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Introduction: Knee osteoarthritis (KOA) is a major health issue affecting millions
worldwide. This study employs machine learning algorithms to analyze human
gait using kinematic data, aiming to enhance the diagnosis and detection of KOA.
By adopting this approach, we contribute to the development of an effective
diagnostic methods for KOA, a prevalent joint condition.

Methods: Themethodology is structured around several critical steps to optimize
themodel’s performance. These steps include extracting kinematic features from
video data to capture essential gait dynamics, applying data filtering and
reduction techniques to remove noise and enhance data quality, and
calculating key gait parameters to boost the model’s predictive power. The
machine learning model trains on these refined features, validates through
cross-validation for robust performance assessment, and tests on unseen data
to ensure generalizability.

Results: Our approach demonstrates significant improvements in classification
accuracy, highlighting its potential for early and precise KOA detection. The
model achieves a high classification accuracy, indicating its effectiveness in
distinguishing KOA-related gait patterns.

Discussion: Furthermore, a comparative analysis with another model trained on
the same dataset demonstrates the superiority of ourmethod, suggesting that the
proposed approach serves as a reliable tool for early KOA detection and
potentially improves clinical diagnostic workflows.
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1 Introduction

The integration of machine learning and biomechanics in recent years has created new
opportunities for understanding and analyzing human movement (Geng et al., 2023).
Among the various applications, human gait analysis and classification have emerged as
significant research areas that impact rehabilitation, sports science, medical diagnostics, and
security systems. An individual’s unique walking patterns reveal a multitude of information
about their physical health, gait-related problems, and overall wellbeing (Elbaz et al., 2014;
Rahi et al., 2023). Gait analysis has gained popularity as an effective tool for assessing the
functional consequences of knee osteoarthritis (KOA) in daily life. KOA frequently affects
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knee joints, leading to pain, significant mobility challenges, and
potential alterations in walking patterns.

To better understand these changes, kinematic and kinetic
analyses of gait are crucial components of physical examinations,
providing essential evidence of functional ability while evaluating
disability. Comprehending normal gait is vital for interpreting
abnormal findings, normative data from healthy individuals serve
as a reference point when assessing abnormal or pathological gait
parameters. The ability to walk significantly influences an
individual’s quality of life and health status, underscoring how
one’s health can affect gait kinematics (Li et al., 2022).

Technological advancements have revolutionized the field of
gait analysis, enabling more precise and efficient methods for
assessing human movement. Traditional gait analysis systems,
however, often require complex setups that include PCs, wireless
IMU sensors, and the expertise of trained professionals to operate
sophisticated software. While these methods are accurate, they
demand a well-equipped environment and considerable technical
resources, limiting their accessibility for widespread use.

In contrast, our research focuses on a simplified approach to gait
classification by utilizing a reduced set of parameters extracted from
basic RGB videos (Balti et al., 2024). This innovative method
significantly decreases the reliance on specialized hardware and
expert manipulation, making gait analysis more accessible. With
the rise of human pose extraction technologies, our approach
facilitates the implementation of gait analysis in real-world
scenarios, bridging the gap between advanced research and
practical application.

2 Related work on markerless vision-
based classification of knee
osteoarthritis

Several researchers have been working on markerless
systems and kinematics to diagnose human gait and identify
diseases (Liang et al., 2022). For instance, Huang et al. (2024)
aimed to compare kinematic and joint moment calculations of
the lower limbs during gait using both a markerless motion
system and a marker-based system. Sixteen healthy participants
were enlisted, and their lower limb kinematics were recorded
simultaneously at 120 Hz by both systems, while a force platform
captured ground reaction forces at 1,200 Hz. The data were
processed in visual3D for inverse dynamics analysis, revealing
that the least variation in joint center position occurred at the
ankle in the posterior and anterior directions, with a mean
absolute deviation of 0.74 cm.

