estimate Âdtw of the analytical matrix A as derived in Section 4.3
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While it is possible to interpolate between h(0) and h(L − 1)
based on A only as h(l) ≈ Alh(0), a more accurate estimate can be
obtained by using the signals recorded along the trajectory with a
microphone moving at a constant velocity. Without loss of
generality, let k � 0 denote the start of the recording at location
l � 0. For a given velocity μrx of the microphone and temporal
sampling period Ts, the smallest possible spatial period Δd that
could be used is given by μrxTs. In this case, one RIR estimate can be
obtained per time sample. In the proposed approach, we also
consider spatial periods of

Δd � ΩμrxTs,

where Ω is a positive integer that can be understood as a spatial
down-sampling factor. If the microphone is at location with index l,
we then observe sample

k � lΩ.

FIGURE 9
2-D illustration depicting the source position and trajectory of
themicrophone within a box-shaped room, as utilized for simulations.

FIGURE 10
(Top) Result 1: Normalized misalignment along the trajectory between the “ground-truth” RIR h(l) and the estimated RIR ĥ(l) using algorithms
detailed in Table 1. This is for the case of a noiseless observed output signal yΩ(l). (Bottom) Simulated RIRs corresponding to the start and end of the
trajectory, denoted as h(0) and h(L − 1), respectively. Peaks corresponding to the same source or reflection are labeled by the same number in each RIR.
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With Equation 9 and defining yΩ(l) � y(lΩ), xΩ(l) � x(lΩ),
and vΩ(l) � v(lΩ) for ease of presentation, we can define the state-
space model of the proposed approach as

h(l) � Ah(l − 1) + w(l), (10)
yΩ(l) � xTΩ(l)h(l) + vΩ(l), (11)

where w(l) is the process noise accounting for modeling errors in
the definition of A. From the state-space model, an estimate ĥ(l) of
h(l) can be obtained using the Kalman filter with one recursion per
location l. The Kalman filter update equations are outlined in the
next section.

3.1 Update equations of the Kalman filter

The Kalman filter (Simon, 2006) can be used to recursively
estimate the state defined by a state-space model. For the proposed
state-space model in Equations 10 and 11, letQ � E[w(l)wT(l)] and
R � E[v2Ω(l)] be the presumed location-invariant covariance matrix
of w(l) and variance of vΩ(l), respectively, where E[·] denotes the

expectation operation. The update equations of the Kalman filter for
the model in Equations 10 and 11 are then given by

ĥ l( ) � Aĥ
+
l − 1( ), . (12)

P l( ) � AP+ l − 1( )AT +Q, . (13)
k l( ) � P l( )xΩ l( )

xTΩ l( )P l( )xΩ l( ) + R
, (14)

ĥ
+
l( ) � ĥ l( ) + k l( ) yΩ l( ) − xTΩ l( )ĥ l( )( ), . (15)
P+ l( ) � I − k l( )xTΩ l( )( )P l( ), (16)

where Equations 12 and 13 are commonly referred to as the
prediction step producing prior estimates, and Equations 14–16
are referred to as the update step producing posterior estimates. In
these equations, ĥ(l) and ĥ

+(l) are state estimates, P(l) and P+(l)
are estimates of the state-estimation error covariance matrix, k(l) is
the Kalman gain, I the identity matrix, and the superscript +

distinguishes posterior from prior estimates. In the prediction
step Equations 12 and 13, the previously acquired posterior
estimates ĥ

+(l − 1) and P+(l − 1) are propagated based on the
state Equation 10 only, without taking into account the

FIGURE 11
Result 2: Normalized misalignment along the trajectory between the “ground-truth” RIR h(l) and the estimated RIR ĥ(l) using algorithms detailed in
Table 1. This assessment is conducted for different levels of noise added to the observed output signal yΩ(l).
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observation at recursion l, yielding the prior estimates ĥ(l) and P(l).
The update step Equations 14–16 is based on the observation
Equation 11. Here, the Kalman gain k(l) and the error term yΩ(l) −
xTΩ(l)ĥ(l) are computed based on yΩ(l) and xΩ(l) and are used to
update the prior estimates ĥ(l) and P(l), yielding the posterior
estimates ĥ

+(l) and P+(l).
To implement the Kalman filter,Q and R are required as inputs.

While R can potentially be obtained from background noise
recordings, Q can be considered a tuning parameter as the
variance of w(l) � h(l) − Ah(l − 1) will not be known exactly in
practice. The Kalman filter also needs to be initialized by defining
ĥ
+(0) and P+(0). As we assume that h(0) is known, we set

ĥ
+(0) � h(0). This choice of ĥ

+(0) corresponds to the
assumption that the initial state estimation error is 0, such that
P+(0) can be chosen to have a small norm. Finally, a practical
implementation requires an estimate ofA, which will be discussed in
more detail in Sections 4.2 and 4.3.

At this point, it is instructive to interpret Equations 12–16 in
relation to the state of the art as discussed in Section 2. In the
interpolation approaches in Kearney et al. (2009) and Geldert et al.
(2023) on the one hand, recorded signals are not available, which
corresponds to the assumption that yΩ(l) � 0 and xΩ(l) � 0. In this
case, we find that ĥ

+(l) � ĥ(l) and P+(l) � P(l) in Equations 15 and
16, i.e. ĥ(l) no longer depends on P(l) and the Kalman filter update
equations effectively reduce to ĥ(l) � Aĥ(l − 1) � Alh(0). As A is

defined by interpolating TOAs of reflections between h(0) and
h(L − 1) based on a room acoustic model, this case is
conceptually similar to the aforementioned interpolation
approaches and can be referred to as “linear interpolation.” The
state-space space approaches in Enzner (2010), on the other hand,
are obtained ifΩ � 1 and the state transition matrix A is replaced by
a scalar α.

4 Proposed room acoustic model-
based transition matrix

This section provides a detailed explanation of the methodology
followed to obtain a suitable room acoustic model-based transition
matrix for use in Equation 10 and is organized as follows. In Section
4.1, we derive an analytical expression for a location-variant
transition matrix model A(l) based on the ISM. A suitable
modification of the analytical transition matrix for use in the
state-space model is then proposed in Section 4.2 in order to
obtain a location-invariant transition matrix model A valid
within the limits of the trajectory. The models presented are
parameterized by the exact reflection TOAs, which are not
inherently available in practice. Therefore, Section 4.3 introduces
an approach based on DTW to obtain an estimate of A from h(0)
and h(L − 1) by TDOA interpolation.

