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Accurate water vapor density (WVD) measurement is critical for weather models,
health risk management, and industrial management among many other
applications. A number of machine-learning based algorithms (e.g. support
vector machine) for estimating water vapor density at a reference weather
station using the received signal level values measured at a commercial
microwave link has been proposed in the past, and also was expanded to
include a combination of three commercial microwave links with temperature
measurements to achieve a higher estimation accuracy (with respect to the root
mean square error at a given location). In this paper, we leverage on the
preliminary potential presented, and propose enhanced machine learning
models that utilize a larger number of CMLs combined with temperature data
inside a given area to estimate a reference weather station humidity
measurements. We then show how the presented approach can be expanded
to estimate the water vapor density field - taking into consideration the elevation
via the humidity-elevation profile. The models were evaluated using data from 32
weather stations and 505 CMLs in Germany, with performance assessed through
root mean square error (RMSE) and correlation coefficients (CC). The enhanced
models achieved a mean RMSE of 0.587 g/m³ for WVD field estimation,
outperforming prior approaches as well as can be used as "virtual weather
stations" - to estimate the water vapor density values in locations where no
actual weather stations exist.
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1 Introduction

Water vapor density (WVD) (aka humidity) spatiotemporal distribution data at high
resolution is important for accurate weather forecasting; it is currently based on numerical
weather prediction models (Gutman and Benjamin, 2001). WVD measurements are also
beneficial for health risk management (Gao et al., 2014), agricultural management (Ferrante
and Mariani, 2018), and other industries (Hoffmann and Koehl, 2014). Generally, WVD is
measured at a specific spatial point over time, such as by weather stations (WS). WVD at
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multiple locations and heights can also be measured by
radiosondes, but these devices are more cumbersome to use and
may only provide measurement at the path of the instrument at the
time of its passing; they are thus not common. Satellites provide
better spatiotemporal resolutions but have greater errors of
measurement and cannot always differentiate between the
different atmospheric layers. Water vapor attenuates microwave
and mmWave signals propagating through the atmosphere.
Commercial microwave links (CMLs) are widely used as the
infrastructure for wireless communication networks (WCNs),
such as the back-haul of current and future cellular and smart-
city communication networks. In David et al. (2009), it was shown
that WVD can be estimated using such CML attenuation data by
using the theoretical relationship between water vapor and channel
attenuation. This method has been improved over the years, and
Rubin et al. (2023) presented a more accurate approach for
estimating the spatial WVD using CML.

In Song et al. (2021), a support vector machine (SVM)-learning
model was used to estimate the WVD at a reference WS location
using the received signal level (RSL) of CMLs at frequencies of
15 GHz, 18 GHz, and 23 GHz. This achieved relatively accurate
results compared with reference WS humidity observations (WS-
HO). This model was trained using prior RSL measurements from
the CMLs and WS-HO. In Bragin et al. (2023), we leveraged that
approach to show that using three CMLs (operating at frequencies
approximately 23 GHz) significantly improved theWVD estimation
at a reference WS with respect to the root mean square error
(RMSE). Furthermore, we also showed that the addition of
temperature measurement information (available from
thermometers located at the WS) as an input to model
estimations improved the results even further, reducing the
overall RMSE to a value of 0.767 g/m3, compared to 1.81 g/m3

achieved by the approach suggested by Song et al. (2021), adapted
for use in our scenario.

We here leverage the model first presented in Song et al. (2021)
and expanded by us in Bragin et al. (2023) to present an approach
that can make use of a much larger number of CMLs in combination
with temperature data in order to achieve better accuracy. We test
our proposed approach on a large area, giving us the possibility to
use and compare its performance with 32 dedicated WSs. We then
further show how to incorporate information regarding ground
elevation and present a combined model capable of estimating a
WVD field at multiple locations and elevations without being
restricted to the original WS locations. This is done by utilizing
multiple CML attenuation observations, temperature
measurements, and the humidity-elevation profile, which we
learn separately via a dedicated side model. This approach
resulted in WVD estimates with an average RMSE of 0.587 g/m3

compared to the reference WSs, outperforming our previously
presented model, while producing a full WVD field which can be
used to extract the WVD at locations where noWS was available for
training—a limiting factor of previous models.

The rest of this paper is organized as follows. In Section 2, we
present the full WVD estimation approach and describe the
available data and its pre-processing. In Section 3, we
demonstrate the use of our approach on a real-world
experimental setup. Section 4 includes a discussion regarding the
results and concludes this study.

2 Materials and methods

In this section, we first present in detail the three models that
incorporate our WVD estimation approach (Sections 2.1–2.3),
following by a description of the available data and the pre-
processing stages performed on it (Section 2.4).

The three models are:

• WSHEM (2.1): a WS humidity estimation machine learning
model that uses multiple CML attenuation with or without
additional side information (i.e., the temperature and/or the
measured timestamp) to estimate theWVD at a reference WS.

• WVDEP (2.2): a WVD–elevation profile model to determine
the humidity–elevation profile.

• WVDEM (2.3): a WVD enhanced-estimation model. This is
the fully enhanced approach that combines the WSHEM and
WVDEP models to achieve high accuracy WVD spatial field
estimation.

2.1 WS humidity estimation model (WSHEM)

This model is based onmachine learning tools to estimate theWS-
HO at each WS location. A support vector machine (SVM) regression
model inspired by Song et al. (2021) was performed. SVM is a general
function comprised of a sumof weighted kernel functions. The input of
the SVM is a vector of parameters. Training the SVM is essentially
fitting a hyperplane to a mapping of the input parameters and a given
output. The fitted hyperplane andmapping are then used to predict an
output for a given input. Further details regarding the SVM approach
can be found in Vapnik (2013). The SVM regression was implemented
using the Scikit-learn Python library Pedregosa et al. (2011).We set the
SVM properties and hyperparameters as follows. (i) Radial basis
function kernel with normalization (gamma coefficient) was used,
with 1/Nf whereNf is the number of features (length of model input
vector). (ii) The SVM regularization parameter (C) was set to 1. (iii) All
other hyperparameters were set to their default values.

The loss function was the ϵ-insensitive loss function as detailed
in Vapnik (2013) and was set to 0.1.

The WSHEM is trained per WS using past measurements (see
Section 2.4). That is, each WS is associated with a specific and
different WSHEM instance. In the sequence, we use the following
notations to address and differentiate between the different types
and instances of the model:

WSHEM□
i (j)

where j represents the index of each specific WS, and i represents
the number of CMLs used as input to the model. When more than a
single CML is used, they are selected such that the closest CML to the
respective WS will be chosen first. In the square superscript □, the
letter/s T, H, or TH will be added in cases where, in addition to the
CML data, the temperature, timestamp of the measurements (hour of
the day), or both (respectively) are used as input to the model.

The rationale behind adding time as an input parameter is that
sometimes the humidity exhibits a repetitive diurnal pattern (Rubin
et al., 2022). This theoretically may provide additional information
to the estimation model. Temperature and humidity are linked, as
the higher the temperature, the higher the atmospheric WVD
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saturation (Koutsoyiannis, 2012); temperature could thus provide
additional information to the estimation model. In Fencl et al.
(2021), temperature measurements were in fact used alongside
CML attenuation to improve WVD estimation model accuracy.