In a similar vein, the markerless motion capture system utilizes
deep learning to estimate 3D human poses through a deep
convolutional neural network (Cao et al., 2017). This network
was trained on a dataset comprising over 120,000 images, each
featuring 25 manually labeled joints, enabling accurate identification
of human joints from 2D images. Furthermore, Pixmotion processes
data from eight cameras to construct 3D skeletons bymergingmulti-
view 2D pose information (Sun et al., 2019). Camera calibration via
Direct Linear Transformation (DLT) allows for the precise mapping
of 3D spatial coordinates onto the 2D image plane, facilitating
accurate 3D scene reconstruction from 2D inputs.

Building upon these advancements, Liang et al. (2022) focused
on quantifying kinematic gait in elderly individuals to assess their
health. They introduced a 3D markerless pose estimation system
based on OpenPose and 3DPoseNet algorithms, which effectively
addresses the limitations of traditional optical sensor methods. In
their study, thirty participants completed walking tasks, and sample
entropy was employed to evaluate the dynamic irregularity of gait
parameters.

Expanding the scope of markerless pose estimation, Hu et al.
(2024) proposed a new framework utilizing smartphone monocular
videos. This approach offers a simpler and more cost-effective
alternative to traditional motion capture techniques, addressing
the limitations often associated with single-view technology, such
as low accuracy and reliability. The framework was tested with
15 healthy adults and 12 patients with musculoskeletal disorders,
measuring gait spatiotemporal dynamics, knee angles, and center-
of-mass velocity while comparing results to the VICON gold
standard system.

Finally, the study by Dong et al. (2023) explores the application
of quantum machine learning to enhance knee osteoarthritis
classification. The authors introduce an improved hybrid
quantum convolutional neural network (HQCNN) model, which
was initially trained on a brain tumor MRI dataset. Utilizing a
quantum classical transfer learning (QCTL) approach, they fine-
tune the model and extract features based on previously trained
weights. Testing the HQCNN structure on the knee osteoarthritis
dataset (OAI), they achieved a classification accuracy of 98.36%.

3 The methodology adopted

3.1 Understanding gait kinematics in
osteoarthritis assessment

Gait kinematics refers to the study of human walking patterns
and movements, encompassing the detailed analysis of joint angles,
segmental movements, and overall body posture during the gait
cycle. As a specialized field within biomechanics, gait kinematics
emphasizes the quantitative assessment of how individuals walk,
providing critical insights into the mechanics of human locomotion.
This analysis is particularly significant in understanding the impact
of osteoarthritis on mobility and functional performance.

One of the key components of gait kinematics is joint angle
measurement, which involves quantifying the angles at which
various joints move during walking. In individuals with
osteoarthritis, alterations in joint angles are commonly observed,
especially in weight-bearing joints such as the knees and hips. These
changes can indicate compensatory strategies that individuals adopt
to manage pain and maintain mobility.

In addition to joint angles, various gait parameters can be
analyzed, including stride length, step width, and walking speed.
Osteoarthritis often leads to modifications in these parameters as
individuals adjust their walking patterns to minimize discomfort.
For instance, a person with osteoarthritis may shorten their stride or
alter their step width to relieve pressure on affected joints. These
adaptations are essential to monitor, as they can provide valuable
information about the severity of the condition and the effectiveness
of therapeutic interventions.
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Joint loading patterns are another crucial aspect of gait analysis.
This component examines how weight is distributed across joints
during movement, revealing the potential for altered loading in
individuals with osteoarthritis. For instance, affected individuals
may unconsciously shift their weight away from the painful joint,
leading to imbalances that can further exacerbate mobility issues.
Analyzing these loading patterns can help healthcare professionals
develop tailored rehabilitation strategies.

The assessment of asymmetry in gait is also vital, as osteoarthritis
can lead to noticeable differences in movement between legs. For
example, if one knee is more affected by osteoarthritis, the
individual may exhibit a distinct asymmetry in their walking
pattern, which can contribute to increased strain on other joints.
Recognizing these asymmetries is essential for implementing
effective treatment plans that address the underlying issues.