FIGURE 12
Result 3: Normalized misalignment along the trajectory between the “ground-truth” RIR h(l) and the estimated RIR ĥ(l) using algorithms detailed in
Table 1. This is for the case of a noiseless observed output signal yΩ(l) with different spatial sampling along the trajectory as a function of Ω.
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4.1 Analytical location-variant transition
matrix model

The objective of this section is to derive a transition matrix
model A(l) ∈ RN×N that approximates the mapping between two
RIRs h(l) and h(l − 1):

h l( ) ≈ A l( )h l − 1( ). (17)

An illustration of this relation along a given trajectory is shown
in Figure 3a.

To achieve this objective, we make use of the ISM. In this model,
the RIR is expressed as the sum of contributions from the original
sound source and additional image sources, which represent
reflections within the room. Let the RIR at location l with
continuous time-shift t be denoted by h(l, t). With δ(t) denoting
the Dirac delta function, the ISM models h(l, t) as

h l, t( ) � ∑
r∈R

ar l( )δ t − τr l( )( ), (18)

where r ∈ R � {0, 1, ..R − 1} is the (image) source or reflection
index, and τr(l) and ar(l), respectively, denote the TOA and
amplitude of the (image) source r observed at location l.
Ultimately, we aim to express a discretized version of h(l, t) in

terms of a discretized version of h(l − 1, t) as in Equation 17. To this
end, we start by introducing parameters of h(l − 1, t) into h(l, t)
as follows.

h l, t( ) � ∑
r∈R

ar l − 1( ) ar l( )
ar l − 1( ) δ t − τr l( ) + τr l − 1( ) − τr l − 1( )( ).

(19)
The inclusion of ar(l − 1)/ar(l − 1) and τr(l − 1) − τr(l − 1)

preserves the definition of h(l, t) in Equation 18, while allowing
us to find a representation that more closely resembles h(l − 1, t).
By incorporating τr(l − 1) − τr(l − 1), we can isolate a Dirac delta
function that only includes a time shift of τr(l − 1) using the
following identity derived from the sifting property
(Hoskins, 2009):

δ t − τr l( ) + τr l − 1( ) − τr l − 1( )( )
� ∫+∞

−∞
δ t − τr l( ) + τr l − 1( ) − t′( )δ t′ − τr l − 1( )( )dt′

Therefore, Equation 19 can alternatively be expressed as

h l, t( ) � ∑
r∈R

∫
t′

ar l( )
ar l − 1( ) δ t − τr l( ) + τr l − 1( ) − t′( )ar l − 1( )δ t′ − τr l − 1( )( ) dt′.

(20)

FIGURE 13
(Top) Result 4: Normalized misalignment along the trajectory between the “ground-truth” RIR h(l) and the estimated RIR ĥ(l) using algorithms
detailed in Table 1. This is for the case of a noiseless observed output signal yΩ(l) with simulated RIRs inclusive of second-order reflections. (Bottom)
Simulated RIRs corresponding to the start and end of the trajectory, denoted as h(0) and h(L − 1), respectively. Peaks corresponding to the same source
or reflection are labeled by the same number in each RIR.
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To obtain a discrete time-shift representation in terms of the
time-shift index n, we impose a band limit with critical sampling
period Ts. Band-limiting a Dirac delta function results in a sinc-
function (Hoskins, 2009), which will be sampled at discrete time
indices. Defining

Δr l( ) � τr l( ) − τr l − 1( ) (21)
as the TDOA of reflection r between locations l and l − 1, we can
now write Equation 20 as

h l, n( ) � ∑
r∈R

∑
n′

ar l( )
ar l − 1( ) sinc n − Δr l( )

Ts
− n′( )ar l − 1( )sinc n′ − τr l − 1( )

Ts
( ).

(22)

At this point, it is advantageous to introduce a time-shift-
dependent approximation of Equation 22. At any n, the RIR
sample h(l, n) is dominated by a subset of reflections only, which
we denote as ~R(l, n). Due to the decaying nature of the sinc-
function, the product sinc(n − Δr(l)/Ts − n′)sinc(n′ −
τr(l − 1)/Ts) in Equation 22 will have a prominent peak only if
the two sinc-functions are closely aligned—that is, if nTs is near
Δr(l) + τr(l − 1) � τr(l). In the following, the product is considered
negligible for |nTs − τr(l)|> ϵ, where ϵ is a misalignment threshold
and 2ϵ can be understood as the effective temporal width of
reflection r. For ease of presentation, we define the interval of
width 2ϵ around τr(l) as

T r l( ) � τr l( ) − ϵ, τr l( ) + ϵ[ ], (23)
which contains the TOAs of the non-negligible components of
reflection r in the RIR at location l. With Equation 23, the
misalignment condition |nTs − τr(l)|> ϵ can alternatively be
expressed as n ∉ T r(l)/Ts. Based on this, we define ~R(l, n) as1

~R l, n( ) � r ∈ R n ∈
T r l( )
Ts

∣∣∣∣∣∣∣{ }. (24)

With Equation 24, we can therefore approximate Equation 22 as

h l, n( ) ≈ ∑
n′

∑
r∈ ~R l,n( )

ar l( )
ar l − 1( ) sinc n − Δr l( )

Ts
− n′( )ar l − 1( )sinc n′ − τr l − 1( )

Ts
( ),

(25)

where we have swapped the order of summation over n and r.
Analogous to Equation 18, we introduce the coefficients h(l − 1, n′)
defined by the ISM as

h l − 1, n′( ) � ∑
r′∈R

ar′ l − 1( )sinc n′ − τr′ l − 1( )
Ts

( )
and rewrite Equation 25 as

h l, n( ) ≈ ∑
n′

∑
r∈ ~R l,n( )

ar l( )
ar l − 1( ) sinc n − Δr l( )

Ts
− n′( )h l − 1, n′( )

− e l, n( )
(26)

with the error term e(l, n) defined as

e l, n( ) � ∑
n′

∑
r∈ ~R l,n( )
r′∈R
r′≠r

ar l( )
ar l − 1( ) sinc n − Δr l( )

Ts
− n′( )ar′ l − 1( )sinc n′ − τr′ l − 1( )

Ts
( ).

