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The vibration of acoustic systems can be represented through modal
decomposition, reducing the problem to a set of harmonic oscillators. This
study investigates the real-time performance of CPUs, GPUs, and FPGAs in
implementing such models, focusing on the synthesis of large-scale modal
reverberation. By leveraging their respective architectures, these processors
are assessed for their ability to manage the high computational demands of
modal synthesis. GPUs and FPGAs, known for their parallel processing
capabilities, are evaluated alongside recent multi-core CPUs, which
increasingly approach similar performance levels in handling such tasks.
Through a series of platform-specific optimisations, this paper examines the
maximum achievable mode count, latency, and processing efficiency for each
platform in various real-time scenarios. Results indicate that while GPUs offer
superior scalability, FPGAs achieve unparalleled latency performance, making
them suitable for specific low-latency applications. CPUs, conversely,
demonstrate unexpectedly high performance in smaller-scale applications.
This work provides insight into the practical application of each processor
type within real-time digital signal processing and suggests pathways for
future research in hardware-based audio DSP.
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1 Introduction

Modal methods are a foundational technique in computer-aided sound synthesis,
representing some of the earliest examples of real-time physical models altogether. Modal
projections, akin to Galerkin-like and spectral techniques (Boyd, 2001; Meirovitch, 2010),
began in earnest as a viable digital synthesis technique with the works by J.M. Adrien and
associates at IRCAM (Adrien, 1991) and with projects such as Mosaic and Modalys (Eckel,
1995). Such early success was partly due to the naturally parallel structure of the modal
decomposition. In linear, time-invariant systems, multiple independent solutions coexist,
each contributing to a system’s global response to a given input. Such physical
independence can be naturally exploited at the computational level through
parallelisation. In a typical workflow, the input is first projected onto the modes, which
are then updated in parallel, and their contribution is summed, yielding the global system’s
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response. Modal techniques form the core current synthesis
techniques, and share common features with other synthesis
methods such as the Udwadia-Kalaba method (Debut and
Antunes, 2020), the Functional Transformation Method
(Rabenstein and Trautmann, 2003), and current machine-
learning approaches (Schlecht et al., 2022). They have been
extended to treat typical nonlinearities arising in physical models,
such as contact friction nonlinearities (Russo et al., 2022) and
intermittent contact (van Walstijn et al., 2016; Ducceschi
et al., 2023).

One common area of application, and one which has gained
much prominence in recent years, is modal reverberation. In this
case, the simulated system is not a musical instrument per se but a
large resonator fed with incoming dry audio. These systems are
characterised by a considerable modal density, with thousands of
overlapping modes contributing to forming the system’s response.
Rooms and acoustic enclosures are prominent cases (Pierce, 2019).
Plates and springs, introduced initially as means to sustain sound
throughmore portable devices, are further examples (Valimaki et al.,
2012). In the context of artificial reverberation, an additional
distinction can be made based on the specific method used to
derive the modal parameters—whether it is model-based or
signal-based (Abel et al., 2014). In the former, the modes are
readily derived from an input model of the target system, such as
springs (McQuillan and vanWalstijn, 2021; vanWalstijn, 2020) and
plates (Ducceschi and Webb, 2016). In signal-based modal
synthesis, the modal parameters are first identified through a
suitable algorithm either in the time or in the frequency domain
(Avitabile, 2017), and the resulting system’s response is then
synthesised via a parallel biquad filter structure. Examples of
such applications abound, particularly in room acoustics, where
the modal identification is carried out both in the time domain
(Kereliuk et al., 2018; Rau et al., 2021) using modifications of the
ESPRIT algorithm (Roy and Kailath, 1989), as well as in the
frequency domain via nonlinear optimisation (Maestre et al.,
2017; 2016; Bank and Ramos, 2011).

Due to their parallel nature, modal synthesis algorithms present a
promising approach for certain processors that offer high parallel
computing capabilities, such as Field-Programmable Gate Arrays
(FPGAs) and Graphics Processing Units (GPUs). This paper aims
to explore the feasibility of executing modal physical modelling
algorithms in real-time on these platforms as a potential alternative
to Central Processing Units (CPUs). Specifically, a metal plate with
simply-supported boundaries is considered, for which the modal
parameters can be directly obtained in closed-form from a model
PDE (Partial Differential Equation) (Ducceschi and Webb, 2016;
Willemsen et al., 2017; Russo et al., 2023). This algorithm is used
to synthesise the maximum possible number of modes across various
CPUs, FPGAs, and GPUs, involving a wide range of platform-specific
optimisations, which are detailed herein. The findings indicate that the
latest generations of CPUs increasingly exhibit performance levels
competitive with those of high-end FPGAs and GPUs.

The structure of the paper is as follows: an overview of previous
research on executing real-time audio DSP algorithms on GPUs and
FPGAs is provided initially. This is followed by a presentation of the
modal synthesis algorithm, along with a comprehensive description
of the platform-specific optimisations implemented for various
CPUs, FPGAs, and GPUs. The performance of this algorithm on

each platform is then reported, leading to a discussion of these
results and suggestions for potential future research directions.

2 Real-time audio DSP on GPUs
and FPGAs

This section provides an overview of GPU and FPGA usage in
real-time audio DSP, with an emphasis on key historical
developments in both platforms and their applications in audio
processing and synthesis.

2.1 GPUs

In recent years, GPUs have been extensively employed inmachine
learning training and real-time inference applications. Real-time
audio synthesis and effects processing on GPUs, however, remains
a niche area of research, with notable progress emerging since the
introduction of CUDA and unified shader pipelines in 2006. Early
work in this domain, such as Savioja et al. (2010), demonstrated the
feasibility of synthesising one million sinusoids at audio rates, albeit
through computing multiple adjacent time samples in parallel to
accommodate the GPU clock rates available at the time.