The WSHEM model that makes use of a single CML that is
closest to the WS (i.e., WSHEM1(j)) and the three closest CMLs
(i.e., WSHEM3(j)) are considered as the base models and will be
used as the basis for comparison with the enhanced approach. We
detailed a limited experimental result using those two basic models
with a single WS in Bragin et al. (2023).

The WSHEM models use the CML attenuation time series
without calibration or baseline removal in order to relate
fluctuations in attenuation to WS-HO rather than absolute values.
Fast and temporary changes to the baseline attenuation not related to
humidity are dealt with at the pre-processing of the data, as will be
detailed below. Aside from these temporally localized events, we
assume that the baseline attenuation of the functional CMLs does
not vary significantly throughout the time of the gathered data and
especially not between the training and testing periods.

2.2 WVD-elevation profile

The WVD in a given area is correlated with the altitude of the area
above sea level (ASL) as atmospheric water vapor generally decreases
with altitude Ruckstuhl et al. (2007). That is, given a number ofWS-HO
measurements collected by different locations and elevations within a
given area at the same time, it is possible to extrapolate the behavior of
the WVD with respect to the changes in ground height. The WVD-
elevation profile might change during the day (Rubin et al., 2022).

Therefore, in order to improve the capabilities of the proposed
enhanced approach and to allow it to produce a full WVD field, we
propose to use the WVD-elevation profile. We estimate the time-
dependent WVD-elevation profile for the 24 h of a day, which is
therefore actually comprised of 24 WVD-elevation profiles, one for
each hour, as the WVD-elevation profile might change between the
hours. We also estimate the WVD-elevation profile for all the hours
together (without discrepancy between the hours). The estimation is
done by first taking the median value of every WS-HO for each WS
at each hour of the day for the time dependent case and at all hours

FIGURE 1
WS and CML elevations. (A) Median WS humidity measurement as a function of WS elevation in blue dots. Each dot represents a WS with a total of
32 WSs. The blue line is a fitted linear to the data. The data used are the first 70% of the available data at all hours of the day (training data: approximately
42 days). (B) CML elevation ASL histogram and median CML elevation. CML elevation is the mean elevation of both its points.
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together for the time-independent case. Then, a linear function is
fitted to the median WS-HO as a function of the WS elevation ASL
by minimizing the minimum square error (MSE), similar to the
method presented in Rubin et al. (2022). We will thus have two
WVDEP models: one is time-dependent (comprising 24 WVD-
elevation profiles, one for each hour) and the other is time-
independent (one general profile). At each given hour, the time
dependent WVD-elevation profile uses the respective hour’s WVD-
elevation profile, which is a fitted linear curve to the medianWS-HO
at that hour as a function of the WS’s elevation ASL.

Figure 1A shows an example of the daily WS-HO median
plotted as a function of the WS elevation, with the resulting
fitted linear curve.

Note that the target data are the median WS humidity (per hour
or total) over the training period and not the measurements
themselves.

2.3 WVD estimation model (WVDEM)

Given the estimated hourly WVD-elevation profile (WVDEP)
and an ensemble of trained WSHEMs (one for each WS), it is
possible to estimate the WVD field at any point in space in the given
area at a required time—the WVD spatiotemporal field.

The WVDEM algorithm goes as follows.

0. A well-performing WSHEM ensemble is chosen with an
optimal number of CMLs and side information.

1. An hour, coordinate, and elevation are given for the WVD’s
estimation.

2. The distances to all the WSs are calculated using the
haversine formula (Chopde and Nichat, 2013) as well as
the elevation difference to all the WSs.

3. AllWS-HO estimations (given by theWSHEM) are adjusted
to the elevation of interest using the estimated WVD-
elevation profile.

4. The elevation-adjusted WSHEM estimations are averaged.

The elevation adjustment for the WS-HO estimations is similar
to the method in Rubin et al. (2022), using the slope of the WVD-
elevation profile according to:

WVD h,WS( ) � m h − hWS( ) +WVD WS( ),
where h is the elevation ASL of interest at which the WVD is
estimated, hWS is the WS elevation, WVD(h,WS) is the WVD
estimation at elevation h ASL at the WS lateral coordinates,
WVD(WS) is the WVD (or its estimation) at a WS coordinate
at the WS elevation ASL, and m is the slope of the WVD elevation
profile (at a given hour).

The averaging of the elevation-adjusted WSHEM estimations
can be a simple mean or a weighted average with weights inversely
proportional to the distance between every WSHEM corresponding
WS and the given coordinate (stage 3 in the above algorithm).

Thus, the estimated WVD field given by the WVDEM is
calculated as follows:

WVD lon, lat, h( ) � ∑
N

i�1

wk n( ) WVD h,WS n( )( )
N

,

where WVD(lon, lat, h) is the WVDEM WVD estimation at
longitude lon, latitude lat, and elevation h ASL, wk(n) is the
averaging weight of type k of WS n out of N WSs. WS(n) is the
nth WS of N, and WVD(h,WS(n)) is the WVD estimation at
elevation h ASL at WS(n) lateral coordinates.

In Rubin et al. (2023), a version of the inverse weighting method
(IDW) with a maximal radius of influence was used to average
several CML attenuation-based humidity estimations. Here, we use a
version that does not have a maximal radius of influence. The IDW
weighing method is as follows:

w1 n( ) �
1
dn

Σ
N

i�1
1
di

, (1)

where n is the number of the WS-corresponding WSHEM
estimations that are used, and w1(n) is the weight of each
WSHEM estimation that is included in the average. N is the total
number of WSHEMs (and WSs), and dn is the distance between the
coordinate of interest and WS number n.

Another weighing method is possible. A linear weighing method
(LD) is:

w2 n( ) � dmax + dmin − dn

Σ
N

i�1
dmax + dmin − di

, (2)

where dmax is the distance from the coordinate to the farthest
WS, dmin is the distance from the coordinate to the closest WS, and
w2(n) is the weight of each WSHEM estimation that is included in
the average.

These weight functions give the least weight to the farthest
WSHEM estimation (corresponding to the farthest WS) and the
most to the closest. In w2(n), the change is linear. The sum of all the
WSHEM weights is 1.

The WVD estimation model (WVDEM) is tested on one of the
WS each time while using the WSHEM corresponding to all other
WSs without the test WS’s corresponding WSHEM. A WVDEM is
noted similarly to the WSHEM in the following manner:

WVDEM□
i (j)

where j represents the index of each specific test WS, unlike
WSHEMs that are named after their corresponding WS. The
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WVDEM uses all the WSHEMs aside from WSHEM(j) (as it is
tested on WS “j” humidity observations). i represents the number of
CML used by the WSHEMs. In the square superscript □, the letter/s
T,H, or TH will be added in cases where, in addition to CML data,
the temperature, timestamp of the measurements (hour of the day),
or both (respectively) are used as input to the WSHEM.

The WVDEM can use the WS-HOs instead of the WSHEM
estimations. In such a case, the model instances will be noted as
WVDEM□

HO(j). If no elevation adjustment is used in the WVDEM,
it will be marked with an asterisk in the subscript, as in
WVDEM□

*HO(j). If a weighted average is used by the WVDEM,
then it will be noted asWVDEM□

i (j, weighing_method) where the
weighing method could be either IDW or LD in the cases of inverse
distance and linear distance weighing, respectively. The default is
mean average.