Temporal spatial parameters, which involve measuring time
intervals and distances during walking, further enrich the
understanding of gait kinematics. Changes in these parameters
may occur as individuals with osteoarthritis adapt their
movements to reduce pain. By analyzing these factors, clinicians
can gain insight into how the disease affects mobility and identify
appropriate interventions.

Moreover, pain assessment plays a crucial role in gait analysis.
By combining objective gait measurements with self-reported pain
levels, clinicians can develop a comprehensive understanding of how
osteoarthritis influences an individual’s walking pattern. This
multifaceted approach enhances the ability to address the
patient’s needs effectively.

Longitudinal monitoring of gait kinematics is invaluable for
tracking changes over time. This method allows for the assessment
of osteoarthritis progression and the evaluation of the effectiveness
of various interventions. By routinely measuring gait parameters,
healthcare providers can make informed decisions regarding
treatment adjustments.

Finally, gait kinematics offers objective assessment tools that
provide quantifiable data on how osteoarthritis impacts mobility.
This objective measurement can complement subjective evaluations,
leading to better treatment planning and patient outcomes.

3.2 Database

Several medical research laboratories have developed databases
to facilitate research on conditions like knee osteoarthritis (KOA)
and Parkinson’s disease (PD). One such dataset is the KOA-PD-NM
(Kour et al., 2020), which we have utilized in our study (Figure 1).
This dataset accounts for key variables such as age, gender, and
disease severity, providing a robust foundation for analyzing both
normal (NM) and abnormal (KOA, PD) subjects. Its unique
contribution lies in enabling the comprehensive evaluation of not
only lower body movements but also upper body dynamics,
including arm movements and posture.

In our study, we leverage the KOA-PD-NM dataset to compare
gait deviations between patients and healthy individuals. By doing
so, we aim to enhance the understanding of disease progression and
contribute to the development of more refined diagnostic techniques
and strategies.

The KOA-PD-NM Gait Video Dataset (Kour et al., 2020)
consists of 96 subjects: 50 with KOA, 16 with PD, and 30 NM
subjects (Table 1). Each individual is represented by two sequences
left-to-right and right-to-left captured in the frontal and sagittal
planes. The dataset includes MOV format videos, recorded using a
NIKON DSLR 5,300 camera positioned 8 m away from a walking
mat in a clinical setting. While the original dataset involved the use
of six red passive reflective markers on the body joints, our study
takes a different approach by detecting gait abnormalities without
relying on these markers, aiming for a more accessible and
markerless diagnostic method.

FIGURE 1
Examples of videos on knee osteoarthritis from Kour et al. (2020).
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3.3 Gait analysis and human pose estimation
technologies

Several advanced studies are available for assessing and quantifying
gait patterns, providing a quantitative measure of ambulatory activity
(Balti et al., 2022). These technologies facilitate gait analysis by
extracting a variety of parameters, including kinematic, kinetic,
electrical signal, and spatiotemporal variables, which contribute to a
comprehensive understanding of gait characteristics (Salchow et al.,
2022). For instance, some approaches utilize energy images for human
gait analysis, while others employ a bottom-up pose estimation system
that leverages a 3D markerless multimodal motion capture framework
(Bakchy et al., 2022; Viswakumar et al., 2022).

In this study, we concentrate on classifying human gaits based
on a streamlined set of parameters extracted from RGB videos.
Recent advancements in technology have introduced several
innovative libraries designed for human pose extraction and body
joint estimation. After extensive research and experimentation, we
selected MediaPipe (Kim et al., 2023), MediaPipe is a powerful
python library that employs state-of-the-art machine learning
techniques for precise body pose tracking. MediaPipe can extract
33 (3D) landmarks through a bottom-up approach, effectively
capturing the critical joints and points along the body. The
Figure 2 illustrate the extracted body landmarks, showcasing
their importance in accurately analyzing and classifying
gait patterns.