With hardware advances, running certain audio synthesis and
filtering tasks with inter-sample dependencies became possible.
Renney et al. (2020) test real-time feasibility of more modern
Nvidia and AMD GPUs. Work such as the NESS project (Bilbao
et al., 2019) utilised GPUs for high-quality, physically accurate audio
synthesis, though generally slower than real-time. There have been
commercial products released to end users utilizing commodity
GPUs. GPU Audio, Inc.1 has developed a SDK for partners to
integrate or develop GPU-based plugins. Some features such as
parallel GPU-accelerated convolution in the Vienna Symphonic
Library plugin are available to end-users. Several years prior,
CUDA acceleration was availble in Acusticaudio s. r.l’s Nebula
3,2 though this functionality was later removed. Finally, in prior
work, Skare and Abel (2019) demonstrated the ability to run amodal
filter bank based on phasor filters at audio rates that could accept
MIDI input to synthesise percussion sounds.

2.2 FPGAs

FPGAs have gained prominence as a platform for real-time
audio Digital Signal Processing (DSP) within both industry and
academic environments. Their low-level architecture enables them
to achieve unmatched real-time performance in terms of audio
latency and exceptionally high sampling rates (Popoff et al., 2022).
The reconfigurable nature of FPGAs allows for maximised
optimisation tailored to specific applications, with adaptable
levels of parallelisation and pipelining to attain the optimal
performance that the system can support.

1 https://gpu.audio/

2 https://www.acustica-audio.com/
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Early contributions to audio processing on Field-Programmable
Gate Arrays (FPGAs) emerged in the 2000s, primarily focusing on the
manual implementation of specific applications or algorithms using
Hardware Description Languages (HDLs) such as VHDL or Verilog
on FPGA-only boards. For instance, Motuk et al. (2007) provides a
notable example, aiming to implement Finite-Difference Time-
Domain (FDTD) models. Similarly, other projects have
concentrated on digital drum kits (Jadhao and Singh Patel, 2020),
audio effect generators (Chhetri et al., 2015; Dragoi et al., 2021),
among others. More recent developments, with the integration of
System on Chip (SoC)3 capabilities in contemporary FPGA platforms,
have facilitated fully standalone applications capable of managing
both audio control and processing, thus enabling a hardware4/
software co-design approach (Cannon et al., 2022; Deulkar and
Kolhare, 2020; Vaca et al., 2019). Within industry, companies such
as Novation,5 Antelope Audio,6 UDO Audio,7 futur3soundz,8 and
Audinate9 offer products that incorporate FPGA technology.

When it comes to implementing audio DSP algorithms on an
FPGA, various approaches can be taken. As mentioned above, the
most common and “obvious” one is to write HDL code “by hand.”
This solution is only accessible to hardware engineers with highly
specialised skills and is therefore out of reach to most DSP and
software engineers. Environments such as Matlab Simulink10

enables the assembly of pre-designed DSP blocks to implement
specific applications. While this solution is good for basic
prototyping, it remains limited, especially when it comes to using
custom algorithms. MathWorks’ HDL Coder11 is another solution
which allows for the programming of FPGAs at a high-level using
Matlab. While it has been successfully used in a couple of projects in
academia for real-time audio DSP applications (Vannoy, 2020), it
mostly targets rapid prototyping to the detriment of optimisation
and computational efficiency. Verstraelen et al. (2014) proposed a
programmable parallel machine on FPGA targeting audio
applications, but this project is not active anymore.

More recently, High-Level Synthesis (HLS) (Lahti et al., 2018)
has proven to balance ease of programming and performance. In this
context, the open source Syfala project,12 which relies on the vitis_hls
tool provided by Xilinx/AMD, has been aiming at providing an
optimised “audio DSP to FPGA compiler” taking both C/C++ or
Faust (Orlarey et al., 2009) code as an input (Popoff et al., 2022).
Syfala can target various Xilinx/AMD FPGA boards and provide a

broad range of side features such as various sister boards for control
and multichannel audio applications (Popoff et al., 2024), Open
Sound Control (OSC), MIDI, etc. control, hardware acceleration on
dedicated Linux (Cochard et al., 2024), etc. When using C/C++,
Syfala heavily relies on HLS pragmas for optimisation and codemust
respect various standards in order to be as efficient as possible.13

3 Modal synthesis and reverberation

Before proceeding, it is worth recalling the mathematics of modal
reverberation. The purpose of this section is to describe the modal
algorithms and introduce notation. Asmentioned in the introduction,
in model-based modal reverberation, the modal parameters are either
assumed to be known (Ducceschi andWebb, 2016; Russo et al., 2023)
or are obtained through a numerical eigenvalue problem (van
Walstijn, 2020; McQuillan and van Walstijn, 2021). Here, as the
focus is on the performance ofmodal algorithms, the former approach
is chosen for a thin metallic plate with a simply-supported boundary.
This serves as a first approximation to plate reverb units such as the
EMT140 (Arcas and Chaigne, 2010; Valimaki et al., 2012). To that
end, consider the following model describing the flexural vibration of
a thin plate (Bilbao et al., 2006):

∂2u x, t( )
∂t2

� α2Δu x, t( ) − κ4ΔΔu x, t( ) − 2σ
∂u x, t( )

∂t
+ δ x − xf( )f t( ).