(27)

Given the relation between h(l, n) and h(l − 1, n′) in Equation
26, we can define the elements of A(l) in Equation 17 assuming that
e(l, n) as defined in Equation 27 is negligible. Before turning to the
elements of A(l), let us first verify the conditions under which this
assumption holds. As before, we can argue that the product sinc(n −
Δr(l)/Ts − n′)sinc(n′ − τr′(l − 1)/Ts) will be negligible if the two
sinc-functions are misaligned, where |nTs − Δr(l) − τr′(l − 1)|> ϵ.
As shown in Supplementary Appendix SA, this condition is
equivalent to

T r′ l − 1( ) ∩ T r l − 1( ) � ∅, r′ ≠ r, (28)
which essentially says that the reflections in h(l − 1, n) should be
well-separated in time. Neglecting e(l, n) and referring back to the
vector representation of RIRs in Equation 3, it can be seen that
Equation 26 can be expressed in the form h(l) ≈ A(l)h(l − 1) as
anticipated in Equation 17, where the element of A(l) at index (n +
1, n′ + 1) is given by

An+1,n′+1 l( ) � ∑
r∈ ~R l,n( )

ar l( )
ar l − 1( ) sinc n − Δr l( )

Ts
− n′( ) (29)

if ~R(l, n) ≠ ∅ and otherwise An+1,n′+1(l) � 0—that is, at indices
where h(l, n) does not contain reflections. In the actual
implementation of such a matrix, one may choose to truncate
the sinc-functions in Equation 29 for |n′Ts − τr(l − 1)|> ϵ. As
illustrated in Figure 4, this results in a matrix A(l) composed of
Toeplitz-structured submatrices of size �2ϵTs

� × �2ϵTs
� containing

sampled sinc-functions, with one such submatrix per reflection r.
These sampled sinc-functions are vertically and horizontally
centered around τr(l)/Ts and τr(l − 1)/Ts, which are non-integer
in general.2 Practically speaking, we note that submatrices centered
above the main diagonal ofA(l) shift the corresponding reflection in
h(l − 1) toward smaller TOAs, while entries below shift it toward
larger TOAs.

4.2 Analytical location-invariant transition
matrix model

For the application at hand, we anticipate employing a location-
invariant transition matrix model as described in Equation 9 and
illustrated in Figure 3b. We show that by using a location-invariant
matrix, in which TOA intervals are defined to span the entire
trajectory, we can reduce the necessity for accurate TOA
estimates. This efficiency is achieved because these TOA

1 For notational convenience when working with an interval [a,b], we

introduce [a,b]
c to represent [ac, bc] (see Equations 24 and 34), and [a,b] − c

to represent [a − c,b − c] (Equation 38).

2 In the special case that τr(l)/Ts and τr(l − 1)/Ts are integers, the sinc-

functions are sampled symmetrically around their peak, which implies that

all but the peak sample lie at the zero crossings of the sinc-functions,

resulting in diagonal submatrices.
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intervals, along with TDOA estimates, can be obtained directly from
h(0) to h(L − 1) using the DTW-based method outlined in Section
4.3. In this section, we therefore derive a location-invariant
transition matrix A from the definition of A(l) in Equation 29.
As will be shown, location-invariance can be achieved within the
limits of the trajectory under some assumptions.

In Equation 29, we observe two dependencies on l: in the TDOA
Δr(l) and in the set ~R(l, n). The dependency of Δr(l) on l disappears
under the following conditions. As illustrated in Figure 5, under the
assumptions of a far-field scenario where the (image) sources are far
away in relation to the length of the trajectory, ar(l)/ar(l − 1) � 1
and Δr(l) � Δr, meaning corresponding reflection TOAs are shifted
by the same amount at each step along the trajectory. Consequently,
the reflection TOA τr(l) can be approximated by the linear relation

τr l( ) � τr 0( ) + lΔr. (30)
The dependence of ~R(l, n) on l as defined in Equation 24 can be

resolved as follows. The model in Equation 9 is required to hold for
l � 1, . . . , L − 1. Over this range of l, the components of reflection r
occupy the interval

T r � τr|min, τr|max[ ] (31)
with τr|min � min τr 1( ), τr L − 1( )( ) − ϵ, (32)

τr|max � max τr 1( ), τr L − 1( )( ) + ϵ, (33)
which can be understood as an extension of Equation 23.3

Based on Equation 31, we define the set similar to Equation 24
without the dependency on l:

~R n( ) � r ∈ R n ∈
T r

Ts

∣∣∣∣∣∣∣{ } (34)

The approximation in Equation 26 can then be replaced by

h l, n( ) ≈ ∑
n′

∑
r∈ ~R n( )

sinc n − Δr

Ts
− n′( )h l − 1, n′( ) − e l, n( ), (35)

with the error term e(l, n) redefined as

e l, n( ) � ∑
n′

∑
r∈ ~R n( )
r′∈R
r′≠r

sinc n − Δr

Ts
− n′( )sinc n′ − τr′ l − 1( )

Ts
( ). (36)

Again, the product sinc(n − Δr/Ts − n′)sinc(n′ − (τr′(l − 1)/Ts)
in Equation 36 will be negligible if the two sinc-functions are
misaligned, where |nTs − Δr − τr′(l − 1)|> ϵ. As shown in the
Supplementary Appendix SB, this condition is equivalent to

T −
r′ ∩ T −

r � ∅, r′ ≠ r (37)
where

T −
r � T r − Δr

� τ−r|min, τ
−
r|max[ ], (38)

with τ−r|min � τr|min − Δr � min τr 0( ), τr L − 2( )( ) − ϵ − Δr, (39)
τ−r|max � τr|max − Δr � max τr 0( ), τr L − 2( )( ) + ϵ − Δr, (40)

and the limits in Equations 39, 40 are obtained from Equations 32,
33, and τr(1) − Δr � τr(0) and τr(L − 1) − Δr � τr(L − 2)
according to Equation 30. The condition in Equation 37
essentially states that the intervals that the individual reflections
occupy over the range of the trajectory (with exclusion of the end
point l � L − 1) may not overlap. This can be understood as an
extension of condition Equation 28 derived for the location-variant
transition matrix. Neglecting e(l, n) and referring back to the vector
representation of RIRs in Equation 3, it can be seen that Equation 35
can be expressed in the form h(l) ≈ Ah(l − 1) as anticipated in
Equation 9, where the element of A at index (n + 1, n′ + 1) is
given by

An+1,n′+1 � ∑
r∈ ~R n( )

sinc n − Δr

Ts
− n′( ). (41)

if ~R(n) ≠ ∅ and otherwise An+1,n′+1(l) � 0.
Given the assumption of access to exact reflection TOAs τr(0)

and τr(L − 1), we estimate Δr using Equation 30 as follows:

Δr � τr L − 1( ) − τr 0( )
L − 1

, (42)

Note that from a conceptual point of view, the terms τr(l), τr(0),
τr(L − 1) − τr(0), and l/(L − 1) in Equations 30 and 42 are
comparable to nr(l), nr(0), nr(L − 1) − nr(0), and β(l) in
Equation 5, respectively. Note, however, that the latter are
sample-based, while the former are defined in continuous time-
shifts and can indeed be used to implement non-integer shifts by
using the sinc-functions in Equation 29.

