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This paper presents an analysis of properties of two hybrid discretisationmethods
for Gaussian derivatives, based on convolutions with either the normalised
sampled Gaussian kernel or the integrated Gaussian kernel followed by central
differences. The motivation for studying these discretisation methods is that
in situations whenmultiple spatial derivatives of different orders are needed at the
same scale level, they can be computed significantly more efficiently, compared
to more direct derivative approximations based on explicit convolutions with
either sampled Gaussian derivative kernels or integrated Gaussian derivative
kernels. We characterise the properties of these hybrid discretisation methods
in terms of quantitative performancemeasures, concerning the amount of spatial
smoothing that they imply, as well as the relative consistency of the scale
estimates obtained from scale-invariant feature detectors with automatic scale
selection, with an emphasis on the behaviour for very small values of the scale
parameter, which may differ significantly from corresponding results obtained
from the fully continuous scale-space theory, as well as between different types
of discretisation methods. The presented results are intended as a guide, when
designing as well as interpreting the experimental results of scale-space
algorithms that operate at very fine scale levels.
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1 Introduction

When analysing image data by automatedmethods, a fundamental constraint originates
from the fact that natural images may contain different types of structures at different
spatial scales. For this reason, the notion of scale-space representation (Iijima, 1962; Witkin,
1983; Koenderink, 1984; Koenderink and van Doorn, 1987; Koenderink and van Doorn,
1992; Lindeberg, 1993b; Lindeberg, 1994; Lindeberg, 2011; Florack, 1997; Weickert et al.,
1999; ter Haar Romeny, 2003) has been developed to process the image data at multiple
scales, in such a way that different types of image features can be obtained depending on the
spatial extent of the image operators. Specifically, according to both theoretical and
empirical findings in the area of scale-space theory, Gaussian derivative responses, or
approximations thereof, can be used as a powerful basis for expressing a rich variety of
feature detectors, in terms of provably scale-covariant or scale-invariant image operations,
that can in an automatedmanner handle variabilities in scale, caused by varying the distance
between the observed objects and the camera (Lindeberg, 1998b; 1998b; Lindeberg, 2013a;
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FIGURE 1
Graphs of the main types of Gaussian smoothing kernels as well as of the equivalent convolution kernels for the hybrid discretisations of Gaussian
derivative operators considered specially in this paper, here at the scale σ � 1, with the raw smoothing kernels in the top row and the order of spatial
differentiation increasing downwards up to order 4: (left column) continuous Gaussian kernel and continuous Gaussian derivatives, (middle column)
normalised sampled Gaussian kernel and central differences applied to the normalised sampled Gaussian kernel, (right column) integrated Gaussian
kernel and central differences applied to the integrated Gaussian kernel. Note that the scaling of the vertical axis may vary between the different
subfigures (Horizontal axes: the 1-D spatial coordinate x ∈ [−5, 5].). (Graphs of the regular sampled Gaussian derivative kernels, the regular integrated
Gaussian derivative kernels and the discrete analogues of Gaussian derivatives up to order 4 are shown in Figure 1 in (Lindeberg, 2024b).
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Lindeberg, 2013b; Lindeberg, 2015; Lindeberg, 2021b; Bretzner and
Lindeberg, 1998; Chomat et al., 2000; Lowe, 2004; Bay et al., 2008).
More recently, Gaussian derivative operators have also been used as
a basis, to formulate parameterised mathematical primitives, to be
used as the layers in deep networks (Jacobsen et al., 2016; Worrall
and Welling, 2019; Lindeberg, 2020; 2022; Pintea et al., 2021;
Sangalli et al., 2022; Penaud-Polge et al., 2022; Yang et al., 2023;
Gavilima-Pilataxi and Ibarra-Fiallo, 2023).

When to implement the underlying Gaussian derivative
operators in scale-space theory in practice, special attention does,
however, need to be taken concerning the fact that most of the scale-
space formulations are based on continuous signals or images (see
Appendix A in the Supplementary Material for a conceptual
background), while real-world signals and images are discrete
(Lindeberg, 1990; Lindeberg, 1993b; Lindeberg, 2024b). Thus,
when discretising the composed effect of the underlying Gaussian
smoothing operation and the following derivative computations, it is
essential to ensure that the desirable properties of the theoretically
well-founded scale-space representations are to a sufficiently good
degree of approximation transferred to the discrete implementation.
Simultaneously, the amount of necessary computations needed for
the implementation may often constitute a limiting factor, when to
choose an appropriate discretisation method for expressing the
actual algorithms, that are to operate on the discrete data to
be analysed.