(1)
In the above, u � u(x, t): D × R+

0 → R represents the flexural
displacement of the metallic sheet over a rectangular domain
D ≔ [0, Lx] × [0, Ly]. Δ and ΔΔ are, respectively, the Laplace and
the biharmonic operators. In Cartesian coordinates, these are:

Δ ≔
∂2

∂x2
+ ∂2

∂y2
, ΔΔ ≔ Δ( )2.

Furthermore, in (Equation 1), α ≔ (T0/ρh)1/2 is a tension term, with
T0 being the applied tension per unit length along the edges, ρ being
the metal density and h being the thickness of the plate (of the order
of half a millimetre for steel reverb units). κ ≔ (D/ρh)1/4 is a stiffness
constant, withD ≔ Eh3/12(1 − ]2) being a rigidity constant, E being
Young’s modulus and ] being Poisson’s ratio. The constant σ is a loss
factor, f(t) is the incoming dry audio, and xf � (xf, yf) is the
input location on the plate.

A particular solution to (Equation 1) is obtained by first solving
the eigenvalue problem defined on the lossless system, that is:

ω2U � −α2ΔU + κ4ΔΔU, (2)
together with the boundary conditions U � ΔU � 0 along the
boundary ∂D, for a modal shape U � U(x, y). A particular
solution is given by:

Up,q x, y( ) ≔ 2����
LxLy

√ sin
pπx

Lx
( )sin qπy

Ly
( ), (3)

such that (Equation 2) is solved by:

3 SoC: System on Chip.

4 The term “hardware programming” is commonly used in the context of

FPGA programming.

5 https://novationmusic.com/en/synths/summit

6 https://en.antelopeaudio.com/

7 https://www.udo-audio.com/\#introduction

8 https://www.futur3soundz.com/

9 https://www.audinate.com/

10 https://www.mathworks.com/products/simulink.html

11 https://www.mathworks.com/products/hdl-coder.html

12 https://inria-emeraude.github.io/syfala/ 13 https://inria-emeraude.github.io/syfala/tutorials/cpp-tutorial-advanced/

Frontiers in Signal Processing frontiersin.org03

Michon et al. 10.3389/frsip.2025.1522604

https://novationmusic.com/en/synths/summit
https://en.antelopeaudio.com/
https://www.udo-audio.com/\#introduction
https://www.futur3soundz.com/
https://www.audinate.com/
https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/hdl-coder.html
https://inria-emeraude.github.io/syfala/
https://inria-emeraude.github.io/syfala/tutorials/cpp-tutorial-advanced/
https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://doi.org/10.3389/frsip.2025.1522604


ω2
p,q ≔ α2γ2p,q + κ4γ4p,q

for real-valued modal wavenumbers γp,q ≔
�����������������
(pπ/Lx)2 + (qπ/Ly)2

√
and positive modal indices (p, q) ∈ N. One may then sort the
particular solutions according to increasing frequency, using a
single sorting index m. Thus, ω1 <ω2 ≤ω3 < . . . ≤ωm ≤ . . . ≤ωM,
where M represents the total amount of modes retained in the
model. The associatedmode shapes areUm(x,y), as per (Equation 3).
The modal equation for the mth mode is then:

€um t( ) � −ω2
mum t( ) − 2σm _um t( ) + Um xf, yf( )f t( ), (4)

where the loss factor σm is nowmode-dependent and can be given in
terms of the 60 dB decay time τm as σm ≔ 3 log(10)/τm. um(t) is the
time-dependent modal coordinate for mode m. Note that, in
(Equation 4), total time derivates are now denoted with overdots.

The global solution at location xo ≔ (xo, yo) is then
reconstructed as:

u xo, t( ) � ∑M
m�1

Um xo, yo( )um t( ). (5)

A schematic representation of the typical workflow in model-based
modal synthesis is offered in Figure 1. Pictures of the first few modal
shapes are given in Figure 2.

Before proceeding, it is worth solving (Equation 4) in the
frequency domain, after substituting um � estûm, f � estf̂ for
complex amplitudes ûm, f̂. This gives the transfer function:

Ĥm s( ) ≔ ûm

f̂
� Um xf, yf( )
s2 + ω2

m + 2σms
. (6)

3.1 Discrete-time update

A time-stepping algorithm is constructed by approximating
the continuous solution um(t) with a time series um[n], defined at
tn ≔ Tn, where T is the sampling interval (i.e., the multiplicative
inverse of the sample rate), and n ∈ N is the sampling index. A
discrete-time transfer function, discretising Ĥm(s) in (Equation 8),
is usually obtained using two main approaches. The first is through
the integration of (Equation 4) using a basic Störmer-Verlet
algorithm as done, e.g., in Ducceschi and Webb (2016); the
second is via an exact integrator such as the one given in
Cieśliński (2011). The two discrete-time transfer functions
follow as.

HSV
m z( ) ≔ T2Um xf, yf( )

z 1 + σmT( ) − 2 + T2ω2
m + z−1 1 − σmT( ), (7a)

HEX
m z( ) ≔ T2e−σmTUm xf, yf( )

z − 2 cos ωmT( )e−σmT + z−1e−2σmT
. (7b)

The online computational burden of the two discretisations is
the same once the constant coefficients are computed before
runtime. (Equation 7b) is preferred in general as it does not
introduce artificial frequency warping. Furthermore, it is
unconditionally stable as opposed to (Equation 7a) for which one
must choose ωm < 2/T for stability.