Keeping in mind Figures 3a and b, for an intuitive
understanding of the relationship between A(l) and A, we refer
the reader to the toy example illustrated in Figure 6. Here, a
trajectory with L � 3 is considered, and matrices A(l) and A are,
respectively, formed using Equations 29 or 41 with integer TOAs
and 2ϵ/Ts � 3. It can be seen that the result of taking AL−1 yields an
identical matrix to that of the multiplication of
A(L − 1)/A(2)A(1) (Figures 6c, e). Furthermore, we note that
the resulting matrix is equivalent to the matrix constructed using
either Equations 29 or 41 for the case of L � 2: a transition matrix
between the start and end points of the trajectory as shown
in Figure 3c.

4.3 Dynamic Time Warping
transition matrices

As it stands, the analytical solution proposed in Section 4.2
cannot be applied directly to RIRs and requires inherent knowledge
of the TOAs in h(0) and h(L − 1). Therefore, we propose an
approach to estimate the matrix A using a DTW algorithm to
temporally align elements in h(0) and h(L − 1). DTW achieves
temporal alignment by flexibly warping time, ensuring that similar
patterns in the two sequences are matched, despite variations in
timing. As discussed in Section 2.2, prior applications of DTW have
involved linear interpolation between two impulse responses.
However, the method proposed here builds upon the observation
that the warp path derived from DTW can be linked to both the set
~R(n) and τr(L − 1) − τr(0), the latter of which is necessary for3 Note that if Δr <2ϵ, we find that T r � ⋃L−1

l�1 T r(l).
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estimating Δr via Equation 42. Leveraging these parameters enables
the construction of an appropriate analytical location-invariant
transition matrix A, denoted as Âdtw.

The DTW algorithm (Müller, 2007) involves computing an
accumulated cost matrix D ∈ R(N+1)×(N+1), representing the
cumulative costs of aligning each element in h(L − 1) with each
element in h(0), respectively, indexed by n and n′. Here, the cost is
defined as the Euclidean distance ‖h(L − 1, n) − h(0, n′)‖2, and D is
constructed using the recurrence relation

Dn+2,n′+2 � ‖h L − 1, n( ) − h 0, n′( )‖2
+min Dn+1,n′+2, Dn+2,n′+1, Dn+1,n′+1{ }, (43)

which is initialized such thatD1,1 � 0, whileDn+2,1 andD1,n′+2 are set
to ∞ for all n and n′, respectively4. Owing to the prominent
reflection peaks in the structure of early RIRs, the matrix D will
be formed with grid-like entries (Figure 7b)

A warp path, denoted by pairs of indices (n + 2, n′ + 2)
representing optimal alignment in the sense of smallest
accumulated cost, is established by backtracking from DN+2,N+2
to D2,2. The recurrence relation in Equation 43 guarantees a
monotonically increasing order, thus ensuring that peaks in
sequences are mapped in the same order they appear, preserving
temporal correspondence during alignment. Note that a single point
in one sequence can correspond to multiple points in the other, and
vice versa. An illustration of the warp path through D can be seen
in Figure 7b.

The elements along the horizontal and vertical “gridlines” in D
contain local maxima values, whose row and column indices should
respectively correspond to integer estimates of reflection TOA time-
shift indices τr(L−1)Ts

and τr(0)
Ts

. The elements at the intersections of these
“gridlines” represent local minima in D, signifying potential
alignment points between reflection peaks in h(L − 1) and h(0).
Consequently, the warp path tends to traverse these intersections in a
diagonal manner, guided by the minimization of alignment costs.
Here, a clear link between the shape of the warp path through D
(Figure 7b) and the analytical matrixA constructed using Equation 41
for L � 2 (Figure 7a) becomes apparent. Recall that the case of L � 2
results in a matrixA that maps the RIR at the start of the trajectory to
the RIR at its end (Figure 3c).

In order to use the shape of the warp path throughD, we need to
construct a matrix W ∈ RN×N, with ones placed at the indices
corresponding to the pairs in the warp path and zeros elsewhere:

Wn+1,n′+1 � 1 if n + 2, n′ + 2( ) is in the warp path
0 otherwise

{
Such a matrix W is shown in Figure 8d for the previous toy

problem with integer TOAs and 2ϵ
Ts
� 3. It can be seen that the

diagonal segments ofW are consistent with the toy problem matrix

AL−1, which is again displayed in Figure 8b. We therefore propose to
leverage the positions of the diagonal segments in W to obtain the
estimates of Δr and ~R(n) needed to construct A as follows.

Firstly, integer estimates of (τr(L − 1) − τr(0))/Ts are obtained
by measuring the “distances” (number of elements) from the
diagonal segments in W to the main diagonal. These estimates
can in turn be used to find estimates of Δr using the relation in
Equation 42 and the known sampling period Ts. We employ Δ̂r and
τ̂r to distinguish the estimates found in this manner:

Δ̂r � τ̂r L − 1( ) − τ̂r 0( )
L − 1

, (44)

Secondly the start and end indices of the diagonal segments,
denoted, respectively, as (nr|st, nr|st′ ) and (nr|en, nr|en′ ), are retrieved.
These indices are then used to find a suitable estimate of the range
T r for the set ~R(n) in Equation 34 as

T̂ r � τ̂r|min, τ̂r|max[ ] (45)

τ̂r|min � Ts ·min nr|st′ + Δ̂r

Ts
, nr|st( ), (46)

τ̂r|max � Ts ·max nr|en, nr|en′ + Δ̂r

Ts
( ), (47)

It should be ensured that the estimated ranges still result in
the condition in Equation 37 being met—that is, that
corresponding column ranges do not overlap. Finally, we
construct the matrix Âdtw using Equations 41 and 34 with Δr �
Δ̂r and T r � T̂ r where Δ̂r and T̂ r are obtained using Equations 44
to 47. Figure 8c illustrates an example of a matrix obtained using
this method for the previous toy problem. It is apparent that Âdtw

closely aligns with the desired A matrix shown in Figure 8a.
Importantly, the described method allows us to derive A without
needing to explicitly estimate individual TOAs.

5 Simulations

In this section, we systematically evaluate the performance of
transition matrices A and Âdtw in state-space RIR estimation. The
algorithms considered are summarized in Table 1, with LI − A and
KF − α serving as reference methods, and KF − A and KF − Âdtw

representing our primary contributions from the proposed methods
outlined in Section 3. In Section 5.1, we provide details on the
experimental setup, including the simulated acoustic environment,
Kalman filter parameters, and the performance measure used. The
results of the experiments are presented in Section 6.