2.4 Available data and pre-possessing

The data used in this study are based on measurements collected
by WSs and CMLs in Germany during May and June 2018, as used
and detailed in Rubin et al. (2022) and Bragin et al. (2023).

The received signal level (RSL) quantization level is 0.3 dB, and
the transmitted signal level (TSL) quantization level is 1 dB. RSL and
TSL were measured instantaneously every minute.

The WS measurements used in the paper were measured at the
end of each hour (at 1-h intervals).

To correspond to the values observed by the WS and to increase
accuracy, the RSL and TSL were averaged at the last 10 min of each
hour. Since they were measured every minute, the mean average of
the ten last RSL and TSL measurements of each hour are used. In
every case where CML attenuation is now mentioned, it refers to the
hour’s last 10 min average attenuation.

The CML total attenuation (A) in dB is given by:

A � TSL − RSL.

There are 3,862 CMLs ranging in frequency from 6.46 GHz to
38.85 GHz. The CMLs work at discrete frequencies. Not all
frequencies at this range are being used by the CMLs, and there
are small and major frequency gaps. Specifically, there are no CMLs
in the frequency ranges of:

19.57 GHz–22 GHz,
22.3 GHz–23.08 GHz,
23.32 GHz–24.86 GHz.

At approximately 22.24 GHz, water vapor induced attenuation
has a local maximum (Van Vleck, 1947), and it is expected that the
effect of CML attenuation by water vapor will be maximal around
this frequency. Therefore, for this work, we chose to mainly focus on
the 505 functional CMLs that operate at a frequency range of
22–23.32 GHz (with the above frequency gap in between). Note
that in Bragin et al. (2023), we only used CMLs with frequency of
23.086 GHz. The longer the CML, the stronger the water vapor
attenuation due to the path length of the electromagnetic waves
through the atmospheric water vapor.

Some of the other attenuation measurement factors such as
measurement and quantization noise are not affected by the CML

length. This means that the longer the CML, the better the SNR for
the water vapor attenuation signal. The length of the CMLs used
ranges from 2.4 km to 15.9 km, with a median length of 8.3 km.

The CML elevation refers to the mean elevation of both its
points. The WVD changes with elevation (Rubin et al., 2022) and
may also be affected at lower elevations by different land covers (Jin
et al., 2022) and other local deviations from the larger
scale humidity.

The humidity–elevation profile may change during the day with
the diurnal weather pattern (Rubin et al., 2022).

The change of the median humidity with elevation can be seen in
Figure 1A, where the median WS humidity measurement as a
function of the WS elevation is plotted as in Section 2.2.

For a CML attenuation-based humidity estimation model, it is
beneficial to have CMLs from varying elevations to minimize outlier
local deviations from the general weather pattern. The CMLs used
cover a wide range of elevations (Figure 1B) and are distributed quite
uniformly across Germany (Figure 2B).

TheWVD and temperature measurements were taken at 32WSs
located in western Germany (unlike the CMLs which are from all
over Germany). The region is approximately at longitude 48–51.3 N
and latitude 5-9 E (size of 1̃50 km 132 × 200 km) (Figure 2A).

SomeWS-HOs had physically unlikely values, most likely due to
instrument error. Therefore, WVD measurements outside the range
of 0 − 51 g/m3 were deleted. 51 g/m3 is the WVD at 40° Celsius at
100% relative humidity and 40° Celsius was not exceeded at the WSs
temperature measurements. This was not done in our previous
preliminary paper (Bragin et al., 2023).

The WS-HO standard deviation mean value is 2.590 g/m3, so
there is variability (mean WS-HO standard deviation) in the data
such that learning is possible (as opposed to data with little
variability where simply a constant value can be set as an estimator).

The variation between the different WSs humidity observations’
standard deviation is 0.128 g/m3 and indicates that the weather
patterns do not change much between WSs. The difference between
the WS mean humidity observation is more noticeable as the mean
WS mean HO is 9.880 g/m3 and the WS mean HO range is
8.797–10.603 g/m3, with the WS mean HO standard deviation at
0.409 g/m3. This along with the humidity–elevation profile
(Figure 1B) indicates that it is most likely because of the
difference between the various WS elevations and local conditions.

Another indication that the different WSs experience the same
humidity pattern is in Figure 3A, showing the correlation between
WS 12 and the other WSs as a function of their distance from each
other. WS 12 was chosen as it is on the fringe of the WSs group, as
in Figure 2A.

Figure 3A shows that all the WSs have very high correlation
between them, with a minimum of 0.87 for the farthest WS.

Note that the correlation coefficient (CC) generally goes down as
the distance between the WSs increases.

The distances from every WS to all the available CMLs centers
were calculated.

The averaged CML attenuation data (one value per hour) were
aligned with the WS-HO and temperature observations time series.

Even after averaging the last 10 min of every hour, many CMLs
had extreme attenuations that are most likely caused by malfunctions
or obstructions (that could also be meteorological). Initially in Bragin
et al. (2023), these extreme attenuations were addressed by omitting
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attenuation values outside the 0.001 to 99.99 percentile range. This
study takes a different, more robust approach.

In cases where the malfunctions were continuous such that the
attenuation time series statistics were altered significantly, the CMLs
were considered dysfunctional and were omitted from the database.
They were removed by individually observing each attenuation time

series. This resulted in the loss of less than 10% of the CMLs and the
aforementioned 505 available functional CMLs. Examples of such
dysfunctional CMLs are in Figure 4A.

For the other CMLs, where extreme attenuations were anecdotal,
the extreme outlier attenuations were interpolated to be the nearest
previous non-outlier attenuation value.

FIGURE 2
WS and CML maps. The data is the same as in Rubin et al. (2022). (A)WS (blue markers) and surrounding area. The total area is approximately 150 ×
200 km. The white text box marks the WS number. (B) Map of available functional CMLs (red lines) and center of the WS group (blue marker). The
130 CMLs used by WSHEM130(18), located approximately at the center of the WS group, are in the green circle with a radius of approximately 133 km.
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Outlier attenuations are marked using the interquartile range
algorithm as per Fredianto and Putri (2023) and Baek et al. (2022).
The interquartile range (IQR) is defined as:

IQR � Q3 − Q1,

where Q3 and Q1 are the third and first quartiles of attenuation,
respectively. Outlier attenuations are those whose values exceed
1.5IQR above Q3 (i.e.,>Q3 + 1.5IQR) or below 1.5IQR below Q1

(i.e., <Q1 − 1.5IQR). An example of a CML attenuation time series
before and after IQR algorithm outlier detection and interpolation is
shown in Figures 4B and C.

The IQR method is preferable to the previous method of outlier
detection using a fixed percentile threshold (as used in our previous
paper, Bragin et al., 2023), particularly because it is more robust to
extreme values and better suited for skewed distributions. By focusing
on the middle 50% of the data, the IQR method reduces the influence
of outliers, leading to a more reliable detection process (Seo, 2006).

In our previous paper, outliers were deleted along with their
associated timestamps rather than being interpolated. This approach
resulted in significant information loss, especially as the number of

CMLs increased, since any timestamp with an outlier in any of the
CMLs was entirely removed.