Regardless of the particular form of the transfer function, the
prototype algorithm has the form:

um n + 1[ ] � c1 × um n[ ] + c2 × um n − 1[ ] + c3 × f n[ ],

m � 1, . . . ,M, (8)

FIGURE 1
Workflow of model-based modal synthesis. An incoming dry
audio signal is projected onto M modal shapes, yielding the input
modal weights. The modal equations are in the form of a bank of M
parallel oscillators, and the global output is then reconstructed
through a reduced sum.

FIGURE 2
The first fourmodal shapesUp for a rectangular plate with Lx � 1, Ly � 2, typical dimensions for plate reverb units such as the EMT140. The shapes are
sorted according to increasing frequency, and modal indices p,q are as given.
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requiring three multiplies and two adds per mode, besides swapping
two state arrays after the update. The reduced sum in (Equation 5) is
used to compute the output at the output point as:

output n[ ] � ∑M
m�1

weightsm × um n[ ]. (9)

3.2 Algorithm architecture

Algorithm 1 shows the standard layout of the computation for a
modal processor. At each time step, the modal state array uNext is
updated using two previous states, u and uPrev, and arrays of
coefficients, and the input sample is also added to each modal
equation, as per Equation 8. A dot product is subsequently
performed over this updated state with an array of weights to
generate the output sample for the given time step, as shown in
Equation 9. The state arrays are then interchanged prior to initiating
the next time iteration.

for t � 0: bufferSize-1 do

for m � 0: numberOfModes-1 do

uNext[m] ← u[m] × c1[m] + uPrev[m] × c2[m]+
c3[m] × input[t]

end for

⊳ Dot product to give output

outsum ← 0

for m � 0:numberOfModes-1 do

outsum ← outsum + uNext[m] × weights[m]
end for

output[t] ← outsum

⊳ Swap the state arrays

uPrev ← u

u ← uNext

end for

Algorithm 1. Standard algorithm for Modal Processing.

To produce full-bandwidth audio, the simulation is conducted at
48 kHz—equivalent to 48,000 time steps, divided into buffers, to yield
one second of output. A typical buffer size is 256 samples. The
computational cost, therefore, depends on the number of modes
employed, which determines the size of the state arrays. Observing
that each element of the state array is updated independently, the
algorithm can be reformulated as in Equation 2. Rather than looping
over time first, the process can loop over the modes of the state,
updating each mode across a buffer of time steps. The final output
samples are then computed incrementally, and the state of eachmode is
updated by writing individual values at each time iteration.

for m � 0:numberOfModes-1 do

⊳ Update mode over time-steps

for t � 0: bufferSize-1 do

uNext[m]
← u[m] × c1[m] + uPrev[m] × c2[m] + c3[m] × input[t]

⊳ Sum into output

output[t] ← output[t] + uNext[m] × weights[m]
⊳ Swap state of this mode

uPrev[m] ← u[m]
u[m] ← uNext[m]

end for

end for

Algorithm 2. Modified algorithm with swapped loops.

4 Implementations

The performance and parallelisation methods that these two
approaches offer are now discussed.

4.1 Central processing unit

In single-threaded CPU execution, the standard algorithm 1)
achieves optimal performance when both the state update and dot
product are consolidated within a single FOR loop. Compilers such
as Clang can fully vectorise this operation under the -Ofast setting.
The state arrays may be interchanged through a simple pointer swap,
incurring minimal computational cost. In contrast, the modified
algorithm 2) shows approximately tenfold (x10) slower performance
in its unoptimised form. Specifically, the compiler fails to auto-
vectorize the FOR loop operations, and each element of the state
arrays must be read and written individually to perform the state
swap. This memory transfer, coupled with inefficient caching,
results in a reduction in overall performance.

To maximise CPU performance, multi-threading is employed to
exploit the multi-core architecture. Parallelisation on a limited number
of cores is implemented by partitioning the state arrays into discrete
sections. For example, with eight threads, each thread processes one-
eighth of the modal state, performing the dot product over its
designated data segment. Upon completing their respective tasks, the
partial sums from the eight threads are aggregated to produce the final
output sample. Thread-launch overhead is minimised by allowing each
thread to compute a buffer of timesteps, writing the data to a temporary
array before synchronising across threads.

This approach, implemented with C++ stdthreads, is effective
across buffer sizes from 128 to 1,024 without impacting
performance. Initial offline testing was conducted on a
simulation of 48,000 timesteps, corresponding to one second of
audio simulation at 48 kHz. The primary performance metric was
the maximum number of modes that could be computed within a
runtime limit of 0.8 s, deemed the threshold for usability in a real-
time system. Tests were conducted on a range of Apple Silicon
machines—M1, M2 Pro, and M2 Max processors—using
configurations of 1, 2, 4, and eight execution threads. The results
are presented in Table 1.

TABLE 1 Number of modes computed in an average of 0.8 s of run-time on
the CPU over 48000 time-steps.

Threads M1 M2 Pro M2 Max

1 70k 65k 65k

2 130k 120k 120k

4 240k 230k 230k

8 280k 300k 420k
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4.2 Graphics processing unit

AlthoughGPUs have long been used for general-purpose computing,
the introduction of Nvidia’s CUDA platform in 2007 significantly
expanded accessibility due to its simplified programming API. Prior to
this, GPGPU code was developed using complex shader languages, which
presented a steep learning curve. CUDA introduced a straightforwardAPI
with C/C++ extensions, rapidly establishing itself as the default platform
for GPU parallel computation code in scientific applications.GPUs are
designed on a markedly different model from standard CPUs, which
typically contain a limited number of cores, multiple levels of cache, and
access to a centralised pool of globalmemory. In contrast, GPUs consist of
thousands of compute cores, organised into Streaming Multiprocessors
(SMs) and support multiple memory environments, including local,
shared, and global memory. This architecture enables the simultaneous
execution of numerous threads, thereby providing substantial parallel
computational capabilities. Figure 3 illustrates the threading mechanism,
wherein blocks of threads are grouped and executed on an SM. Kirk and
Wen-Mei (2016) provides a comprehensive overviewofCUDAhardware,
programming, and optimisation.