TABLE 1 Database composition (Kour et al., 2020).

Category Total subjects Knee osteoarthritis (KOA) Parkinson disease (Pd) Normal (NM)

Total 96 50 16 30

Video format MOV

FIGURE 2
Examples of marker-less body point extraction.
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3.4 Workflow description

Themethodology begins with the collection of a video dataset that
includes several categories: NM (normal), KOA_EL (early-stage knee
osteoarthritis), KOA_MD (mid-stage), and KOA_SV (severe-stage).
From these videos, key kinematic features such as joint angles and
distances are extracted to analyze the motion of joints and body
segments during gait. The data is then cleaned through filtering and
reduction processes to ensure accuracy and relevance. Afterward, the
numerical dataset is split into two portions, one for training and
validation and the other for testing. The machine learning model is
trained and optimized using the training set, while the test set is
employed to evaluate its performance. Finally, the model’s accuracy is
calculated, determining how effectively it can classify different KOA

stages based on the gait data. This structured approach enables a
reliable and comprehensive system for KOA classification (Figure 3).

4 Measurements and analyses

4.1 Gait kinematics feature selection

Throughout each phase of the gait cycle, various kinematic
parameters are used to represent and analyze human walking
patterns (Rodrigues et al., 2020). Machine learning techniques are
applied to process and analyze the data, offering a precise method
for assessing human gait. The specific kinematic features selected for
this project are detailed in Table 2.

FIGURE 3
Comprehensive flowchart of the kinematic gait classification methodology using machine learning techniques.
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Below is a full explanation of the calculations and key
parameters, accompanied by illustrative figures that depict the
precise positioning of angles, heel and steps. These visualisations
include example curves that effectively demonstrate the dynamic
patterns of gait, providing a deeper insight into the biomechanical
characteristics essential to the analysis.

4.1.1 Angle calculation
To measure the angle (Equation 1), we used a function that

calculates the angle between three reference points and computes the
angle between two lines. The first point is considered the starting
point of the first line, the second point is regarded as the endpoint of
the first line and the starting point of the second line, and the third
point is considered the endpoint of the second line (Figure 4).

Where (x2, y2) represents the vertex of the angle, (x1, y1) and
(x3, y3) represent the other two points defining the vectors:

angle deg[ ] � arctan
y3−y2
x3−x2( ) − arctan

y1−y2
x13−x2( ) (1)

The final angle is determined by averaging the values of both the
flexion and extension angles over a specific number of gait cycles,
ensuring that the resulting angle is an aggregate measurement.

The angle is the mean value of the N measurement angle flexion
and extension φ � φ1,φ2,φ3, . . .φN Where �φ (Equation 2) is the
mean set of φ:

�φ � 1
N

∑N
i�1
φi (2)

4.1.2 Knee angle
The knee angle is defined as the angle formed between the femur

and the tibia, serving as a critical parameter for assessing joint
movement during gait. In this study, we focus on two key knee
angles: the maximum flexion angle, which corresponds to the degree
of bending at the knee and is represented by the lowest point on the
graph, and the maximum extension angle, which reflects the
straightening of the knee and is denoted by the graph’s highest
point. These two angles provide valuable insight into the range of
motion and functional capacity of the knee, particularly in conditions
like osteoarthritis where joint movement is compromised (Figure 5).

4.1.3 Hip angle
The hip angle is defined as the angle between the thigh and the

vertical axis, providing a crucial measure of hip joint movement during
gait. For this analysis, we concentrated on two key angles: maximum
flexion, which represents the degree of hip bending and is indicated by
the minimum value on the graph, and maximum extension, which
reflects the straightening of the hip joint and is marked by the highest
point on the graph. These parameters offer important insights into hip
mobility, particularly relevant for detecting abnormalities in gait
patterns caused by conditions such as osteoarthritis (Figure 6).