The WS aligned time series after the above processing had a
length of 1,455 points ± 2 points (aside from the WS 1 aligned time
series with a length of 1,356).

For each time-series, the last 30% of the data points were used as
the test set for evaluating the humidity estimation models while the
rest was used for training (i.e., from 8 weeks of data, the last 17 days
were used as test data). This temporal separation for train and test
datasets ensures that during training, the model is not exposed to
future conditions for which the estimation will be performed, so no
bias from close by time periods or data points is introduced into the
model—which would be the case if random train-set selection was
made. This prevents the training from being over-optimistic and
thus enhances the training procedures performed (de Bruin et al.,
2021). The statistics of the train set and test set WS measurements
are very similar aside from one difference: the mean WS-HO
standard deviation is 2.880 g

m3 for the train period while it is
1.783 g

m3 for the test period. This indicates some change to the
weather pattern between the periods.

FIGURE 3
Correlation coefficients of the WSs with other WSs and with the CMLs. (A) Correlation coefficients of WS 12 against the other WSs as a function of
their distance. (B)Correlation coefficients of the 505 available CMLs andWS 18 as a function of the distance between them. Note that the farther the CML
from the station, the lower the likely correlation will be.

Frontiers in Signal Processing frontiersin.org07

Bragin et al. 10.3389/frsip.2024.1468789

https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://doi.org/10.3389/frsip.2024.1468789


The CCs between the CMLs’ attenuation and the WS-HO time
series largely decrease as the distance between CML and WS
increases. In Figure 3B, the CCs between the 505 available
CMLs and WS 18 are presented as a function of the distance
from CML to WS. Since we established from the WSs-HOs
statistics and Figure 3A that the different WSs largely measure
the same weather patterns, Figure 3B is a good indicator for other
WSs, especially since WS 18 is at the center of the WSs
group (Figure 2A).

From the usual decrease in CC value with distance between the
CML and the WS, a good “rule of thumb” we used was to use the
closest CMLs to a WS to train a WSHEM.

3 Results

The estimation models are fed with the CML attenuation time-
series (one time stamp at a time) without any removal of the base

FIGURE 4
Example of a CML attenuation time series with outlier extreme attenuations before (B) and after (C) IQR outlier detection and interpolation is
represented in blue. An example of WS 18 HO for comparison is represented in orange. (A) Examples of CML attenuation time series with major
malfunctions are represented in blue. An example of WS 18 HO for comparison is represented in orange.
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line attenuation, such as done in Rubin et al. (2022). We expect the
models to be able to establish the correct relationship between the
total attenuation values and the WS-HO based on the fluctuations
rather than the absolute values. In accordance with previous
research on similar topics (Rubin et al., 2022; Song et al., 2021;
Andersson et al., 2007; Bragin et al., 2023), the performance of the
various models will be measured using the RMSE and CC metrics.

3.1 WS-HO estimation basic model

For the basic model (WSHEM1), we used the closest CML to
each WS. Table 1 presents the mean and standard deviation of the
distance of the CMLs from their corresponding WSs in the case of
one CML and the mean and standard deviation of the distance to the
farthest CML for multiple CMLs. The standard deviation of the
CMLs’ distance from their correspondingWS is of the same order of
magnitude as the mean distance in the case of one CML. This large
variation in CML distance from the WS might induce some more
variation in the WSHEMs RMSE and CC, as change in local
conditions is more influential in such cases. High RMSE and CC
variation is indeed observed inWSHEM1, as can be seen in Table 2,
which presents the 1-, 3-, and 130-CML WSHEM WSs-HO
estimation statistics.

As in Table 2, the mean test set RMSE of the basic model is
1.683 g/m3, while in Song et al. (2021), the test set RMSE was 1.89 (at
23 GHz) and in Bragin et al. (2023) it was 1.81 g/m3 for the single
CMLmodel compared to a singleWS. Note that in Table 2, the mean
RMSE of 32 WSHEM1 referring to 32 WSs is shown instead of a
single WS, as in previous studies. Figure 5A depicts WSHEM1(18)
estimations compared to the WS-HO for WS 18 time-series (for the
test data).

Thus, despite the differences mentioned in Bragin et al. (2023)
between the data used here and in Song et al. (2021), the basic
models here in these references performed similarly. This indicates
that the performance of the more advanced models can be compared
to both basic models.

3.2 WS-HO estimation advanced models

The first improvement of the basic WSHEM (WSHEM1) was
achieved by incorporating additional CML attenuation data (from
closest to farthest) to the SVM, which showed significant
improvement to the accuracy of the WVD estimates (and as
such, the RMSE when compared to WSHEM1 was smaller). In
Bragin et al. (2023), we introduced a model that uses three CMLs
(WSHEM3(18)), and its RMSE was 0.896 g/m3. However when
tested on all 32WSs, the mean RMSE was 1.321 g/m3, as can be seen
in Table 2, where WSHEM3 statistics are shown. High result
variations were also observed in this case. A possible contributing
cause might again be the large variation in farthest CML distance
compared to the mean farthest CML distance (Table 1) combined
with a small number of indicators of three CMLs. This makes
isolating the larger WVD pattern from the varying local
conditions harder for the WSHEM.

There is reason to believe that the more CMLs available to the
estimation model, the better its performance.

Even in cases where the additional CML attenuation data are
uncorrelated to the WS-HO, one might expect that the model would
learn to ignore the irrelevant data source.

However, the experimental setup has shown that the models do
have a maximal number of CMLs that can be used without
decreasing model error and thus reduce performance.

The optimal amount of CMLs used in an WS-HO estimation
model is calculated by iteratively incorporating more CMLs until the
point where model performance decreases—that is, training the
WSHEMs for all WSs at an increasing number of CMLs until the
mean RMSE stops improving (and at some point, even gets
slightly worse).

This computation was done again only with an increasing radius
around each WS inside of all the CMLs are used.

The mean test and train set RMSEs and their standard deviation
confidence intervals for each number of CMLs (or CMLs containing
radius) can be seen in Figure 6.

Both Figures 6A and B show that WSHEM reaches near optimal
mean RMSE at approximately 50 CMLs and optimal results at
130 CMLs (with little improvement in the mean RMSE between the
two numbers of CMLs used). For research purposes, the optimal
number of 130 CMLs is used.

Table 2 presents the 1-, 3-, and 130-CML SVM WSHEMs,
WSHEM1, WSHEM3, and WSHEM130 statistics.

Table 2 showsmajor improvement in bothmean RMSE and CCs
for both test and training sets compared to the basic single CML
SVM based WSHEM1 and 3-CML SVM based WSHEM3.

TABLE 1 Radii of 1, 3 and 130 CMLs.

Mean [m] STD [m]

1 CML 9,994 5,559

3 CMLs 19,772 6,659

130 CMLs 139,811 8,085

TABLE 2 Mean and standard deviation (STD) of the 32 WS-HO estimation models based on 1, 3, and 130 CML SVM.