The effective utilisation of this computational capability depends on
the specific algorithm in use. Optimal GPU performance requires
issuing thousands of threads, each executing a kernel on data-
independent memory, along with an efficient ratio of computation
to memory access. To surpass CPU performance, especially in large-
scale simulations, millions of threads must be issued to fully harness the
GPU’s available computational resources. Potential speedup factors and
runtime constraints are application-dependent, though studies such as
Bakhoda et al. (2009) comment on real-world performance and
optimisation strategies across domains.

4.2.1 Metrics
Latency and throughput are measured as follows. For a GPU

implementation, latency refers to the “loop computation” time
required for the GPU to synthesise up to M modes, await the
completion of this computation, and then sum the results into a
mono audio channel. Transfer of input filter parameters to the GPU
and transfer of output audio data from the GPU are included in total
time. Thus, the total latency corresponds to the wall-clock time
necessary to compute one second of audio. In some experiments,
audio is processed in chunks with buffer sizes aligned to those
requested by real-time digital audio workstation processes, which
may also enable adjustments in the scope of sub-problems. For cases
involving multiple buffers, median, tail, and maximum latencies are

reported, with the stipulation that a real-time systemmust not exceed
the allowed time for processing a callback (sample rate divided by
buffer size), allowing for some overhead.

Throughput is determined by the maximum number of modes a
system can synthesise to generate one second of audio within
800 milliseconds, with the remaining 200 milliseconds reserved
as a buffer. This metric aligns with the previously described CPU
implementation.

4.2.2 Implementation
The initial approach for the CUDA implementationwas to use the

standard algorithm. This requires 3 separate kernels: one to update the
state, another to perform the dot product, and then a final thread to
load the result into the output memory array. However, this leads to
very poor performance, even when using the optimised cuBlas library
for the dot product operation. The array sizes are simply not large
enough for the dot product function to operate efficiently.

Themodified algorithm can potentially perform better as it can be
implemented in a single kernel that removes the need for a dot
product. However, each thread will be competing to access and write
to the output memory as it updates over time-steps. This will
inevitably lead to race conditions accessing that data. For the
parallel code to function correctly, it is necessary to employ an
atomic function to read, modify, and subsequently write to the
output array within each thread. CUDA provides this functionality
with atomicAdd (), which ensures that only a single thread canmodify
the value at any given moment. The resulting kernel is presented in
Listing 1. Further optimisations are given in the following sections.

Listing 1. CUDA Kernel for Modifed Algorithm with
atomicAdd() to avoid race conditions.

__global__ void updateState (float* uNext, float*

u, float* uPrev, float* c1, float* c2, float* c3,

float* wouts, float* input, float* output, int b)

{
int m = blockIdx.u*Blocksize + threadIdx.u;

for (int t = 0; t < buffer_size; ++t)

{

uNext [m] = u [m]*c1 [m] + uPrev [m]*c2

[m] + c3 [m]*input [t];

float outpart = uNext [m]*wouts [m];

int index = b*buffer_size + t;

atomicAdd (&(output

[index]), outpart);

uPrev [m] = u [m];

u [m] = uNext [m];

}

}

4.2.3 Test setups for optimised GPU strategies
In subsequent sections, we compare per-platform optimisations

applied to synthesis kernels implemented in CUDA and Metal. The
systems under test are documented in Table 2.

4.2.4 Banked memory writes plus tree-sum stage
The computation continues with each thread tasked to compute one

mode and to write a 256- or 512-sample audio buffer. These writes are

FIGURE 3
CUDA thread model. Nvidia Corp.
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organised such that 32 threads within a warp14 compute the same time
sample tk and write in unison to adjacent memory locations. Careful
consideration of memory access patterns helps to avoid bank conflicts
and contention, thereby enabling higher memory throughput. This
process yields numberOfModes channels of audio, with one mode per
channel, that must be summed to produce a monaural output.
Summation is performed within each warp and then across warps to
achieve the final monaural signal. Within a warp, an efficient primitive,
such as __shfl_down_sync (), may be used to conduct a tree-sum
reduction, collapsing 32 channels to one in five pairwise steps. This
operation results in one partially summed channel per thread group,

which can be finalised on either the GPU or CPU. A demonstration of
the two-stage tree-sum approach is presented below in Listing 2, as an
extension of Listing 1.

Listing 2.Modified kernel with specialisation of summation
within each warp as “submixes.”

//For simplicity, assume number of filters is a

multiple of 32.

__global__ void updateState (float* uNext,

float* u, float* uPrev, float* c1,

float* c2, float* c3, float* wouts, float*

input, float* output, int b)

{

int m = blockIdx.x * blockDim.x +

threadIdx.x;

int warpId = threadIdx.x/32;

// Threads within a warp each compute a filter

independently.

// Arrange data so memory writes are aligned.

for (int t = 0; t < BUFFER_SIZE; ++t)

{

uNext [m] = u [m]*c1 [m] + uPrev [m]*c2 [m] +

c3 [m]*input [t];

float outpart = uNext [m]*wouts [m];

int index = t*THREADGROUP_SIZE + m;

output [index] + = outpart;

uPrev [m] = u [m];

u [m] = uNext [m];

}

// Sum the audio channels within the warp

to mono.

for (int t = 0; t < BUFFER_SIZE; ++t) {

float thread_value = output

[t*THREADGROUP_SIZE + m];

for (int offset = 16; offset >0; offset/ =

2) {

thread_value + = __shfl_down_sync

(0xffffffff, thread_value, offset);

}
// First thread in warp writes result.

if (m

output [t] = thread_value;

}

}

// We now transfer only the first audio channel

from the device.