4.1.4 Ankle flexion and planar flexion angle
measurements

Ankle dorsiflexion and plantar flexion are key movements at the
ankle joint, essential for various activities like walking, running, and
jumping. Dorsiflexion involves pulling the toes upward toward the
shin, while plantar flexion refers to pointing the toes downward.

TABLE 2 Kinematic gait parameters used to classify individuals with knee
osteoarthritis (KOA).

Features name Feature ID Features name

1 Hip flexion 8 Max Heel Height

2 Hip extension 9 Hip angle semilarity

3 knee flexion 10 Knee angle semilarity

4 Knee extension 11 Ankle angle semilarity

5 Ankle dorseflexion 12 Step letgh semilarity

6 Ankle planarflexion 13 Heel high semilarity

7 Step lenght

FIGURE 4
Calculation of the angle between three points.

FIGURE 5
Knee angle measurement during gaite cycles7.
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These movements play a vital role in gait dynamics, enabling proper
foot clearance and propulsion during the gait cycle (Figure 7).

The typical range of motion for ankle dorsiflexion is
approximately 10–20°, while plantar flexion usually falls within
30–50°. However, these ranges can vary significantly based on
factors such as age, genetics and individual anatomy. Reduced
range of motion in either direction may indicate underlying
musculoskeletal issues, such as stiffness or weakness, often seen

in conditions like osteoarthritis or after injury. Understanding these
movements and their variability is crucial for assessing gait
abnormalities and developing targeted therapeutic interventions.

4.1.5 Step length
The step length (Equation 3)was quantified along the horizontal axis

of the walking track by measuring the distance from the right heel to the
left heel when both feet were in contact with the ground (Figure 8).

FIGURE 6
Hip angle measurement during gaite cycles.

FIGURE 7
Ankle dorsiflexion and plantar flexion angle measurement during gaite cycles.

FIGURE 8
Step length measurement during gaite cycles.
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Step Lenght � max△x Refheel i( ) − Oterheel i( )( ) (3)

The step length exhibited by the maximum value in the graph
was calculated by the average of the number of reputations. The
mean value of N is the step length X. X � X1,X2,X3, . . .XN

Where: Xleft , Xright is the mean set of X left step lengths
(Equation 4) and X right step lengths (Equation 5).

Xleft � 1
N

∑N
i�1
Xi+1 (4)

Xright � 1
N

∑N
i�1
Xi+2 (5)

4.1.6 Measurement of heel height
The step height parameter refers to the maximum elevation of

the foot relative to the ground during walking (Figure 9). This
height is computed as the difference between the maximum Ymax

and minimum Ymin coordinates during a complete gait
cycle (Equation 6):

Where:

Y � Y1 � Ymax1 − Ymin1( )[ ], Y2 � Ymax2 − Ymin2( )[ ]
, . . . . . . , YN � YmaxN − YminN( )[ ] (6)

�Y is the mean set of Y (Equation 7):

�Y � 1
N

∑N
i�1
Yi (7)

4.2 Gait symmetry

Gait symmetry refers to the degree of similarity between the
movements of the left and right limbs during activities like walking
or running. It is a critical measure in biomechanics, as it quantifies

FIGURE 9
Step height measurements during gaite cycles.

FIGURE 10
Correlations of left and right knee angles between a normal person and a person with knee osteoarthritis.
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how closely the movement patterns of one side of the body mirror
those of the opposite side. This concept is particularly important for
assessing balance and coordination, as well as identifying potential
movement impairments.

To assess gait symmetry, various kinematic parameters such as
joint angles, range of motion, and timing of limb movements are
analyzed. Discrepancies in these parameters between the left and
right sides can reveal underlying imbalances or irregularities. For
example, asymmetry in joint angles or step length may indicate

musculoskeletal disorders, neurological conditions, or
compensatory patterns due to pain or injury. Accurate
measurement of gait symmetry helps clinicians and researchers
identify movement inefficiencies, diagnose conditions, and tailor
rehabilitation programs to restore normal and balanced
gait patterns.