5.1 Acoustic environment

For simplicity, we consider a box-shaped room with
dimensions bounded by [0, 4.50] × [0, 5.80] × [0, 2.90] m. We
place a fixed-position sound source at [1.05, 2.98, 1.17] m, and
define a linear trajectory for the microphone spanning
approximately 0.7 m, starting at [1.94, 3.10, 1.09] m and
ending at [1.99, 2.95, 0.37] m. Along this trajectory, we have
established that all first-order reflections arrive in the same
order. The set-up is shown in Figure 9.

4 In this paper, matrices are indexed from (1,1), following the convention of

many programming languages. However, our RIR sequences are indexed

from 0. To align with the zero-based indexing of our RIRs and

accommodate the additional row and column used solely for

initialization, we index the entries of the accumulated cost matrix

as Dn+2,n′+2
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At a standard speech sampling rate of 16 kHz (Nophut et al.,
2024) and with a microphone velocity of 0.25 m/s, the ISM (Allen
and Berkley, 1979) is used to simulate the ground-truth early RIRs
h(l), including reflections up to the second order, at various points
along the trajectory. Subsequently, the observed output signal yΩ(l)
is obtained using Equation 11 for a given input xΩ(l) and
measurement noise vΩ(l) ~ N (0, σ2y), where the variance σ2v is
adjusted based on the experimental conditions. White Gaussian
noise is chosen as the input signal, denoted as x(l) ~ N (0, σ2x), with
the variance σ2x set as 10 log10(σ2x) � −20 dB.

5.2 Kalman filter parameters

As outlined in Section 3.1, the Kalman filter relies on specific
input parameters for its operation. These parameters include the
process noise covariance matrix Q and the variance of the
measurement noise R. Additionally, the filter requires
initialization with a state estimate ĥ

+(0) and an initial guess for
the state estimation error covariance matrix P+(0).

Given the assumption of knowledge of the RIR at the start of the
trajectory h(0), the filter is initialized with ĥ

+(0) � h(0). Since we
are simulating measurement noise with variance σ2v , we set R � σ2v .
As previously mentioned, R can in practice potentially be estimated
using background noise recordings. The appropriate A matrix is
selected for each algorithm, as outlined in Table 1, with the
considered width 2ϵ of the sinc functions in the proposed
analytical transition matrices set to 2ϵ

Ts
� 20. It was found that for

the reference Kalman filter, a transition factor of α � 1 was suitable,
and varying this did not change the results in a significant manner.
After some initial testing of the Kalman filter, the tuning parameter
Q was chosen as Q � σ2wI, where I is an identity matrix
and 10 log(σ2w) � −30 dB.

5.3 Performance measure

In assessing the accuracy of our estimated RIRs ĥ
+(l), we employ

the normalized misalignment MdB(l). This metric is defined thus:

MdB l( ) � 20 log10
‖ĥ+

l( ) − h l( )‖2
‖h l( )‖2

⎛⎝ ⎞⎠.

Here, h(l) represents the ground truth early RIRs.

5.4 Experiments

We categorize experiments into the following four sets to
evaluate algorithm performance.

• Experiment 1: Ideal case. In the first set of experiments, we
examine the “ideal” scenario where no noise is present on the
observed output signal yΩ(l) (σ2v � 0) and every sample along
the trajectory is considered (Ω � 1). Simulated RIRs
exclusively include first-order reflections.

• Experiment 2: Noise sensitivity. Building upon the setup in
Experiment 1 with Ω � 1 and only first-order reflections

included, the second set of experiments evaluates algorithm
robustness when different noise levels are added to the
observed output signal—that is, varying SNR � {6, 0,−6} dB.

• Experiment 3: Spatial sampling effects. The third set of
experiments employs different spatial downsampling factors
Ω to assess the impact of using fewer data points along the
trajectory. In this case, we once again consider σ2v � 0 and only
first-order reflections, while varying Ω � {2, 8, 32}. Note that
Ω � 2 corresponds to 50% of the samples along the
trajectory being used.

• Experiment 4: Second-order reflections included. The final
set of experiments investigates the inclusion of second-order
reflections in the RIRs and the corresponding simulated
observed signal. We once again examine the “ideal”
scenario where no noise is present on the observed output
signal yΩ(l) (σ2v � 0) and every sample along the trajectory is
considered (Ω � 1). Please note that the analytical transition
matrix A is still constructed solely using first-order TOAs, as
not all second-order reflections meet the necessary
assumptions along the given trajectory. As a robustness
measure, after constructing A, ones are added along the
main diagonal in any part of the matrix with empty rows.
This step ensures that second-order reflections are not entirely
discarded. On the other hand, the DTW algorithm operates
directly on the RIRs, and thus, when constructing Âdtw, it
inherently assumes that all reflections arrive in the same order
in h(0) and h(L − 1). In other words, it may incorrectly
associate some reflections in h(0) and h(L − 1) as
belonging to the same image source.

6 Results

We present the results corresponding to the experiments
outlined above. The reader is urged to take careful note of the
different y-axis scaling in the presented results.

6.1 Result 1: ideal case

The results of Experiment 1 are presented at the top of Figure 10,
where the normalizedmisalignmentMdB(l) between the ground-truth
RIR h(l) and the estimated RIR ĥ(l) is displayed for the various
algorithms at different positions along the trajectory. The bottom of
Figure 10 shows the start and end point RIRs used to obtain our
transition matrices. This is provided to give the reader an idea of how
the source and reflection TOAs change over the trajectory.
Furthermore, it can be seen from the labeled TOAs that there are
no overlapping intervals, which aligns with our assumptions.

At the beginning of the trajectory, all algorithms exhibit zero
error owing to their initialization with a known RIR h(0). Following
a subsequent steep increase in error, distinctive properties of the
curves resulting from the different algorithms become evident. The
reference Kalman filter algorithm (KF − α), which utilizes a
transition factor of α � 1 and relies solely on microphone
observations, demonstrates a gradual decrease in error
throughout the remainder of the trajectory. Excluding the start
and end segments, it can be observed that Algorithm LI − A,
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whose performance solely relies on the model of A, results in an
error curve with a subtle dip in it. This non-monotonic behavior can
be attributed to the position of the direct source relative to the linear
microphone trajectory (Figure 9) and the fact that the source is not
sufficiently in the far-field for our assumption that TDOAs remain
approximately constant to hold. Toward the end of the trajectory,
Algorithm LI − A exhibits a rapid decrease in error. This is because
the matrix A is derived from accurate TOAs at the start and end of
the trajectory, and therefore estimates should most closely align with
the ground-truth RIRs around these positions.