// Filter state |uPrev| for each filter must be

sent to the host

// or persisted to global memory.

}

TABLE 2 Test systems for GPU experiments.

System Processor RAM GPU VRAM

Windows PC Intel i7-12700 32 GB DDR4 GeForce RTX 4070 12 GB GDDR5

MacOS M2 Pro 10-core 16 GB Shared Integrated GPU, 16-core 16 GB Shared

TABLE 3 Number of modes computed in 0.8 s of run-time on each GPU
system over 48000 time-steps, processed in sets of |buffer| samples.

System Buffer Max modes

RTX 4070 256 494k

RTX 4070 512 618k

M2 GPU 256 124k

M2 GPU 512 108k

TABLE 4 Latency statistics for processing 256-sample buffers, using CUDA
system, for increasing number of modes, in milliseconds.

Modes Min Max Avg p50 p95 p99

48k 0.17 0.62 0.22 0.21 0.31 0.62

96k 0.24 0.86 0.29 0.26 0.43 0.86

192k 0.48 1.53 0.56 0.52 0.76 1.53

384k 0.72 3.00 0.96 0.84 1.84 3.00

768k 1.83 3.46 2.21 2.13 2.78 3.46

1536k (not feasible) 4.29 7.50 4.98 4.89 5.70 7.50

TABLE 5 Median and tail latency processing times for buffers of
256 samples, shared memory architecture.

Modes p50 p95

12.5k 1.38 2.45

24k 1.49 2.88

48k 1.93 3.50

96k 3.61 5.23

192k 3.78 8.21

14 A CUDA warp is a collection of threads concurrently executing the same

code on different pieces of data.
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This multi-stage summation approach has minimal effect
when handling a small number of modes but increases the
maximum synthesisable mode count by over 2.5 times
compared to a single-threaded CPU summation stage. This
increase is attributable to both parallelisation and reduced I/O
costs. With this approach, data transfer overhead (host-to-device
transfer of parameters plus device-to-host transfer of the output
signals) is 12% of the total wall clock time and second-stage
summation of the per-warp signals on the CPU 17%. Further
optimisations of the summation stage include summing across
warps on the GPU or employing multi-threading and vectorisation
on the CPU side.

4.2.5 Hybrid CPU/GPU approach
Metrics presented in this section synthesise all filters on the

GPU, however we note that further performance gains might be
obtained by using the CPU and GPU in parallel.

During the synthesis of modes on a GPU, the CPU remains
idle. Depending on the GPU hardware, execution may
encounter a bottleneck where filter updates saturate the FPU
units with multiplications. If a single buffer of latency is
acceptable in a real-time application, it may be possible to
leverage the idle hardware by pipelining the mode
computation and summation operations, thus enabling
additional parallelism. For instance, audio may be synthesised as a
sequence of buffer computations B1 . . .Bk. While synthesising
modes for buffer Ck, post-processing, including summation to
mono, may be performed for buffer Ck−1. This approach allows the
execution time of the faster computational task to be
effectively “hidden.”

4.2.6 Caching
On Nvidia discrete GPUs, the 32 threads’ buffers of 256 or

512 samples may fit in fast shared memory local to a thread block.
Our implementation explicitly requests to store data in this memory
and is written to avoid bank conflicts. GPU kernels that must use
larger but slower global memory may automatically benefit from
caches, however we confirmed maximum throughput was achieved
by keeping our working set in shared memory.

On the CUDA system, these optimisations enable the synthesis
of a signal comprising over 600,000 modes at 48 kHz in real time,
meeting the feasibility threshold of a real-time factor below 1.0 for
synthesising one second of audio. Results for this platform in
isolation are presented at the end of this section in Table 3.

4.2.7 Discrete GPU latency analysis
It is observed that there is significantly greater variance in

latency when synthesising modes on the GPU compared to the
CPU, while the FPGA system provides even more stable latency
metrics. We analyze this practical consideration for the GPU
platform. An experiment was conducted in which audio was
processed in a series of 256- or 512-sample buffers, simulating
a real-time system typical of audio production. Table 4 presents the
median, 95th percentile, and maximum computational latency
observed across each buffer processed on the GPU system. If
any of these values, along with overhead, exceeds the host
audio driver’s deadline for providing a result, a buffer underrun
will occur, resulting in audio dropout in a real-time system.

Latency compensation or pipelining may mitigate such issues in
practical applications.

4.2.8 Shared memory system
The aforementioned GPU results were measured on PCs with

CUDA-compatible GPUs and APIs. Modern Apple platforms
contain an on-die GPU and in-package memory, which the CPU
and GPU each write to directly. There may be some locking and
synchronisation overhead, but a transfer from onememory to another
is avoided. As an experiment, the simulation was run on an Apple
M2 system, using Metal GPU compute shader code to perform the
mode computation and subsequent sum to one channel. Results are
displayed in Table 5. To emphasize, reported statistics for CUDA
platforms include explicit host/device data transfers; there is no
corresponding explicit data transfer step in the Metal kernel, but
both platforms’ performance statistics include any overhead for
relevant API calls and synchronisation. Due to the GPU platforms’
variance in latency between calls, we present buffer processing times
here. Maximum system throughput is presented in the immediately
following section, for comparison with the CPU and FPGA platforms.