While one may argue that at sufficiently coarse scale levels, it
ought to be the case that the choice of discretisation method
should not significantly affect the quality of the output of a scale-
space algorithm, at very fine scale levels, on the other hand, the
properties of a discretised implementation of notions from scale-
space theory may depend strongly on the actual choice of a
discretisation method.

The subject of this article, is to perform a more detailed analysis
of a class of hybrid discretisation methods, based on convolution
with either the normalised sampled Gaussian kernel or the
integrated Gaussian kernel, followed by computations of discrete
derivative approximations by central difference operators, and
specifically characterise the degree of approximation of
continuous expressions in scale-space theory, that these
discretisation give rise to, see Figure 1 for examples of graphs of
equivalent convolution kernels corresponding to these discretisation
methods. This class of discretisation methods was outlined among
extensions to future work in Section 6.1 in (Lindeberg, 2024b), and
was also complemented with a description about their theoretical
properties in Footnote 13 in (Lindeberg, 2024b). There were,
however, no further in-depth characterisations of the
approximation properties of these discretisations, with regard to
what results they lead to in relation to corresponding results from
the continuous scale-space theory.

The main goal of this paper is to address this topic in terms of
a set of quantitative performance measures, intended to be of
general applicability for different types of visual tasks.
Specifically, we will perform comparisons to the other main
types of discretisation methods considered in (Lindeberg,
2024b), based on either (i) explicit convolutions with sampled
Gaussian derivative kernels, (ii) explicit convolutions with
integrated Gaussian derivative kernels, or (iii) convolution
with the discrete analogue of the Gaussian kernel, followed by

computations of discrete derivative approximations by central
difference operators.

A main rationale for studying this class of hybrid discretisations
is that, in situations when multiple Gaussian derivative responses of
different orders are needed at the same scale level, these hybrid
discretisations imply substantially lower amounts of computations,
compared to explicit convolutions with either sampled Gaussian
derivative kernels or integrated Gaussian derivative kernels for each
order of differentiation. The reason for this better computational
efficiency, which also holds for the discretisation approach based on
convolution with the discrete analogue of the Gaussian kernel
followed by central differences, is that the spatial smoothing part
of the operation, which is performed over a substantially larger
number of input data than the small-support central difference
operators, can be shared between the different orders of
differentiation.

A further rationale for studying these hybrid discretisations is
that in certain applications, such as the use of Gaussian derivative
operators in deep learning architectures (Jacobsen et al., 2016;
Lindeberg, 2021a; 2022; Pintea et al., 2021; Sangalli et al., 2022;
Penaud-Polge et al., 2022; Gavilima-Pilataxi and Ibarra-Fiallo,
2023), the modified Bessel functions of integer order, as used as
the underlying mathematical primitives in the discrete analogue of
the Gaussian kernel, may, however, not be fully available in the
framework used for implementing the image processing operations.
For this reason, the hybrid discretisations may, for efficiency
reasons, constitute an interesting alternative to using
discretisations in terms of either sampled Gaussian derivative
kernels or integrated Gaussian derivative kernels, when to
implement certain tasks, such as learning of the scale levels by
backpropagation, which usually require full availability of the
underlying mathematical primitives in the scale-parameterised
filter family with regard to the deep learning framework, to be
able to propagate the gradients between the layers in the deep
learning architecture.

Deliberately, the scope of this paper is therefore to complement
the in-depth treatment of discretisations of the Gaussian smoothing
operation and the Gaussian derivative operators, and as a specific
complement to the outline of the hybrid discretisations in the future
work section in (Lindeberg, 2024b).

We will therefore not consider other theoretically well-founded
discretisations of scale-space operations (Wang, 1999; Lim and
Stiehl, 2003; Tschirsich and Kuijper, 2015; Slavík and Stehlík,
2015; Rey-Otero and Delbracio, 2016). Nor will we consider
alternative approaches in terms of pyramid representations (Burt
and Adelson, 1983; Crowley and Stern, 1984; Simoncelli et al., 1992;
Simoncelli and Freeman, 1995; Lindeberg and Bretzner, 2003;
Crowley and Riff, 2003; Lowe, 2004), Fourier-based
implementations, splines (Unser et al., 1991; 1993; Wang and
Lee, 1998; Bouma et al., 2007; Bekkers, 2020; Zheng et al., 2022),
recursive filters (Deriche, 1992; Young and van Vliet, 1995; van Vliet
et al., 1998; Geusebroek et al., 2003; Farnebäck and Westin, 2006;
Charalampidis, 2016), or specific wavelet theory (Mallat, 1989;
Mallat, 1989; Mallat, 1999; Mallat 2016; Daubechies, 1992;
Meyer, 1992; Teolis, 1998; Debnath and Shah, 2002).