In general, changes in the error curve of the Kalman filter
algorithms using a transition matrix (KF − A and KF − Âdtw)
correlate with changes in the error curve of Algorithm LI − A.
However, a more significant dip in error is observed, and the
curves nearly converge with those of Algorithm KF − α at the
end of the trajectory. This behavior may be a result of the rapid
convergence of KF − A and KF − Âdtw under ideal conditions
(i.e., no noise), making the Kalman filter more sensitive to the
degradation of the transition matrix model accuracy.

If we now consider the relative performance of the algorithms, we
note that the Kalman filter employing “ideal” analytical transition
matrix Algorithm KF − A showcases a substantial improvement
which is, on average, approximately −15 dB compared to the
reference Kalman filter, Algorithm KF − α. Importantly, similar
improvement extends to the case where the analytical transition
matrix approximated using DTW is used—Algorithm KF − Âdtw.
Moreover, the advantage of employing a state-space model over a
linear interpolation method becomes evident from the comparatively
poor overall results of Algorithm LI − A. The observed enhancements
in accuracy support our preliminary hypothesis: the combination of
room acoustic model-based interpolation and a data-driven state-space
model provides a more accurate approach to early RIR estimation.

6.2 Result 2: noise sensitivity

The results of Experiment 2 are presented in Figure 11 and once
again exhibit error curve shapes consistent with those observed in
Experiment 1. However, as anticipated, overall performance is worse,
except for Algorithm LI − A, which remains unaffected since it does not
rely on the noisy microphone measurements. Additionally, we observe
slower convergence and less pronounced dips in the error curves of the
algorithmsKF − A andKF − Âdtw compared to the noiseless case. This
is likely because the less reliable observations prevent convergence to
such low error levels in the first place, making the dips less noticeable.

It is evident that even under poor SNR conditions, our methods
consistently outperform both reference algorithms. Notably, at an
SNR of −6 dB, an average of approximately −5 dB difference persists,
further underscoring the advantages of the proposed approach, even
when measurements contain high levels of noise.

6.3 Result 3: spatial sampling effects

The results of Experiment 3 are presented in Figure 12. As fewer
measurements are used, the disparity between the results obtained
using the linear interpolation method and those obtained using a
Kalman filter naturally diminishes. Additionally, the performance of

the reference Kalman filter (KF − α) deteriorates more rapidly than
that of our proposed methods (KF − A and KF − Âdtw). We further
note an apparent shift in the position of the dip in the error curve of
AlgorithmsKF − A andKF − Âdtw as fewer samples are used. This is
likely a consequence of the change in how often the state equation is
propagated.

For Ω � 8, equivalent to approximately 12.5% of the available
sampling points, Algorithms KF − α and LI − A exhibit similar
performance, while our proposed algorithms consistently
outperform both by an average of approximately −12 dB. Despite
the trivial choice between the two reference methods when only a
small number of measurements are available, as demonstrated by
the case of Ω � 32 (equivalent to 3.13% of sampling points), our
proposed method still demonstrates an overall improvement in
performance.

6.4 Result 4: second-order
reflections included

The results of Experiment 4 are shown at the top of Figure 13.
It is important to recall that in Experiment 4, the analytical
transition matrix A used in Algorithm KF − A is still constructed
using only first-order TOAs. This is because not all second-order
reflections meet the necessary assumptions along the given
trajectory, as indicated by the reflection TOA labels toward
the end of the RIR at the bottom of Figure 13—for example,
the interval over which reflection 6 moves overlaps with
reflections 7, 8, and 9. However, by adding ones along the
diagonal of A in any empty rows, we ensure that second-order
reflections are not entirely discarded. This allows us to leverage
prior knowledge, even if incomplete, and explains the strong
convergence with Algorithm KF − α toward the end of the
trajectory. That being said, Algorithm KF − A still demonstrates an
average improvement of approximately −7 dB over AlgorithmKF − α.

It is important to reiterate that in estimating the matrix Âdtw, we
directly utilize the RIRs h(0) and h(L − 1), thus implicitly
incorporating second-order reflection information. However, in
this case, not all second-order reflections adhere to the assumption
that the time intervals’ individual reflections occupy over the
trajectory do not overlap. Given that DTW inherently maps
sequences in a monotonic manner, assuming consistent order
among significant points like peaks, certain reflection peaks might
be incorrectly mapped between RIRs. Consequently, the points along
the trajectory where second-order reflections in the ground-truth
RIRs begin to overlap likely correspond to the jumps observed in the
error curve of Algorithm KF − Âdtw. Nonetheless, this serves as a
robust test demonstrating that despite deviations from certain
assumptions regarding all reflections, the proposed estimated
matrix still yields an overall enhancement over Algorithm KF − α.

7 Conclusion

This paper investigates the estimation of early segments of time-
varying RIRs through a state-space model incorporating the ISM
within the state transition matrix. Simulation results indicate that
this approach outperforms both RIR interpolation and a purely
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data-driven state-space model using a transition factor. Moreover, a
practical method for estimating such a matrix has been proposed and
has a similar performance to the “ideal” analytical transition matrix
derived. It is important to acknowledge that certain assumptions
inherent to our method limit its application within specific areas of
a room. This necessitates further research in order to improve the
robustness of the approach, potentially through adaptive estimation of
the transition matrix. Furthermore, experimental validation using real
measurement data is required to assess the effectiveness of the proposed
approach in real-world scenarios.

Data availability statement

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

Author contributions

KM: conceptualization, formal analysis, investigation,
methodology, validation, writing–original draft, and
writing–review and editing. TD: conceptualization, methodology,
supervision, writing–original draft, and writing–review and editing.
RA: conceptualization, supervision, writing–original draft, and
writing–review and editing. TV: conceptualization, funding
acquisition, supervision, and writing–review and editing.

Funding

The authors declare that financial support was received for the
research, authorship, and/or publication of this article. This work
was supported by

• The European Research Council under the European Union’s
Horizon 2020 research and innovation program/ERC
Consolidator Grant: SONORA (no. 773268). This paper
reflects only the authors’ views, and the EU is not liable for
any use that may be made of the contained information.