4.2.9 Results and observations
With optimisations, the maximum number of modes that may

be synthesised for a 1-s signal of audio in under 800 milliseconds of
compute time was again determined, reserving 200 milliseconds for
overhead in the calling code, operating system, or GPU driver.
Times reported include data transfer to and from the GPU kernel
and all required API calls. Data was processed in buffers sized
similarly to those requested by real-world digital audio workstation
hosts; this also allowed efficient use of GPU memory caches and
thread-local memory on the CUDA platform.

4.3 Field-programmable gate array

FPGAs are well-suited for implementing modal processors due
to their parallelisation capabilities. In this context, High-Level
Synthesis (HLS), specifically the Syfala toolchain (see §2.2), was
selected to conduct experiments on AMD-Xilinx FPGAs. The choice
of these tools permitted the use of a similar C++ code input as
employed in the CPU/GPU experiments while also enabling the
utilisation of C-Simulation (CSIM) to verify that the output results
matched those of the C++ reference code.

Additionally, the Syfala toolchain allowed us to quickly and fully
implement the algorithm on different FPGA development boards,
and test its output in a reliable real-time context of execution. In that
regard, having a hand-tuned HDL implementation for this specific
algorithm would have probably allowed us to reach better overall
performances, but would have certainly been much more
challenging and time-consuming to implement and stabilize.

4.3.1 Metrics
In the context of an FPGA implementation, latency is measured

by taking the critical path of the implemented DSP “circuit,” which
will be the number of clock cycles that its longest branch takes to get
a value from input to output. Another crucial metric comes into play
when implementing a specific algorithm: its size, i.e., the area it
occupies on the Programmable Logic (PL). The first requirement is
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that the algorithm’s usage of logic resources stays below the number
of available logic cells (or slices) that the FPGA chip physically
possesses. Those cells are usually divided into different categories.

• Digital Signal Processing (DSP) slices, mainly used for
multiply-accumulate operations;

• Flip Flops (FF), which are individual single clock-driven
logic registers;

• Look-up Tables (LUT) which are used for logic operations,
multiplexers, etc.;

• Block RAM (BRAM), which can be used for storing static
arrays, implementing FIFOs, etc.;

If the estimation or implementation reports generated by Vitis
HLS indicate that any of those cell categories is over-used, the
synthesis/implementation process will eventually fail to produce an
FPGA bitstream.

4.3.2 Implementation details
All experiments have been conducted with AMD-Xilinx Vitis

HLS 2024.1 and tested on incrementally-sized AMD-Xilinx FPGA
chips as listed in Table 6, in order to be able to benefit from a higher
number of logic resources each time a maximum of modes and/or
logic resources was reached for a specific chip.

A full implementation and validation process (including sound
testing) was conducted for FPGAdevelopment boards in our possession,
including the xc7z010clg400-1, xc7z020clg400-1, and xczu3eg-sfvc784-1-e
FPGAs. For the others, only “estimate reports” were available, which do
not always guarantee that the implementation will eventually fit on the
FPGA, especially if resource utilisation is getting close to saturation.
Consequently, in order to obtain a safermargin, experiments reporting a
resource utilisation of more than 80% on one or several logic cell
categories were discarded for those specific chips.

Regarding latency, all experiments were configured to run with a
48 kHz sample rate and a 122.88 MHz FPGA clock rate, which was
chosen in order to match the traditional 256fs or 384fs based rates
used for operating with audio codecs. Higher clock-rates, such as
184.32 MHz or 245.76 MHz were also experimented, but resulted in
errors and timing violations throughout the HLS process, which we
were not able to fully resolve yet. Consequently, the maximum
latency for the processing of a single sample was in this context of
2,560 clock cycles. Buffer sizes from 24 to 1,024 samples were used in
order to keep the latency per sample below maximum.

Listing 3. Vitis HLS implementation of modified algorithm.

static float u [modesNumber];

static float uPrev [modesNumber];

static float uNext [modesNumber];

int c = 0;

for (int m = 0; m < modesNumber; m++) {

#pragma HLS pipeline

float c1 = coeffs [c++];

float c2 = coeffs [c++];

float c3 = coeffs [c++];

float modes_out = coeffs [c++];

for (int n = 0; n < BUFFER_NSAMPLES; ++n) {

#pragma HLS unroll

uNext [m] = c1 *u [m]

+ c2 * uPrev [m]

+ c3 * input [n];

uPrev [m] = u [m];

u [m] = uNext [m];

output [n] + = uNext [m] * modes_out;

}

}

Initialisation of coefficient arrays c1, c2, c3 and modes_out was
done on the ARMCPU (which is on the same System on Chip as the
FPGA), stored in DDRmemory and shared with the PL through the
ARM Advanced Microcontroller Bus Architecture (AMBA), using
the Advanced eXtensible Interface (AXI4) protocol. This allowed to
prevent logic resource saturation when the number of modes
became too important for all coefficients to be directly stored
and read in the PL Block-RAMs or LUT-RAMs. Furthermore, it
also allowed freeing DSP slices for expensive operations (such as
cosine, exponential and square-root functions) that would have been
used only once but permanently implemented on the PL. These
coefficients were stored in an interleaved way, so they could be
retrieved from the DSP kernel with a single burst request occurring
for each mode iteration, somewhat limiting the impact on latency.
There were no other read/write accesses to DDR memory. The
intermediate storage arrays (u [N], uPrev [N], and uNext [N]) were,
on the other hand, directly allocated in the programmable logic (PL),
in either Block-RAMs or LUT-RAMs. Finally, as shown in Listing 3,
DSP computation loops were “inverted,” resulting in a positive
performance impact by reducing interdependencies between logic
cells and enabling the parallel processing of a buffer of samples
rather than an array of coefficients. Such an approach would have
been challenging to implement on smaller FPGA chips due to
limited resources. To enforce this strategy, the pipeline and unroll
HLS pragmas were applied to each loop.