Instead, we will focus on a selection of five specific methods, for
implementing Gaussian derivative operations in terms of purely
discrete convolution operations, and then with the emphasis on the
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behaviour for very small values of the scale parameter. This focus on
very fine scale levels is particularly motivated from requirements
regarding deep learning, where deep learning architectures often
prefer to base their decisions on very fine-scale information, and
specifically below the rule of thumb in classical computer vision, of
not going trying to go to scale levels below a standard deviation
σ � �

s
√

of the Gaussian derivative kernels below, say 1/
�
2

√
or 1, in

units of the grid spacing.

2 Methods

The notion of scale-space representation is very general, and
applies to wide classes of signals. Based on the separability property
when computing Gaussian derivative responses in arbitrary
dimensions (see Appendices B.1–B.2 in the Supplementary
Material), we will in this section focus on discretisations of 1-D
Gaussian derivative kernels. By separable extension over multiple
dimensions, this methodology can then be applied to signals, images
and video over arbitrary numbers of dimensions.

2.1 Discretisation methods for 1-D Gaussian
derivative operators

Given the definition of a scale-space representation of a one-
dimensional continuous signal (Iijima, 1962; Witkin, 1983;
Koenderink, 1984; Koenderink and van Doorn, 1987; 1992;
Lindeberg, 1993b; 1994; 2011; Florack, 1997; Sporring et al.,
1997; Weickert et al., 1999; ter Haar Romeny, 2003), the 1-D
Gaussian kernel is defined according to (for x ∈ R):

g x; s( ) � 1���
2πs

√ e−x
2/2s, (1)

where the parameter s ∈ R+ is referred to as the scale parameter, and
any 1-DGaussian derivative kernel for spatial differentiation order α
is defined according to

gxα x; s( ) � ∂xαg x; s( ), (2)
with the associated computation of Gaussian derivative responses
from any 1-D input signal f(x), in turn, defined according to

Lxα x; s( ) � ∫
u∈R

gxα u; s( ) f x − u( ) du. (3)

Let us first consider the following ways of approximating the
Gaussian convolution operation for discrete data, based on
convolutions with either (for n ∈ Z):

• The sampled Gaussian kernel defined from the continuous
Gaussian kernel (Equation 1) according to (see also Appendix
B.3 in the Supplementary Material).

Tsampl n; s( ) � g n; s( ), (4)

• The normalised sampled Gaussian kernel defined from the
sampled Gaussian kernel (Equation 4) according to (see also
Appendix B.4 in the Supplementary Material).

Tnormsampl n; s( ) � g n; s( )∑
m∈Z

g m; s( ), (5)

• The integrated Gaussian kernel defined according to
(Lindeberg, 1993b; Equation 3.89) (see also Appendix
B.5 in the Supplementary Material).

Tint n; s( ) � ∫n+1/2

x�n−1/2
g x; s( ) dx, (6)

• Or the discrete analogue of the Gaussian kernel defined
according to (Lindeberg, 1990; Equation 19) (see also
Appendix B.6 in the Supplementary Material).

Tdisc n; s( ) � e−sIn s( ), (7)
where In(s) denotes the modified Bessel functions of integer order
(Abramowitz and Stegun, 1964).

Then, we consider the following previously studied methods for
discretising the computation of Gaussian derivative operators, in
terms of either:

• Convolutions with sampled Gaussian derivative kernels from
the continuous Gaussian derivative kernel (Equation 2)
according to (see also Appendix B.7 in the
Supplementary Material).

Tsampl,xα n; s( ) � gxα n; s( ), (8)

• Convolutions with integrated Gaussian derivative kernels
according to (Lindeberg, 2024b; Equation 54) (see also
Appendix B.8 in the Supplementary Material).

Tint,xα n; s( ) � ∫n+1/2

x�n−1/2
gxα x; s( ) dx, (9)

• The genuinely discrete approach corresponding to
convolution with the discrete analogue of the Gaussian
kernel Tdisc(n; s) according to Equation 7 followed by
central difference operators δxα , thus corresponding to the
equivalent discrete approximation kernel (Lindeberg, 1993a;
Equation 58) (see also Appendix B.9 in the
Supplementary Material).