The assessment of gait symmetry involves the utilization of
various comparative techniques. In our study, we chose to use
Pearson correlation coefficient noted “r” (Equation 8).

TABLE 3 Precision and sensibility result in classification of knee osteorathritis and normal subjects using logistic regression, Random Forest and SVM.

Classifiers Accuracy (%) Precision (%) Sensitivity (%)

Logistic Regression 94 86 98

Random Forest 96.9 98 91.7

Support vector machine (SVM) 88 90 75

FIGURE 11
Representation of SVM model, (A): SVM learning, (B): validation curve, (C): confusion matrix.
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The Pearson correlation coefficient is often denoted as r and is
widely used in statistics and data analysis to explore relationships
between variables.

The Pearson correlation coefficient ranges from −1 to 1.
1 indicates that two random variables are perfectly positively
correlated, −1 indicates that two random variables are perfectly
negatively correlated, and 0 indicates that two random variables are
not correlated.

The formula for calculating the Pearson correlation coefficient
between two variables, X and Y, with n data points is as follows:

r �
∑n
i−1

Xi − �X( ) Xi − �Y( )









∑n
i−1

Xi − �X( )2√ 









∑n
i−1

Yi − �Y( )2√ (8)

Where:
Xi and Yi are the individual data points for variables X and Y,

respectively.
�X and �Y are the mean values of variables X and Y, respectively.
Figure 10 illustrates the correlation between the left and right

knee angles of a normal individual and a person diagnosed with knee

osteoarthritis (KOA). The blue points represent the Pearson
correlation coefficients for the normal group (NM), indicating a
healthy and symmetrical movement pattern. In contrast, the red
points represent the Pearson correlation coefficients for the KOA_
SV group, which corresponds to individuals in the severe stage of
knee osteoarthritis. This visual comparison highlights the
differences in knee angle relationships between the two groups,
emphasizing how the severity of osteoarthritis impacts gait
symmetry and joint function.

5 Results and discussion

5.1 Results of the classification of normal
with knee osteoarthritis gait pattern

We conducted our experiments utilizing the gait dataset to
analyze the severity of knee osteoarthritis and Parkinson’s disease
(Bishop et al., 2016). This comprehensive dataset encompasses gait
data from both healthy individuals and those diagnosed with knee
osteoarthritis (KOA), providing a valuable resource for
our analysis.

FIGURE 12
Representation of Random Forest, (A): Random forest learning, (B): validation curve, (C): confusion matrix.
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For our study, we specifically focused on a subset of the dataset
that included 30 video recordings from normal, healthy subjects.
Each subject was recorded performing two sequences of gait, one
from left to right and the other from right to left, all captured in the
frontal and the sagittal plane. In addition, the dataset features
50 video files that document various stages of knee osteoarthritis,
categorized into three distinct severity levels: early, moderate and
severe. This structured approach allows for a nuanced
understanding of how gait is affected across different stages of KOA.

To classify human gait patterns effectively, we employed three
different machine learning algorithms: logistic regression, random
forest (RF), and support vector machine (SVM). The primary aim of
this classification was to differentiate between healthy individuals
and those with varying grades of knee osteoarthritis based on their
gait characteristics.

Following the training of our models, the dataset was divided
into training and validation sets, with 20% reserved for testing
the algorithms’ performance. To enhance the robustness of our
findings, we utilized cross-validation techniques alongside the
scikit-learn library for our analysis. The results of this

evaluation, including performance metrics for each model, are
summarized in Table 3, offering insights into the efficacy of each
classification approach in distinguishing between the
two groups.

Following a comprehensive analysis of the training process using
this limited dataset, we found that the random forest model
exhibited a remarkable accuracy of 96.9%, significantly
outperforming the other algorithms. In contrast, the logistic
regression model achieved an accuracy of 94%, while the support
vector machine (SVM) model lagged behind at 88%.