Model WSHEM1 WSHEM3 WSHEM130

Mean STD Mean STD Mean STD

Train set RMSE [g/m3] 1.680 0.397 1.173 0.200 0.547 0.051

Test set RMSE [g/m3] 1.683 0.354 1.321 0.367 0.714 0.103

Test set CCs 0.641 0.263 0.805 0.0851 0.922 0.018

Train set CCs 0.792 0.528 0.908 0.0367 0.982 0.003
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WSHEM130 mean RMSE is 0.714 g/m3, whileWSHEM1 mean
RMSE is 1.683 g/m3—over twice smaller.

Adding the hour of day as an additional input parameter was
tested. For the 3-CML model, adding time, on average, very slightly
improved results over our previous study (Bragin et al., 2023), where
adding time slightly degraded model accuracy. This is possible since

the data process was improved and the model was tested on more
WSs. The 3-CML and time SVM model WSHEMH

3 statistics are
in Table 3.

Adding the hour of day as an additional input parameter to the
130-CML model slightly lowered the minimum and maximum
RMSE measured but also slightly increased the upper quartiles

FIGURE 5
WS 18 WSHEM estimations (blue) and WS 18 -HO time-series (orange) for 17 days of test data for the basic modelWSHEM1(18) (A) and for the 130-
CML and temperature WSHEMWSHEMT

130(18) (B). In (C),WVDEMT
130(18) estimations are represented in blue, and WS 18 -HO time-series, in orange. For

WS 18, WSHEM1(18) had an RMSE of 1.683 g/m3, and for WSHEMT
130(18), an RMSE of 0.634 g/m3. WVDEMT

130(18) test set RMSE is 0.587 g/m3.
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RMSE as well as the median RMSE. Test-set RMSE decreased more
noticeably.

Adding time also slightly increased the CCs, especially for the
training set compared to the WSHEMs without time as a parameter.

The test-set CCs did not improve meaningfully with the addition
of time as a parameter.

This effect on model performance can be seen in Table 3. The
insignificant improvement in test-set CCs and negative effects on

FIGURE 6
Mean SVM-based WSHEM RMSE, with red lines for test (continuous line) and training (broken line) sets and corresponding translucent red areas
representing standard deviation confidence intervals. Mean CML containing radius is represented in blue, along with its standard deviation confidence
interval (blue translucent area), both as a function of the number of CMLs used by the models. Without temperature in (A) with temperature in (C). Mean
SVM-based WSHEM RMSE, with red lines for test (continuous line) and training (broken line) sets and corresponding translucent red areas
representing standard deviation confidence intervals. Themean number of CMLs is represented in blue, alongwith standard deviation confidence interval
(blue translucent area), both as a function of the radius containing the CMLs used by the models (B).
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RMSE instigated by the addition of the time parameter for the 130-
CML WSHEM and the negligible improvement for the 3-CML
WSHEM serves as an indicator not to use the addition of time as
a parameter for the next stages of the algorithm.

As opposed to adding the time of day as an additional input
parameter, adding the temperature observations (as measured by the
WS) slightly increased the accuracy of the WSHEMs and thus
decreased the RMSE and increased CCs across the board for
both the 3-CML and 130-CML WSHEM. The results can be seen
in Table 3, which also presents 130-CML and 3-CML both with WS
temperature measurement WSHEM (WSHEMT

3 and WSHEMT
130)

statistics respectively. Obviously, the WSHEMT
130 ensemble still

performs better than WSHEMT
3 and any previous model.

Figure 5B depicts WSHEMT
130(18) estimations compared to the

WS-HO for time series of WS 18 (for the test data).
To ensure that both the CML attenuation and WS temperature

measurements contributed significant data to theWSHEM, as opposed
to just the temperature measurement being the main indicator for
humidity and the CML attenuation an insignificant data source in
comparison, the multi-CML and WS temperature measurement SVM
WSHEMs were trained on an increasing number of CMLs and
corresponding WS temperature measurements. The mean test and
train set RMSE as well as their standard deviation confidence intervals
for each number of CMLs can be seen in Figure 6C.

Figure 6C shows that Both the CML attenuation and the WS
temperature measurements contribute to the model’s performance,
as the addition of more CMLs improves theWSHEM's performance.

To test that indeed the addition of time as a parameter is not
beneficial in any meaningful way, it is again tested with the addition
of WS temperature as a parameter (along with the 130 and 3 closest
CMLs to each WS). WSHEMTH

3 and WSHEMTH
130 were tested, and

Table 3 presents their statistics; the addition of time to temperature
as a parameter did not improve the test set’s WSHEM performance
and even degraded it slightly.

However, for the training set, the addition of time as a parameter led
to better fitting of the model to the data (and lower RMSE and higher
CCs). A possible cause for this phenomenon is that the diurnal humidity
pattern changes from the training to the test period. This possibility is
reinforced by the change between the meanWS-HO standard deviation
in the training and test periods. Nonetheless, the lack in performance
improvement by the addition of time as a parameter reinforces the
decision to not use time as an input parameter.

The 130-CML and WS temperature measurement SVM
WSHEMT

130 has the best performance on average followed by the
130-CML and SVM WSHEM130.

3.3 WVD-elevation profile results

In Rubin et al. (2022), the WVDEP was trained in the 2 weeks
prior to the testing period, and it was assumed that the diurnal
WVD-elevation profile would not change significantly between the
training and test periods. Here, we assume the same, only that the
training period is the prior 42 days (the entire training period). The
linear curve fitted in Figure 1A is for the median WS-HOs for all the
hours together. The fitted linear approximation for the WVD
elevation profile in that case is:

WVD � −0.00274h + 11.1,

where h is the elevation above sea level (ASL) in meters and the
WVD is in g/m3.

The fitted linear train set RMSE is 0.298 g/m3, and the test set
RMSE is 0.809 g/m3.

The same fit was done also for the median WS-HOs for every
hour of the day. The slope of the line is the only significant parameter,
as we use elevation differences to adjust humidity based on elevation.

The slope of the fitted linear curves for the hourly median WS-
HO, as a function of elevation, ranged
from −0.00165 g/m4to −0.00373 g/m4.

The fitted curves statistics can be seen in Table 4.
The difference between the training and test set RMSE might

indicate that there is some variation in the WVD-elevation profile
from the training to the test period. However, we use the fitted linear
curves under the premise that the change in WVD-elevation profile
from the training to the test period is not large enough to make the
WVD-elevation profile irrelevant. The basis for the premise is that,
according to Figure 1A, the median WS-HO range for the WS
elevation range used is approximately 2.5 g

m3 while the test set error
for the WVD-elevation models is mostly below 1 g

m3.

TABLE 3 Mean and standard deviation (STD) of the 32 WS-HO estimation models based on 3 and 130 CMLs with time and/or temperature SVM.

Model WSHEMH
3 WSHEMH

130 WSHEMT
3 WSHEMT

130 WSHEMHT
3 WSHEMHT

130

Mean STD Mean STD Mean STD Mean STD Mean STD Mean STD

Train set RMSE [ g
m3] 1.057 0.186 0.512 0.049 0.911 0.1667 0.474 0.04 0.765 0.147 0.451 0.041

Test set RMSE [ g
m3] 1.279 0.317 0.714 0.097 0.1667 0.375 0.634 0.073 1.167 0.324 0.650 0.077

Test set CCs 0.810 0.0778 0.923 0.017 0.838 0.091 0.941 0.012 0.829 0.081 0.938 0.012

Train set CCs 0.926 0.0303 0.984 0.003 0.945 0.025 0.986 0.002 0.962 0.017 0.987 0.002

TABLE 4 Hourly WVD-elevation profile RMSE statistics.