Tdisc,xα n; s( ) � δxαTdisc( ) n; s( ). (10)

Here, the central difference operators are for orders 1 and
2 defined according to

δx � −1
2
, 0,+1

2
( ), (11)

δxx � +1,−2,+1( ), (12)
and for higher values of α according to:

δxα � δx δxx( )i if α � 1 + 2i,
δxx( )i if α � 2i,

{ (13)

for integer i, where the special cases α � 3 and α � 4 then correspond
to the difference operators

Frontiers in Signal Processing frontiersin.org04

Lindeberg 10.3389/frsip.2024.1447841

https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://doi.org/10.3389/frsip.2024.1447841


δxxx � −1
2
,+1, 0,−1,+1

2
( ), (14)

δxxxx � +1,−4,+6,−4,+1( ). (15)

In addition to the above, already studied discretisation methods
in (Lindeberg, 2024b), we will here specifically consider the
properties of the following hybrid methods, in terms of either:

• The hybrid approach corresponding to convolution with the
normalised sampled Gaussian kernel Tnormsampl(n; s)
according to Equation 5 followed by central difference
operators δxα according to Equation 13, thus corresponding
to the equivalent discrete approximation kernel (Lindeberg,
2024b; Equation 116) (see also Appendix B.10 in the
Supplementary Material).

Thybr−sampl,xα n; s( ) � δxαTnormsampl( ) n; s( ), (16)

• The hybrid approach corresponding to convolution with the
integrated Gaussian kernel Tint(n; s) according to Equation 6
followed by central difference operators δxα according to
Equation 13, thus corresponding to the equivalent discrete
approximation kernel (Lindeberg, 2024b; Equation 117) (see
also Appendix B.11 in the Supplementary Material).

Thybr−int,xα n; s( ) � δxαTint( ) n; s( ). (17)

A motivation for introducing these hybrid discretisation
methods (Equation 16) and (Equation 17), based on convolutions
with the normalised sampled Gaussian kernel (Equation 5) or the
integrated Gaussian kernel (Equation 6) followed by central
difference operators of the form (Equation 13), is that these
discretisation methods have substantially better computational
efficiency, compared to explicit convolutions with either the
sampled Gaussian derivative kernels (Equation 8) or the
integrated Gaussian derivative kernels (Equation 9), in situations
when spatial derivatives of multiple orders α are needed at the same
scale level.

The reason for this is that the same spatial smoothing stage can
then be shared between the computations of discrete derivative
approximations for the different orders of spatial differentiation,
thus implying that these hybrid methods will be as computationally
efficient as the genuinely discrete approach, based on convolution
with the discrete analogue of the Gaussian kernel (Equation 7)
followed by central differences of the form (Equation 13), and
corresponding to equivalent convolution kernels of the form
(Equation 10).

2.1.1 Quantitative measures of approximation
properties relative to continuous scale space

To measure how well the above discretisation methods for the
Gaussian derivative operators reflect properties of the underlying
continuous Gaussian derivatives, we will consider quantifications
in terms of the following the spatial spread measure, defined from
spatial variance V of the absolute value of each equivalent
discrete derivative approximation kernel (Lindeberg, 2024b;
Equation 80): ������������

V |Txα ·; s( )|( )√
, (18)

where the variance V(h(·)) of a non-negative continuous 1-D
function h(x) is defined as

V h ·( )( ) � ∫
x∈R

x2 h x( ) dx∫
x∈R

h x( ) dx
− ∫

x∈R
x h x( ) dx∫

x∈R
h x( ) dx

⎛⎝ ⎞⎠2

. (19)

To furthermore more explicitly quantify the deviation from the
corresponding fully continuous spatial spread measures������������
V(|gxα(·; s)|)

√
, we also consider the following measures of the

offsets of the spatial spread measures (Lindeberg, 2024b;
Equation 81):

Oα s( ) � ������������
V |Txα ·; s( )|( )√ −

������������
V |gxα ·; s( )|( )√

, (20)

where the variance V(h(·)) of a non-negative discrete function h(n)
is defined as

V h ·( )( ) �
∑
n∈Z

n2 h n( )
∑
n∈Z

h n( ) −
∑
n∈Z

n h n( )
∑
n∈Z

h n( )
⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠2

. (21)

2.2 Methodology for characterising the
resulting consistency properties over scale
in terms of the accuracy of the scale
estimates obtained from integrations with
scale selection algorithms

To perform a further evaluation of the hybrid discretisation
method to consistently process input data over multiple scales, we
will characterise the abilities of these methods in a context of feature
detection with automatic scale selection (Lindeberg, 1998b;
Lindeberg, 2021b), where hypotheses about local appropriate
scale levels are determined from local extrema over scale of scale-
normalised derivative responses.