These results highlight the random forest model’s robustness
and effectiveness in classifying gait patterns associated with knee
osteoarthritis. However, there is a clear opportunity for
improvement with the other models. By expanding the dataset to
include a greater variety of samples and potentially more diverse gait
patterns, we anticipate that both the logistic regression and SVM
models will demonstrate enhanced performance. This expansion
could lead to more reliable classifications and a better understanding
of the subtle gait variations present in individuals with varying
degrees of knee osteoarthritis.

FIGURE 13
Representation of Logistic Regression, (A): Logistic Regression learning, (B): validation curve, (C): confusion matrix.
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5.2 Comparison of SVM and random forest
model performance

Figure 11 highlights the performance of the SVMmodel through
its learning curve, validation curve, and confusion matrix. The
learning curve indicates a steady increase in accuracy as training
progresses, ultimately exceeding 85%. This suggests that the model’s
performance could further improve with additional training data.
The validation curve shows optimal performance at a C value of 10̂1,
striking a balance between underfitting and overfitting, with
accuracy peaking around 90%. The confusion matrix reveals the
model’s high accuracy in predicting healthy individuals, with only
1 misclassification. However, it struggles slightly with predicting
unhealthy cases, incorrectly classifying 3 out of 12 as healthy. This
indicates room for refinement in handling complex cases.

Figure 12 illustrates the learning curve, validation curve, and
confusion matrix for the Random Forest classifier. The learning
curve demonstrates a consistent improvement in accuracy as the
training set size increases, stabilizing at 94% after reaching
80 training examples. The validation curve reveals that accuracy
initially improves as the regularization parameter C increases, but
after a certain threshold, further increases cause a decline in
performance. The optimal C value is around 10̂−1. The
confusion matrix showcases the model’s effectiveness, with only
2 false negatives and no false positives, highlighting its strong
capacity to distinguish between healthy and unhealthy
individuals. This shows robust classification, though additional
fine-tuning could potentially improve its performance even further.

Figure 13 presents the performance of the Random Forest
model via its learning curve, validation curve, and confusion
matrix. The learning curve shows that accuracy steadily
improves, stabilizing after 60 training examples and reaching
86%. The validation curve demonstrates that high accuracy is
achieved quickly with a small number of estimators (trees),
leveling off around 20 estimators, with diminishing returns

beyond that point. The confusion matrix confirms the model’s
strong performance, with 19 true negatives, 12 true positives,
1 false positive, and no false negatives. This indicates a highly
accurate model with only one misclassification, emphasizing its
robustness in both identifying healthy and unhealthy cases.

The Random Forest model likely outperformed both Logistic
Regression and SVM due to its ability to capture non-linear
relationships and complex interactions between features. This
capability allows it to excel even with smaller datasets by
generating diverse models that generalize better. In contrast,
Logistic Regression and SVM are more prone to overfitting or
failing to recognize complex patterns without sufficient data. The
Random Forest’s inherent capacity to handle feature complexity and
variability makes it a more reliable choice in this scenario.

5.3 Results of the classification of normal
people with KOA of different severity levels

In this experiment, the primary objective was to classify
individuals based on the severity of knee osteoarthritis (KOA),
with a focus on evaluating the performance of two distinct
classification methods: Support Vector Machine (SVMs) and
Logistic Regression. The aim was to determine how effectively
these models could differentiate between varying levels of KOA
severity. A comprehensive comparison (Table 4) was conducted
by analyzing key performance metrics, including accuracy,
precision, and recall. By assessing these metrics, we sought to
gauge the models’ ability not only to correctly categorize
individuals but also to minimize false positives and false
negatives, thus providing a more precise evaluation of their
reliability in identifying KOA severity stages. This comparison
is essential for identifying the most suitable model for clinical
applications, where accurate classification is critical for effective
diagnosis and treatment planning.