Train set RMSE g/m3 Test set RMSE g/m3

Mean 0.429 0.825

STD 0.0954 0.154

Min 0.272 0.577

Lower quartile 0.386 0.716

Median 0.408 0.817

Upper quartile 0.519 0.947

Max 0.608 1.15
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Table 4 shows some variation between the different hours’
WVD-elevation profile test set RMSE, indicating that the profile
does change somewhat between the hours and strengthens the
conjecture that the diurnal pattern changes from the training to
the test period.

3.4 WVD estimation model results

The WVD estimation models (WVDEM) use an average
(weighted or not) of the elevation-adjusted WSHEM estimations.
It is tested on one WS at a time while using the WSHEMs
corresponding to all other stations without the corresponding
WSHEM of the test WS. The WVDEM is tested over the test
period data detailed in Section 2.4.

WS 1 WSHEM was not used since the WS 1 aligned time series
had a length shorter by about 7% from the rest of the WSs’ aligned
time series. The shorter time-series would shorten the number of
available data points for the other test stations estimations andmight
skew the results. Note that WS 1 was used as a test WS.

We first establish a base-line performance for the WVD
estimations by using the WS-HO instead of the WSHEM
estimations (WVDEMHO).

This removes the error component imposed by the inaccuracy of
the WS-HO WSHEM estimations. The WVDEM test results using
the mean averaged WS-HOs without and with elevation adjustment
are in Table 5.

From Table 5, the use of the learned WVD-elevation profile
decreased the WVDEM RMSE, even though the WVD-elevation
profile had a substantially larger RMSE for the test period data than
the training data (as in Table 4).

This shows that despite possible changes of the WVD-elevation
profile from the training to the test period, it is still relevant to
the latter.

Table 6 shows the WVDEM test results using the IDWweighted
average (Equation 1) and linear distance weighted average (Equation
2)WS-HOs with elevation adjustment. It is apparent that the change
of the weighing method of the average to give less weight to more
distanceWSHEMs increased the RMSE of theWVD estimations but
also slightly increased the correlation coefficients. The increase in
correlation is expected as, generally, the closerWSs are to each other,
the higher they are correlated—as mentioned above and depicted in
Figure 3A. In accordance with this phenomenon, the above weighing
methods give more weight to closer WSs. However, the increase in
RMSE was not expected and may be a result of some bias.

Next, instead of the WS-HOs, the WSHEM estimations are used
for the WVD estimations. Recall that the WSHEMs estimate their
corresponding WS-HOs.

The WVDEM test results using the mean (not weighted)
average, elevation-adjusted 31 130-CML with and without WS
temperature measurement SVM WSHEMs (WVDEM130 and
WVDEMT

130) are shown in Table 7.
The increase in RMSE and decrease in correlation compared to

the WS-HO being used for the WVDEM (Table 5) is expected as,
instead of using the WS-HO, its estimation is used (given by the
WSHEMs). However, in both cases the mean RMSE over the test
WSs is lower than the mean RMSE ofWSHEM130 andWSHEMT

130

compared to their respective WSs, and we consider it a low RMSE.
To test again the benefit of the WSHEM estimation adjustments

based on the WVD-elevation profile, the WVDEM was tested
without the elevation adjustments using the SVM 130-CML and
WS temperature WSHEMS. The WVD with (WVDEMT

130) and
without (WVDEMT

*130) elevation adjustment test results are shown
in Table 5.

This table shows again a higher mean RMSE and worse overall
performance than when elevation adjustment is not used and thus
shows that elevation adjustments are indeed beneficial.

Indeed, a notable effect was on WS 13, the highest WS with an
elevation of 826 [m] ASL, whose RMSE (the maximum RMSE)
increased to 1.651 g/m3 from 0.364 g/m3. As mentioned before, the
averaging of the WSHEM elevation adjusted estimations in the
WVDEM can also be weighted.

The WVDEM—using the SVM 130-CML and WS temperature
WSHEM—test statistics with IDW averaging and linear weighted
averaging are shown in Table 6.

TABLE 5 32 test WSs mean and standard deviation (STD) of mean average WS-HO and 130-CML and temperature WSHEM-based WVDEM with (WVDEMHO,
WVDEMT

130) and without (WVDEM*HO ,WVDEMT
*130) elevation adjustment.

Test station RMSE g/m3 Test station CCs

Model Elevation adjusted Elevation not adjusted Elevation adjusted Elevation not adjusted

WVDEMHO Mean 0.466 0.519 0.941 0.941

STD 0.211 0.279 0.018 0.018

WVDEMT
130 Mean 0.587 0.637 0.921 0.921

STD 0.245 0.270 0.019 0.019

TABLE 6 32 test WS mean and standard deviations (STD) of IDW and linear
distance averages’ elevation-adjusted WS-HO-based WVDEM and
130-CML and temperature WSHEM based WVDEM (WVDEMHO(IDW),
WVDEMT

130(IDW), WVDEMHO(LD), and WVDEMT
130(LD)) test WS statistics.

Test station
RMSE g

m3

Test
station CCs

Model IDW LD IDW LD

WVDEMHO Mean 0529 0.538 0.955 0.950

STD 0.321 0.239 0.014 0.016

WVDEMT
130 Mean 0.651 0.634 0.931 0.929

STD 0.276 0.199 0.015 0.016
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Again, the use of the weighted averages increased the RMSE but
also the CCs (compared to Table 5 with elevation adjustment). This
indicates that some bias was introduced into the WVDEM model
estimation.

The WVDEMs that were tested and their respective test set
mean RMSE are in Table 8.

The WVDEM based on mean average, elevation adjusted,
31 WSHEMS that use attenuation data from CMLs with
(WVDEMT

130) and without (WVDEM130) WS temperature
measurements achieved a low average mean RMSE of 0.587 g/m3

and 0.653 g/m3, respectively, and is generalized for locations not
restricted to the WSs and their ground elevations. An example of
WVDEMT

13018 estimation compared to WS 18 HO can be seen in
Figure 5C. This means that the WVDEM can estimate the WVD
field in the research area with good accuracy.

4 Discussion and conclusion

This study presents an algorithm for estimating the WVD field
using CML attenuations and WS temperature readings, termed
WVDEMT

130. The algorithm uses two models: one, an ensemble
of WS-HO estimation models (WSHEMT

130) and the other, an
hour-dependent WVD-elevation profile model (WVDEP). Several

variations of this algorithm were shown, with the main difference
between them being the number of CMLs used and different
additions (or lack thereof) of side information such as time and
temperature. Nonetheless, theWVDEMT

130 RMSE was the lowest, so
much so that, on average, it was lower than WSHEMT

130 when
compared with each instance’s respective WS without having its
estimations restricted to the WS location.

The WSHEMmodels were first introduced by us in Bragin et al.
(2023) and are expanded upon in this paper. The incorporation of
more than one CML attenuation datum as input to the WSHEMs
drastically improved the accuracy of the WVD time-series estimates
for RMSE and CCs compared to the respective WS-HO time-series.
This increase in accuracy probably occurs due to additional data of
the non-WVD factors that cause (some) of the CML channel
attenuation, which might be differently spatial-temporal
dependent than WVD; this in turn enables the model to isolate
and learn the WVD-based attenuation effects better.