For this purpose, we follow a similar methodology as used in
(Lindeberg, 2024b; Section 4). Thus, with the theory in Section 2.1
now applied to 2-D image data, by separable application of the 1-D
theory along each image dimension, we consider scale-normalised
derivative operators defined according to (Lindeberg, 1998b;
Lindeberg, 1998a) (for (x, y) ∈ R2 and s ∈ R+):

∂ξ � sγ/2∂x, ∂η � sγ/2∂y, (22)

with γ> 0 being a scale normalisation power, that is chosen specially
adapted for each feature detection task.

2.2.1 Scale-invariant feature detectors with
automatic scale selection

Specifically, we will evaluate the performance of the
following types of scale-invariant feature detectors, defined
from the spatial derivatives Lx(x, y; s), Ly(x, y; s),
Lxx(x, y; s), Lxy(x, y; s) and Lyy(x, y; s) up to order 2 of the
2-D scale-space representation L(x, y; s) of any 2-D image
f(x, y) at scale s, obtained by convolution with 2-D Gaussian
kernels g2D(x, y; s) for different values of s, thereby defined
from 2-D extensions of the 1-D Gaussian derivative responses
according to Equation 3:
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• Interest point detection from scale-space extrema (extrema
over both space (x, y) and scale s) of the scale-normalised
Laplacian operator (Lindeberg, 1998b; Equation 30) according
to Equation 22.

∇2
normL � s Lxx + Lyy( ), (23)

or the scale-normalised determinant of the Hessian operator
(Lindeberg, 1998b; Equation 31).

detHnormL � s2 Lxx Lyy − L2
xy( ), (24)

where we here choose the scale normalisation parameter γ � 1, such
that the selected scale level for a Gaussian blob of size s0 ∈ R+

fblob,s0 x, y( ) � g2D x, y; s0( ) � 1
2πs0

e−
x2+y2
2s0 (25)

will for both Laplacian and determinant of the Hessian interest point
detection be equal to the size of the blob (Lindeberg, 1998b;
Equation 36 and Equation 37):

x̂, ŷ; ŝ( ) � arg min x,y; s( ) ∇2
normL( ) x, y; s( ) � 0, 0; s0( ), (26)

x̂, ŷ; ŝ( ) � arg max x,y; s( ) detHnormL( ) x, y; s( ) � 0, 0; s0( ), (27)

• Edge detection from combined:
• Maxima of the gradient magnitude in the spatial gradient
direction ev, reformulated such that the second-order
directional derivative in the gradient direction Lvv is zero
and the third-order directional derivative in the gradient
direction Lvvv is negative (Lindeberg, 1998a; Equation 8), and

• Maxima over scale of the scale-normalised gradient magnitude
Lv,norm according to (Lindeberg, 1998a; Equation 15)

Lv,norm � sγ/2
������
L2
x + L2

y

√
, (28)

where we here set the scale normalisation parameter γ to (Lindeberg,
1998a; Equation 23).

γedge �
1
2
, (29)

such that the selected scale level ŝ for an idealised model of a diffuse
edge (Lindeberg, 1998a; Equation 18).

fedge,s0 x, y( ) � ∫x

u�−∞
g1D u; s0( ) du � ∫x

u�−∞
1����
2πs0

√ e−
u2
2s0 du

(30)
will be equal to the amount of diffuseness s0 ∈ R+ of that diffuse edge

ŝ � arg maxsLv,norm 0, 0; s( ) � s0, (31)

• Ridge detection from combined
• zero-crossings of the first-order directional derivative Lp in
the first principal curvature direction ep of the Hessian
matrix, such that Lp � 0 (Lindeberg, 1998a;
Equations 42), and

• Minima over scale of the scale-normalised ridge strength in
terms the scale-normalised second-order derivative Lpp,norm
in the direction ep according to (Lindeberg, 1998a;
Equation 47):

Lpp,norm � sγLpp � sγ Lxx + Lyy −
����������������
Lxx − Lyy( )2 + 4L2

xy

√( ), (32)

where we here choose the scale normalisation parameter γ as
(Lindeberg, 1998a; Equation 56).