TABLE 4 Accuracy and precision of classifying knee osteoarthritis severity using SVM and logistic regression.

SVM Logistic regression

Accuracy (%) Precision (%) Accuracy (%) Precision (%)

NM versus KOA_EL 50 50 78 69

NM versus KOA_MD 80 75 90 86

NM versus KOA_SV 89 82 100 100

TABLE 5 Accuracy comparison between the proposed method and other state-of-the-art methods.

References Methods Accuracy
(%)

Limitation

Yang et al. (2020) Sensor based
SVM

92.8% Require hardware system consisting of PC and wireless IMU sensors and expert to manipulate the
software require a well-equipped laboratory

Kour et al. (2020) Marker points, vision
based
KNN

95.16% Demands lab environment and more space and time consumption to capture the subject’s gait

Our method Markless, vision based
Random forest

96.9% Require larger datasets to improve accuracy
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However, the accuracy achieved in this experiment may not be
sufficient. One limitation is the relatively small dataset used likely
contributed to overfitting, The limited sample size likely contributed
to the reduced performance of both classification methods.

5.4 Comparative analysis

We conducted a comprehensive comparison between the
proposed knee osteoarthritis (KOA) and normal gait pattern
classification methodology and the state-of-art methodologies,
with a primary focus on the accuracy parameter. Table 5
provides a detailed comparison of the accuracy between our
proposed method and other leading techniques for knee
osteoarthritis (KOA) classification. Yang et al. (2020) introduced
a sensor-based approach using Support Vector Machine (SVM),
which achieved an accuracy of 92.8%. However, their method is
reliant on a complex hardware setup, including a PC and wireless
IMU sensors, and requires expert handling for software operation,
making it suitable only for highly equipped laboratories. Kour et al.
(2020) employed a vision-based method with marker points and
K-Nearest Neighbors (KNN), achieving a higher accuracy of 95.16%.
Nonetheless, their approach necessitates a controlled lab
environment and requires considerable space and time to
accurately capture data, limiting its practicality in real-world
settings. In contrast, our proposed method, which is both
markerless and vision-based, utilizes a Random Forest classifier
and achieves an accuracy of 96.9%. This approach not only surpasses
the accuracy of previous methods but also offers the advantage of
being non-invasive and more adaptable to diverse environments.
However, further improvements in performance can be achieved
with access to larger datasets for training and refinement.

6 Conclusion

Gait classification in patients with knee osteoarthritis (KOA) is
a critical area of research with the potential to improve diagnosis,
treatment and management. Analyzing gait patterns provides
valuable insights into the biomechanical changes associated
with KOA, enabling more personalized and effective
interventions. However, gait classification in KOA remains
complex, with ongoing advancements in classification systems
and technologies aimed at better understanding the impact of
KOA on gait. Personalized treatment approaches based on gait
classification are also emerging, offering more targeted
interventions.

While this study presents an effective method for KOA
classification, several limitations must be acknowledged. The
relatively small dataset impacts both the accuracy and
generalizability of the machine learning model. Expanding the
dataset with more diverse samples is crucial for improving the
model’s robustness. Additionally, relying solely on RGB videos
for gait analysis limits the data scope compared to more
advanced systems that incorporate sensors like IMUs. Future
research could benefit from integrating multi-modal data to
enhance the precision of KOA classification, and clinical
validation is necessary to ensure real-world applicability.

In conclusion, this research demonstrates the potential of
markerless vision-based gait classification for KOA assessment
using machine learning. By analyzing gait patterns, the method
provides valuable insights that aid in diagnosis, treatment planning,
and rehabilitation. However, future work should focus on expanding
the dataset, exploring additional features, and refining the algorithm
to improve accuracy and clinical relevance. Despite these
limitations, this approach shows promise as a non-invasive,
scalable tool for KOA assessment, with the potential to improve
personalized care for patients.
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