• KU Leuven Internal Funds C14/21/075 “A holistic approach to
the design of integrated and distributed digital signal processing
algorithms for audio and speech communication devices”

• FWO Research Project: “The Boundary Element Method as a
State-Space Realization Problem” (G0A0424N)

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors, and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/frsip.2024.1426082/
full#supplementary-material

References

Ajdler, T., Sbaiz, L., and Vetterli, M. (2007). Dynamic measurement of room impulse
responses using a moving microphone. J. Acoust. Soc. Amer. (JASA) 122, 1636–1645.
doi:10.1121/1.2766776

Allen, J. B., and Berkley, D. A. (1979). Image method for efficiently simulating small-
room acoustics. J. Acoust. Soc. Amer. (JASA) 65, 943–950. doi:10.1121/1.382599

Antonello, N., De Sena, E., Moonen, M., Naylor, P. A., and Van Waterschoot, T.
(2017). Room impulse response interpolation using a sparse spatio-temporal
representation of the sound field. IEEE/ACM Trans. Audio Speech Lang. Process. 25,
1929–1941. doi:10.1109/taslp.2017.2730284

Antweiler, C., and Symanzik, H. G. (1995). “Simulation of time variant room impulse
responses,” in Proc. 1995 IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP ’95),
Detroit, MI, May 08-12, 1995, Vol. 5, 3031–3034. doi:10.1109/icassp.1995.479484

Antweiler, C., Telle, A., Vary, P., and Enzner, G. (2012). “Perfect-sweep NLMS for
time-variant acoustic system identification,” in Proc. 2012 IEEE Int. Conf. Acoust.,
Speech, Signal Process. (ICASSP ’12), Kyoto, Japan, 25-30 March 2012, 517–520. doi:10.
1109/ICASSP.2012.6287930

Borra, F., Gebru, I. D., andMarkovic, D. (2019). “Soundfield reconstruction in reverberant
environments using higher-order microphones and impulse response measurements,” in
Proc. 2021 IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP ’19), Brighton, Great
Britain, 12-17 May 2019, 281–285. doi:10.1109/ICASSP.2019.8682961

Bruschi, V., Nobili, S., Cecchi, S., and Piazza, F. (2020). “An innovative method for
binaural room impulse responses interpolation,” in Audio Engineering Society
Convention 148 (AES148Conv).

Carty, B. (2010). “Movements in binaural space: issues in HRTF interpolation and
reverberation, with applications to computer music,”. Ph.D. thesis (Maynooth, Ireland:
National University of Ireland).

Cherniakov, M. (2003). An introduction to parametric digital filters and oscillators.
John Wiley & Sons.

Crocco, M., and Bue, A. D. (2015). “Room impulse response estimation by iterative
weighted l1-norm,” in Proc. 23rd European Signal Process. Conf. (EUSIPCO ’15), Nice,
France, August 31-September 4, 2015, 1895–1899.

Das, O., Calamia, P., and Gari, S. V. A. (2021). “Room impulse response interpolation
from a sparse set of measurements using a modal architecture,” in Proc. 2021 IEEE Int.
Conf. Acoust., Speech, Signal Process. (ICASSP ’21), Toronto, Canada, 6-11 June 2021,
960–964. doi:10.1109/ICASSP39728.2021.9414399

Elko, G. W., Diethorn, E., and Gänsler, T. (2003). “Room impulse response variation
due to temperature fluctuations and its impact on acoustic echo cancellation,” in Proc.
2003 Int. Workshop Acoustic Echo Noise Control (IWAENC ’03), Kyoto, Japan,
September 8-11, 2003, 67–70.

Enzner, G. (2008). “Analysis and optimal control of lms-type adaptive filtering for
continuous-azimuth acquisition of head related impulse responses,” in Proc. 2008 IEEE
Int. Conf. Acoust., Speech, Signal Process. (ICASSP ’08), Las Vegas, Nevada, 31 March-4
April 2008, 393–396. doi:10.1109/ICASSP.2008.4517629

Enzner, G. (2010). “Bayesian inference model for applications of time-varying
acoustic system identification,” in Proc. 18th European Signal Process. Conf.
(EUSIPCO ’10), Aalborg, Denmark, August 23-27, 2010, 2126–2130.

Evers, C., Löllmann, H. W., Mellmann, H., Schmidt, A., Barfuss, H., Naylor, P. A.,
et al. (2020). The locata challenge: Acoustic source localization and tracking. IEEE/ACM
Trans. Audio Speech Lang. Process. 28, 1620–1643. doi:10.1109/taslp.2020.2990485

Garcia-Gomez, V., and Lopez, J. J. (2018). “Binaural room impulse responses
interpolation for multimedia real-time applications,” in AES 144th Convention
(AES148Conv), Milan, Italy, May 23-26, 2018.

Frontiers in Signal Processing frontiersin.org17

MacWilliam et al. 10.3389/frsip.2024.1426082

https://www.frontiersin.org/articles/10.3389/frsip.2024.1426082/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/frsip.2024.1426082/full#supplementary-material
https://doi.org/10.1121/1.2766776
https://doi.org/10.1121/1.382599
https://doi.org/10.1109/taslp.2017.2730284
https://doi.org/10.1109/icassp.1995.479484
https://doi.org/10.1109/ICASSP.2012.6287930
https://doi.org/10.1109/ICASSP.2012.6287930
https://doi.org/10.1109/ICASSP.2019.8682961
https://doi.org/10.1109/ICASSP39728.2021.9414399
https://doi.org/10.1109/ICASSP.2008.4517629
https://doi.org/10.1109/taslp.2020.2990485
https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://doi.org/10.3389/frsip.2024.1426082


Geldert, A., Meyer-Kahlen, N., and Schlecht, S. J. (2023). “Interpolation of spatial
room impulse responses using partial optimal transport,” in Proc. 2023 IEEE Int. Conf.
Acoust., Speech, Signal Process. (ICASSP ’23), Rhodes Island, Greece, June 4-June 10,
2023, 1–5. doi:10.1109/ICASSP49357.2023.10095452

Hahmann, M., and Fernandez-Grande, E. (2022). A convolutional plane wave model
for sound field reconstruction. J. Acoust. Soc. Amer. (JASA) 152 (5), 3059–3068. doi:10.
1121/10.0015227

Hahn, N., and Spors, S. (2015). “Continuous measurement of impulse responses on a
circle using a uniformly moving microphone,” in Proc. 23rd European Signal Process.
Conf. (EUSIPCO ’15), Nice, France, August 31-September 4, 2015, 2536–2540. doi:10.
1109/EUSIPCO.2015.7362842

Haneda, Y., Kaneda, Y., and Kitawaki, N. (1999). Common-acoustical-pole and
residue model and its application to spatial interpolation and extrapolation of a room
transfer function. IEEE Trans. Speech, Audio Process 7, 709–717. doi:10.1109/89.799696

Hoskins, R. F. (2009). Delta functions: Introduction to generalised functions. Horwood
Publishing.