γridge �
3
4
, (33)

such that the selected scale level ŝ for a Gaussian ridge model of
the form

fridge,s0 x, y( ) � g1D x; s0( ) � 1����
2πs0

√ e−
x2
2s0 (34)

will be equal to the width s0 ∈ R+ of that idealised ridge model

ŝ � arg maxsLpp,norm 0, 0; s( ) � s0. (35)

A common property of all these scale-invariant feature
detectors is, thus, that the selected scale levels ŝ obtained from
local extrema over scale will reflect characteristic1 scales s0 in the
input data (Lindeberg, 2021b). By evaluating discretisation
methods of Gaussian derivatives with respect to such scale
selection properties, we therefore have a way of formulating a
well-defined proxy task, for evaluating how well the different
types of discretisation methods lead to appropriate consistency
properties over scales for the numerical implementations of
Gaussian derivative operators.

Supplementary Figures 5–8 in Appendix D in the
Supplementary Material provide visualisations of the conceptual
steps involved when defining these scale estimates ŝ.

2.2.2 Quantitative measures for characterising the
accuracy of the scale estimates obtained from the
scale selection methodology

To quantify the performance of the different discretisation
methods with regard to the above scale selection tasks, we will

• Compute the selected scale levels σ̂ � �̂
s

√
according to

Equations 26, 27, Equation 31 and Equation 35 for
appropriate values of the scale normalisation power γ
with γ = 1 for the interest point detection tasks and γ
according to Equation 29 and Equation 33 for the edge
detection and ridge detection tasks, for different values of
the characteristic scale s0 in the image data, measured in
dimension length σ0 � ��

s0
√

, and
• Quantify the deviations from the reference in terms of the
relative error measure (Lindeberg, 2024b; Equation 107).

Escaleest,rel σ( ) � σ̂

σ̂ref
− 1, (36)

under variations of the characteristic scale s0 in the input image,
where the deviations between the selected scale levels σ̂ � �̂

s
√

and

1 The notion of “characteristic scale” refers to a scale that reflects a

characteristic length in the image data, in a similar way as the notion of

characteristic length is used in the areas of physics. See Appendix A.3.1 in

the Supplementary Material for further details.
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the reference value σ0 � ��
s0

√
are to be interpreted as the results of

discretisation errors.
When generating discrete model signals for the different

discrete approximation methods, we use as conceptually close
discretisation methods for the input model signals (Gaussian
blobs according to Equation 25 for interest point detection,
diffuse edges according to Equation 30 for edge detection, or
Gaussian ridges according to Equation 34 for ridge detection) as
for the discrete approximations of Gaussian derivatives, according to
Appendix C in the Supplementary Material.

3 Results

3.1 Characterisation of the effective amount
of spatial smoothing in discrete
approximations of Gaussian derivatives in
terms of spatial spread measures

Figures 2, 3 show the graphs of computing the spatial spread
measure

������������
V(|Txα(·; s)|)

√
according to Equations 18, 19, 21 as well as

the offset measure Oα(s) according to Equation 20 over an interval

FIGURE 2
Graphs of the spatial spreadmeasure

������������
V(|Txα(·; s)|)

√
according to Equation 18 for different discrete approximations of Gaussian derivative kernels of

order α: (i) for either discrete analogues of Gaussian derivative kernels Tdisc,xα(n; s) according to Equation 10, corresponding to convolutions with the
discrete analogue of the Gaussian kernel Tdisc(n; s) according to Equation 7 followed by central differences according to Equation 13, (ii) sampled
Gaussian derivative kernels Tsampl,xα(n; s) according to Equation 8, (iii) integrated Gaussian derivative kernels Tint,xα(n; s) according to Equation 9, (iv)
the hybrid discretisation kernel Thybr−sampl,xα(n; s) according to Equation 16, corresponding to convolution with the normalised sampled Gaussian kernel
Tnormsampl(n; s) according to Equation 5 followed by central differences according to Equation 13, and (v) the hybrid discretisation kernel Thybr−int,xα(n; s)
according to Equation 17, corresponding to convolutionwith the integratedGaussian kernelTint(n; s) according to Equation6 followedbycentral differences
according to Equation 13. (Horizontal axes: Scale parameter in units of σ � �

s
√

∈ [0.1, 2]). (A) case α = 1, (B) case α = 2, (C) case α = 3, (D) case α = 4.
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of finer scale values σ � �
s

√
∈ [0.1, 2], for each one of the different

discretisation methods described in Section 2.1.
As can be seen from these graphs:

• The agreement with the underlying fully continuous spread
measures for the continuous Gaussian derivative kernels is
substantially better for the genuinely sampled or integrated
Gaussian derivative kernels than for the hybrid discretisations
based on combining either the normalised sampled Gaussian
kernel or the integrated Gaussian kernel with central
difference operators according to Equations 11–14.