The 130-CML SVM-based WSHEM130 and WSHEMT
130 had

very good performance; however, when more than 130 CMLs are
used or when CMLs from over 150 km are used, WSHEM
performance started to degrade slightly.

It might be assumed that the more CMLs available to the
estimation model, the better its performance.

Even in cases where the additional CML attenuation data are
uncorrelated to the WS-HO, it might be expected that the model
would learn to ignore the irrelevant data source.

However, the experimental setup has shown that the models do
have a maximal number of CMLs that can be used without
decreasing model error beyond which there is reduced performance.

A possible reason for this could be model overfitting.
When the amount of data are unlimited, an increase in input

parameters could not degrade the model performance but only
improve it if the new inputs contain relevant information.

Practically, the amount of available data are limited, and even the
addition of toomuch relevant, wellWS-HO-correlated, CML attenuation
as inputs might degrade the estimation model’s performance because the
more inputs the model has, the more complex it must be.

Given a fixed amount of time (or data) for training, the model
can only be so complex before the available amount of training data
will not suffice to tune all its parameters, which would result in
overfitting (Ying, 2019).

TABLE 7 32 test WSs’ mean and standard deviation (STD) of mean average 130-CML with and without WS temperature SVM elevation-adjusted WSHEMS-
based WVDEM test WS statistics (WVDEM130 vs. WVDEMT

130).

Test station RMSE g
m3 Test station CCs

With WS temperature Without WS temperature With WS temperature Without WS temperature

Mean 0.587 0.653 0.921 0.909

STD 0.245 0.224 0.019 0.019

Min 0.301 0.352 0.874 0.865

Lower quartile 0.439 0.50 0.914 0.897

Median 0.541 0.654 0.921 0.910

Upper quartile 0.646 0.744 0.932 0.925

Max 1.513 1.431 0.952 0.939

TABLE 8 WVDEM test set mean RMSE.

WVDEMs Test set RMSE g
m3

WVDEMHO 0.466

WVDEM*HO 0.519

WVDEMHO(IDW) 0.529

WVDEMHO(LD) 0.538

WVDEM130 0.653

WVDEMT
130 0.587

WVDEMT
*130 0.637

WVDEMT
130(IDW) 0.651

WVDEMT
130(LD) 0.634
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However, it is not certain that this is the case as SVMs are known
to be robust to overfitting, especially in cases where the number of
features is much smaller than the length of the database, as in the
case of WSHEM (Hua et al., 2005).

Another possible reason for the degradation of the WSHEM
results beyond a certain number of CML attenuation as input
features is that very far CMLs might not always correlate very
well with the WSs (as faraway areas may experience different
weather patterns). This correlation might also change from time
to time, depending on the weather patterns. Recall that the increase
in the number of CMLs is from nearest to farthest. Thus, the
phenomenon of the degraded test period WSHEM performance
occurs when CMLs at distances of 150 Km and more are used. These
could have been in a humidity pattern more closely resembling that
in the WS area during the training period and not during the test
period. This would confuse the model as it would give weight to
inputs that are misleading.

Similar cases are the suspected change in the diurnal humidity
pattern and WVD-elevation profile from the training to the test
period. In any case, depending on the amount of available data and
distance from the WS, there most likely exists a CML number that
could be used to establish a well-performing WSHEM. Thus, even
though the cause of the WSHEM degradation of performance with
an increasing number of CMLs beyond a certain point should be
further investigated, it does not prevent the use of the WSHEM
algorithm given an established CML number for use.

The addition of time of day as a parameter for estimation
seemed reasonable since previous research identified diurnal
patterns in WS-HO and CML attenuation data (Rubin et al.,
2022). The 3-CML model indeed showed very slight and not
meaningful improvement. However, the 130-CML model’s
performance decreased on average when time was added as an
input to it. At the WSs where the model’s performance increased
(marginally) with the addition of time, the performance was even
better with the addition of temperature measurements.

It is possible that the humidity diurnal pattern is not very stable
throughout the time of the gathered data. Specifically, it changes
from the train to the test period. This suspected change is supported
by the aforementioned change of the mean WS-HO standard
deviation between the train and test periods (Section 2.4).

This explains the improved performance of the WSHEMs at the
training period (more relevant data) and their performance
degradation in the testing period (diurnal pattern change)
compared to the WSHEMs that did not use time as a parameter.

The change of the diurnal humidity pattern from the training to
the test period would also explain some of the increase in variation of
the RMSE of the hourly WVD-elevation profile between the
periods (Table 4).

Nonetheless, the correct implementation of the time of day as an
additional input should be investigated in future research.

In contrast, the addition of WS temperature time-series
observations as an additional input did increase estimation
accuracy. This enhanced accuracy can be attributed to the fact
that temperature is a parameter in determining the saturation of
humidity in the air (Koutsoyiannis, 2012).

The negative effect of time as a WSHEM input is more
noticeable when both time and WS temperature are used as
inputs in conjunction with CML attenuation, probably because

the temperature parameter decreased the model error enough for
the time parameter’s induced error to bemore noticeable on average.

It should be noted that it is the combination of both CML
attenuation and WS temperature that improve WSHEM
performance as opposed to just the temperature measurements
being the main indicator for humidity and the CML attenuation
a comparatively insignificant data source. This is evident from
Figure 6Cshows that Both the CML attenuation and the WS
temperature measurements contribute to the model’s
performance, as the addition of more CMLs improves the
WSHEM’s performance.

The best WSHEM performance was achieved using SVM
regression machine learning model whose inputs were the
corresponding WS temperature measurements and the
attenuation data from its nearest 130 CMLs (WSHEMT

130). The
mean test set RMSE of theseWSHEMs was 0.634 g/m3, almost three
times smaller than the base, single CML WSHEMs (WSHEM1).

The addition of more meteorological side-data such as pressure,
wind speed, and wind direction should be interesting to investigate.

In addition to adding multiple CMLs and side-information, in
Bragin et al. (2023) we also tested another machine learning method:
the Xgboost regressor.

This method performed well when used with 3-CML but fell
short in comparison to the SVM at a larger number of CMLs. It
proved difficult to scale the model and tune its parameters and not
reach overfitting with the limited amount of available data.
Nonetheless, more machine learning methods, including the
Xgboost, and their implementation should be further studied for
the basis of WSHEMs.

The learned hourly WVD-elevation profile showed very little
variation in RMSE during the training period and a higher variation
of RMSE during the testing period. Furthermore, the mean RMSE
increased significantly from the training to testing periods.

This might suggest that the diurnal humidity pattern andWVD-
elevation profile could have changed between the training and
testing periods. Again, the suspected change is supported by the
aforementioned change of the mean WS-HO standard deviation
between the train and test periods (Section 2.4). This merits further
research. To use the learned hourly WVD-elevation profile to
estimate the WVD, it is necessary that those changes are not
significant enough to make the WVD-profile irrelevant. This is
indeed the case, with its use in the WVD estimation improving
results more than without it. Nonetheless, the more accurate the
hourly WVD-elevation profile, the more accurate the interpolation
of the WSHEM estimations with it to estimate the WVD field.