Karakonstantis, X., Caviedes-Nozal, D., Richard, A., and Fernandez-Grande, E.
(2024). Room impulse response reconstruction with physics-informed deep learning.
J. Acoust. Soc. Amer. (JASA) 155 (2), 1048–1059. doi:10.1121/10.0024750

Katzberg, F., Mazur, R., Maass, M., Böhme, M., and Mertins, A. (2018). “Spatial
interpolation of room impulse responses using compressed sensing,” in Proc. 2018 Int.
Workshop Acoustic Signal Enhancement (IWAENC ’18), Tokyo, Japan, September
17–20, 2018, 426–430. doi:10.1109/IWAENC.2018.8521390

Kearney, G., Masterson, C., Adams, S., and Boland, F. (2009). “Dynamic time warping
for acoustic response interpolation: Possibilities and limitations,” in Proc. 17th
European Signal Process. Conf. (EUSIPCO ’09), Glasgow, Scotland, 24-28 August
2009, 705–709.

Kuhl, S., Nagel, S., Kabzinski, T., Antweiler, C., and Jax, P. (2018). “Tracking of time-
variant linear systems: Influence of group delay for different excitation signals,” in Proc.
2018 Int. Workshop Acoustic Signal Enhancement (IWAENC ’18), Tokyo, Japan,
September 17–20, 2018, 131–135. doi:10.1109/IWAENC.2018.8521372

Lin, Y., and Lee, D. (2006). Bayesian regularization and nonnegative deconvolution
for room impulse response estimation. IEEE Trans. Signal Process 54, 839–847. doi:10.
1109/tsp.2005.863030

Masterson, C., Kearney, G., and Boland, F. (2009). “Acoustic impulse response
interpolation for multichannel systems using dynamic time warping,” in Proc. AES
35th Int. Conf. Audio for Games, London, United Kingdome, February 11-13, 2009.

Mignot, R., Daudet, L., and Ollivier, F. (2013). Room reverberation reconstruction:
Interpolation of the early part using compressed sensing. IEEE Trans. Audio Speech
Lang. Process. 21, 2301–2312. doi:10.1109/tasl.2013.2273662

Müller, M. (2007). “Dynamic time warping,” in Information retrieval for music and
motion. Berlin, German: Springer, 69–84.

Naylor, P. A., and Gaubitch, N. D. (2010). Speech dereverberation. Vol. 2. Berlin,
Germany: Springer.

Nophut, M., Preihs, S., and Peissig, J. (2024). Velocity-controlled Kalman filter for an
improved echo cancellation with continuously moving microphones. J. Audio Eng. Soc.
(JAES) 72, 33–43. doi:10.17743/jaes.2022.0116

Pezzoli, M., Perini, D., Bernardini, A., Borra, F., Antonacci, F., and Sarti, A. (2022).
Deep prior approach for room impulse response reconstruction. Sensors 22, 2710.
doi:10.3390/s22072710

Ratnarajah, A., Ananthabhotla, I., Ithapu, V. K., Hoffmann, P. F., Manocha, D., and
Calamia, P. T. (2022). “Towards improved room impulse response estimation for speech
recognition,” in Proc. 2023 IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP ’23),
Rhodes Island, Greece, 4-10 June 2023, 1–5. doi:10.1109/ICASSP49357.2023.10094770

Schissler, C., Stirling, P., and Mehra, R. (2017). “Efficient construction of the spatial
room impulse response,” in 2017 IEEE Virtual Reality (VR), Los Angeles, CA, 18-22
March 2017, 122–130. doi:10.1109/VR.2017.7892239

Simon, D. (2006). Optimal state estimation: Kalman, H infinity, and nonlinear
approaches. Hoboken, NJ: John Wiley & Sons.

Stan, G.-B., Embrechts, J.-J., and Archambeau, D. (2002). Comparison of different
impulse response measurement techniques. J. Audio Eng. Soc. (JAES) 50, 249–262.

Szöke, I., Skácel, M., Mošner, L., Paliesek, J., and Černocký, J. H. (2018). Building and
evaluation of a real room impulse response dataset. IEEE J. Sel. Topics Signal Process.
(JSTSP) 13, 863–876. doi:10.1109/JSTSP.2019.2917582

Zhao, J., Zheng, X., Ritz, C., and Jang, D. (2022). Interpolating the directional room
impulse response for dynamic spatial audio reproduction. Appl. Sci. 12, 2061. doi:10.
3390/app12042061

Frontiers in Signal Processing frontiersin.org18

MacWilliam et al. 10.3389/frsip.2024.1426082

https://doi.org/10.1109/ICASSP49357.2023.10095452
https://doi.org/10.1121/10.0015227
https://doi.org/10.1121/10.0015227
https://doi.org/10.1109/EUSIPCO.2015.7362842
https://doi.org/10.1109/EUSIPCO.2015.7362842
https://doi.org/10.1109/89.799696
https://doi.org/10.1121/10.0024750
https://doi.org/10.1109/IWAENC.2018.8521390
https://doi.org/10.1109/IWAENC.2018.8521372
https://doi.org/10.1109/tsp.2005.863030
https://doi.org/10.1109/tsp.2005.863030
https://doi.org/10.1109/tasl.2013.2273662
https://doi.org/10.17743/jaes.2022.0116
https://doi.org/10.3390/s22072710
https://doi.org/10.1109/ICASSP49357.2023.10094770
https://doi.org/10.1109/VR.2017.7892239
https://doi.org/10.1109/JSTSP.2019.2917582
https://doi.org/10.3390/app12042061
https://doi.org/10.3390/app12042061
https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://doi.org/10.3389/frsip.2024.1426082

	State-space estimation of spatially dynamic room impulse responses using a room acoustic model-based prior
	1 Introduction
	2 Signal model, problem statement, and related state of the art
	2.1 Signal model and problem statement
	2.2 Related state of the art

	3 Proposed RIR state-space model
	3.1 Update equations of the Kalman filter

	4 Proposed room acoustic model-based transition matrix
	4.1 Analytical location-variant transition matrix model
	4.2 Analytical location-invariant transition matrix model
	4.3 Dynamic Time Warping transition matrices

	5 Simulations
	5.1 Acoustic environment
	5.2 Kalman filter parameters
	5.3 Performance measure
	5.4 Experiments

	6 Results
	6.1 Result 1: ideal case
	6.2 Result 2: noise sensitivity
	6.3 Result 3: spatial sampling effects
	6.4 Result 4: second-order reflections included

	7 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