In situations when multiple derivatives of different orders α
are to be computed at the same scale levels, the hybrid

discretisation methods are, however, as previously mentioned,
computationally much more efficient, implying that the
introduction of the hybrid discretisations implies a trade-off
between the accuracy in terms of the overall amount of spatial
smoothing of the equivalent discrete filters and the
computational efficiency of the implementation.

• The agreement with the underlying fully continuous
spread measures for the continuous Gaussian
derivative kernels is substantially better for the
genuinely discrete analogue of Gaussian derivative
operators, obtained by first convolving the input data
with the discrete analogue of the Gaussian kernel and
then applying central difference operators to the spatially

FIGURE 3
Graphs of the spatial spread measure offset Oα(s), relative to the spatial spread of a continuous Gaussian kernel, according to Equation 20, for
different discrete approximations of Gaussian derivative kernels of order α: (i) for either discrete analogues of Gaussian derivative kernels Tdisc,xα(n; s)
according to Equation 10, corresponding to convolutions with the discrete analogue of the Gaussian kernel Tdisc(n; s) according to Equation 7 followed
by central differences according to Equation 13, (ii) sampled Gaussian derivative kernels Tsampl,xα(n; s) according to Equation 8, (iii) integrated
Gaussian derivative kernels Tint,xα(n; s) according to Equation 9, (iv) the hybrid discretisation kernel Thybr−sampl,xα(n; s) according to Equation 16,
corresponding to convolution with the normalised sampled Gaussian kernel Tnormsampl(n; s) according to Equation 5 followed by central differences
according to Equation 13, and (v) the hybrid discretisation kernel Thybr−int,xα(n; s) according to Equation 17, corresponding to convolution with the
integrated Gaussian kernel Tint(n; s) according to Equation 6 followed by central differences according to Equation 13. (Horizontal axes: Scale parameter
in units of σ � �

s
√

∈ [0.1,2].) (A) Case: α � 1, (B) Case: α � 2, (C) Case: α � 3, (D) Case: α � 4.
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smoothed input data, compared to using any of the hybrid
discretisations.

If, for efficiency reasons, a discretisation method is to be
chosen, based on combining a first stage of spatial smoothing
with a following application of central difference operators, the
approach based on using spatial smoothing with the discrete
analogue of the Gaussian kernel, in most of the cases, leads to
better agreement with the underlying continuous theory,
compared to using either the normalised sampled Gaussian
kernel or the integrated Gaussian kernel in the first stage of
spatial smoothing.

As previously stated, the hybrid discretisation methods may,
however, anyway be warranted in situations where the underlying
modified Bessel functions In(s) are not fully available in the
computational environment, where the discrete filtering operations
are to be implemented, such as when performing learning of the scale
levels in deep networks based on Gaussian derivative operators.

A further general implication of these results is that, depending
on what discretisation method is chosen for discretising the
computation of Gaussian derivative responses at fine scales,
different values of the spatial scale parameter s will be needed, to
obtain a comparable amount of spatial smoothing of the input data
for the different discretisation methods.

FIGURE 4
Graphs of the selected scales σ̂ � �̂

s
√

as well as the relative scale estimation error Escaleest,rel(σ), according to Equation 36, when (left column) applying
scale selection from local extrema over scale of the scale-normalised Laplacian response according to Equation 23 to a set of Gaussian blobs of different
size σref � σ0, for different discrete approximations of the Gaussian derivative kernels or (right column) when applying scale selection from local extrema
over scale of the scale-normalised gradient magnitude response according to Equation 28 to a set of diffuse step edges of different width σref � σ0,
for either (i) discrete analogues of Gaussian derivative kernels Tdisc,xα(n; s) according to Equation 10, (ii) sampled Gaussian derivative kernels Tsampl,xα(n; s)
according to Equation 8, (iii) integrated Gaussian derivative kernels Tint,xα(n; s) according to Equation 9, (iv) the hybrid discretisation method
corresponding the equivalent convolution kernels Thybr−sampl,xα(n; s) according to Equation 16 or (v) the hybrid discretisation method corresponding the
equivalent convolution kernels Thybr−int,xα(n; s) according to Equation 17. (Horizontal axes: Reference scale σref � σ0 ∈ [1/3, 3].) (A) Selected scales σ̂, (B)
Selected scales σ̂, (C) Relative scale estimation error Escaleest,rel(σ), (D) Relative scale estimation error Escaleest,rel(σ).
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3.2 Characterisation of the approximation
properties relative to continuous scale space
in terms of the scale levels selected by scale
selection algorithms

We will next characterise the approximation properties of the
scale estimates for the different benchmark tasks outlined in Section
2.2.1 with regard to the quantitative measures defined in
Section 2.2.2.