More ways to estimate the WVD-elevation profile more
accurately should be researched (using non-linear models, for
instance). Perhaps even using the WSHEM estimations instead of
the WS-HO to interpolate a WVD-elevation profile at each time
period could be useful and should also be investigated.

It could also be beneficial to study the coherence of the WVD-
elevation profile and the diurnal humidity pattern. Nonetheless,
despite the reduction of accuracy of the WVD-elevation profile in
the testing period, it was still useful.

The WVDEM is an interpolation of an ensemble of WSHEM
estimations together with a learned hourlyWVD-elevation profile in
an area whose weather pattern does not vary much from one place
to another.
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The interpolation was first done using the WS-HOs instead of
the WSHEM estimations to establish a base for performance of the
WVD estimation and its different variations.

This baseline showed that the WVD-elevation profile was
beneficial in the testing period. It also showed that using a mean
average was better than the weighted averages.

These variations were also checked again when
WSHEM was used.

The WVDEM based on the mean averaged, elevation-adjusted
SVM 130-CML with WS temperature WVDEMT

130 had the best
result of a mean test WS RMSE of 0.587 g/m3.

When 130-CML without WS temperature WSHEM was used,
the mean test WS RMSE was higher at 0.653 g/m3. This was
expected as those WSHEMs were less accurate than those using
the WS temperature measurements. When the learned humidity
elevation profile was not used to adjust the WSHEM estimations
before averaging, the mean test WS RMSE was worse. Again, this
shows that it was beneficial to adjust for elevation.

From Figure 3A, it is safe to assume that, generally, the greater
the distance between two WSs, the less correlated they are.

If this is true, it is safe to assume that it would also be true for
WSHEM as it estimates the WS-HO.

Therefore, it might seem beneficial to give more weight to closer
WSHEM estimations in the averaging phase of WVDEM.

When more weight was given to closer WSHEMs or WS-HO
either with IDW weighing or linear distance weights, the
WVDEM RMSE increased but CCs increased as well. The
increase in correlation was expected but the increase in mean
RMSE was not. It seems that the distance-dependent weighting
methods induced some bias. A possible reason might be that the
reduction in accuracy due to distance-caused correlation
reduction is much smaller than the variability in the WSHEM
accuracy of the mesoscale humidity pattern due to local
conditions. This can give less weight, on average, to farther
WSHEMs that are more accurate and indicative to WVD than
closer WSHEMs.

Therefore, some WSs may have a bias from the mesoscale
humidity pattern in their WS-HO due to local conditions (which
translate to a bias for their respective WSHEMs). The bias source
could be a nearby humidity source such as a water pool or dense
vegetation that increases the measured humidity at a nearby WS.
The difference in baseline humidity between two WSs where one is
biased due to a humidity source (after elevation difference
adjustment) could be greater then what would be expected only
from their CC.

This biased humidity can be given more weight on average when
a distance-based weighting method is used since the spatial
distribution of WSs is not perfectly uniform (Figure 2A) and
leads to the above results.

This phenomenon requires further investigation.
It also unknown, and requires further investigation, how the

spatial distribution and density of the WSs, and by extension the
WSHEMs, affect WVDEM accuracy, especially when different
weighing methods are used.

The WVDEM algorithm can be used in a practical manner
by having a portable WS that stays in one place for enough time
to train a WSHEM and then be moved to another place to create
another WSHEM, and so on. After several WSHEMS are

trained along a humidity-elevation profile, the WVDEM
can be used.

Another way the methods presented here should be investigated
is by reversing theWVDEM algorithm. First, theWVDEMHO (WS-
HO based WVDEM) should be used at various location and
elevations to establish an accurate estimation of the WVD at
these locations. Then these WVD estimations should be used as
ground truth to train WSHEMs for the selected locations, thus
creating more virtual WSs.

It should be noted that the amount of time required to train a
WSHEM for it to be reliable for the different seasons and general
weather patterns should be researched as well. In this study, the
amount of data were limited as was their timeframe.

Another point to consider is the limited area of interest in the
study—on the mesoscale (10–1,000 km). The weather patterns (and
specifically, humidity pattern) of this scale are influenced by
different land cover, humidity sources, topography, and synoptic-
scale weather patterns.

Therefore, the boundaries of the effective area and elevation for
accurate estimation of the WVD field and relevance of the WVD-
elevation profile should also be inspected, especially when changes of
land cover, topography, and humidity source prevalence occur. The
effective elevation boundary is probably affected by the inversion
layer height (and its diurnal pattern) where the humidity elevation
profile might change (Haikin et al., 2015; Garratt, 1994).

This work is a preliminary example of a machine learning tool
used for opportunistic water-vapor sensing that benefits from
additional sources of data such as multiple CMLs and
temperature observations. Although the preliminary results
presented here are very encouraging, there are some points that
require further research.

Specifically, it would be worthwhile to investigate how this
enhanced model copes with WVD estimation in meteorologically
challenging geographical locations such as the surrounding areas of
Jerusalem, Israel, as such areas often experience uniqueWVD spatial
profiles. Jerusalem, for instance, has a Mediterranean climate but is
very close to the arid Judean desert. Moreover, Jerusalem and its
surrounding areas are very hilly and thus have a lot of variability in
ground elevation (Alpert et al., 2024). Such conditions might affect
the high accuracy of the WVDEM, WVDEP, and WSHEMs, as
demonstrated in this study. For instance, it might be necessary to not
use nearby WSHEMs for the WVDEM if they are from different
climate areas (even though they are “close”). Additionally, where
seasonal weather patterns change significantly from season to
season, there might be a need to train the model for each season
by itself. Areas that experience very large shifts in boundary layer
altitude or that are sometimes below or above the boundary layer
may need to use completely different WVDEP models. The model’s
performance in rainy seasons and other strong, frequent,
meteorological events also requires investigation. Such events can
have a lasting effect on the CML baseline attenuation (Ostrometzky
and Messer, 2017; Harel et al., 2015). For instance, the CML
antennas can remain wet well after the rain stops and add to
CML baseline attenuation. This might cause a slow change
(compared to the usual changes in attenuation) to the base-line
attenuation as the antenna dries, which can be missed by current
pre-processing methods. Other phenomena, such as gradual
hardware degradation, could also lead to similar inaccuracies as
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they may invalidate the assumption that the baseline attenuation is
constant. Possible ways to deal with slow change to baseline
attenuation could be machine learning models with memory such
as RNN, and dynamic baseline attenuation estimation and removal
as part of pre-processing [similar to the method suggested in
Ostrometzky and Messer, (2017)]. In practice, the issues of
malfunctioning CMLs, CMLs that are scraped, and new CMLs
need to be addressed with more flexible machine learning models
and constant learning.
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Nomenclature
ASL above sea level

CC correlation coefficient

CML commercial microwave links

IQR interquartile range

MSE minimum squared error

RMSE root mean square error

RSL received signal level

SVM support vector machine

TSL transmitted signal level

WS weather station

WSHEM WS humidity estimation machine learning model

WS-HO weather station humidity observations

WVD water vapor density

WVDEM WVD estimation model

WVDEP WVD-elevation profile model
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