For generating the input data, we used 50 logarithmically
scale values σ0 ∈ [1/3, 3]. When performing the scale selection
step, we searched over a range of 80 logarithmically scale levels
σ0 ∈ [0.1, 5], and accumulated the variability over scale at the
image center for each differential feature detector, and
additionally performed parabolic interpolation over the
logarithmic scale values, to localise the scale estimates to
higher accuracy. This very dense sampling of the scale levels is
far beyond what is usually needed in actual image processing or
computer vision algorithms, but was chosen here in order to
essentially eliminate the effects of discrete sampling issues in the
scale direction.

Figure 4A shows a graph of the scale estimates obtained for the
second-order Laplacian interest point detector based on Equation 23
in this way, with the corresponding relative scale errors in Figure 4C.
Supplementary Figures 9A, 9C in Appendix E in the Supplementary
Material show corresponding results for the non-linear determinant
of the Hessian interest point detector based on Equation 24.

As can be seen from these graphs, the consistency errors in the
scale estimates obtained for the hybrid discretisation methods, based
on either the normalised Gaussian kernel or the integrated Gaussian
kernel with central differences, are for larger values of the scale
parameter higher than the corresponding consistency errors in the
regular discretisation methods based on either sampled Gaussian
derivatives or integrated Gaussian derivatives. For smaller values of
the scale parameter, there is, however, a range of scale values, where
the consistency errors are lower for the hybrid discretisation
methods than for underlying corresponding regular
discretisation methods.

Notably, the consistency errors for the discretisation methods
involving central differences are also generally lower for the
genuinely discrete method, based on convolution with the
discrete analogue of the Gaussian kernel followed by central
differences, than for the hybrid methods.

Figure 4B shows the selected scale levels for the first-order
gradient-magnitude-based edge detection operation based on
Equation 28, with the corresponding relative error measures
shown in Figure 4D. As can be seen from these graphs, the
consistency errors are notably higher for the hybrid discretisation
approaches, compared to their underlying regular methods. In these
experiments, the consistency errors are also higher for the hybrid
discretisation methods than for the genuinely discrete approach,
based on discrete analogues of Gaussian derivatives.

Finally, Supplementary Figures 9B, 9D in Appendix E in the
Supplementary Material show corresponding results for the second-
order principal-curvature-based ridge detector based on Equation
32, which are structurally similar to the previous results for the
second-order Laplacian and determinant of the Hessian interest
point detectors.

4 Summary and discussion

In this paper, we have extended the in-depth treatment of
different discretisations of Gaussian derivative operators in terms
of explicit convolution operations in (Lindeberg, 2024b) to twomore
discretisation methods, based on hybrid combinations of either
convolutions with normalised sampled Gaussian kernels or
convolutions with integrated Gaussian kernels with central
difference operators.

The results from the treatment show that it is possible to
characterise general properties of these hybrid discretisation methods
in terms of the effective amount of spatial smoothing that they imply.
Specifically, for very small values of the scale parameter, the results
obtained after the spatial discretisation may differ significantly from the
results obtained from the fully continuous scale-space theory, as well as
between the different types of discretisation methods.

The results from this treatment are intended to be generically
applicable in situations, when scale-space operations are to be applied at
scale levels below the otherwise rule of thumb in classical computer
vision, of not going below a certainminimum scale level, corresponding
to a standard deviation of the Gaussian kernel of the order of 1/

�
2

√
or 1.

We argue that the presented quantitative performance characterisations
should have a predictive ability, for how the different types of discrete
derivative approximation methods could have comparative advantages
in other multi-scale settings.

One direct application domain for these results is when
implementing deep networks in terms of Gaussian derivatives,
where empirical evidence indicates that deep networks often tend
to benefit from using finer scale levels than as indicated by the
previous rule of thumb in classical computer vision, and which we
will address in future work.
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