4.3.3 Code verification
In order to properly ensure that the DSP kernel is valid and

produces - from the same inputs - the same outputs as the original
C++ reference code, Vitis HLS’ C-Simulation (CSIM) feature was
used. Vitis HLS maintains the order of operations performed in the
C code when synthesizing float and double types to ensure that the
results are the same as the C simulation, unless optimisations are
explicitly requested. To quantify numerical accuracy, we compared
the FPGA-generated outputs on a Digilent Zybo Z7-20 with the C++

TABLE 6 Hardware resources in a number of slices of the different FPGAs
used for our experiments.

FPGA chip DSP FF LUT BRAM URAM

xc7z010clg400 80 35200 17600 120 0

xc7z020clg400 220 106400 53200 280 0

xc7z035ffg676 900 343800 171900 1,000 0

xc7z100ffg900 2020 554800 277400 1,510 0

xczu3eg-sfvc784 320 141120 70560 432 0

xczu15eg-ffvb1156 3,528 682560 341280 1,488 112

xczu19eg-ffvc1760 1968 1045440 522720 1968 128
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reference implementation across 48,000 samples. The results
showed a mean absolute error of 1.85 × 10−6, a maximum
absolute error of 9.4 × 10−6, and a signal-to-noise ratio (SNR) of
87.25 dB. These minor discrepancies stem from floating-point
implementation variations, which are not likely to have a
perceptible impact on the resulting audio.

4.3.4 Results and observations
In this configuration, the addition of a single mode increased

latency by approximately 10 clock cycles. Increasing the buffer size
provided a means to offset this latency penalty by enabling
parallelisation; however, this also led to a substantial rise in the
utilisation of logic resources, as these were duplicated for the
processing of each sample. The final results of our experiments
and simulations, in terms of maximum number of modes for each
targeted FPGA chip, are detailed in Table 7.

5 Discussion and future directions

CPUs, GPUs, and FPGAs function in a very different way and
potentially in very different contexts. In that regard, it is not
necessarily straightforward to provide an objective comparison
between them.

An important consideration here is that this study has focused
on achieving real-time performance for the largest modal model
across various processors without accounting for the potential
parallel operation of other system elements. In other words, the
utility of running such computationally intensive algorithms may be
limited if other processes—such as a Digital Audio Workstation
(DAW), graphical interface, or physical user interface—are not
running concurrently. While this limitation may be less
pronounced when using GPUs or FPGAs, typically employed as
“hardware accelerators” alongside a CPU, preserving capacity on a
standalone CPU for additional tasks is critical, particularly as an
Operating System (OS) is likely to be running.

One of the main observations that can be made from the results
presented in the previous sections is that recent CPUs do provide
unexpectedly good performances in the context of modal synthesis,
potentially competing with processors providing a higher level of
parallelisation, such as FPGAs and GPUs. That being said, and
despite the aforementioned limitations in terms of data transfer
between the GPU and its associated CPU, GPUs do provide the best

performances compared to CPUs and FPGAs, allowing for more
than 600k modes to be synthesised in real-time and leaving the
associated CPU free to carry out other tasks. It is also worth noting
that the multi-threaded CPU and GPU approaches may each realize
tens of thousands of modes in a context where the use of the
resources is not mutually exclusive. In that regard, future work
might explore a hybrid system that divides work among the two
simultaneously.

FPGAs appear to yield “less impressive” results within the
context of modal synthesis, compounded by the high potential
cost of larger FPGA models, such as the xczu19eg-ffvc1760, which
are likely considerably more expensive than the CPUs and GPUs
evaluated in this study. However, one metric not addressed here,
where FPGAs demonstrate superiority, is audio latency. Despite the
focus on computational efficiency in the configurations presented in
§4.3.4, it is feasible to eliminate buffering on an FPGA, thereby
achieving outstanding latency performance compared to other
processors.

An additional consideration is that the current study employs
HLS for FPGA programming to provide a more balanced
comparison between FPGAs, GPUs, and CPUs. Rewriting the
modal synthesis algorithm entirely in a hardware description
language, using fixed-point rather than floating-point arithmetic
may yield improved performance over the results presented here. A
compromise approach could involve the use of optimised floating-
point hardware operators, such as those provided by FloPoCo (De
Dinechin and Pasca, 2011).

6 Conclusion

This study has evaluated the performance of three principal
processor types—CPUs, GPUs, and FPGAs—in the context of
modal synthesis and processing. For smaller-scale models,
CPUs emerge as the most practical platform owing to their
widespread availability, adaptability, and flexibility, particularly
in recent models with enhanced computational capabilities. When
greater computational power is required, GPUs can serve as
effective accelerators alongside CPUs, providing a scalable
solution for larger model processing in many personal
computers, where high-performance GPUs are now commonly
installed. Although FPGAs are less accessible and typically not
integrated into standard PCs, they offer unmatched audio latency

TABLE 7 Maximum number of synthesised modes in real-time on different FPGAs and corresponding resource usage. Latency corresponds here to the time
it takes to generate a sample to meet real-time conditions. If latency exceeds 100%, then the program can not be executed in real-time.

FPGA Modes Buffer Latency DSP FF LUT BRAM

xc7z010clg400 12,000 24 98% 68% 51% 62% 67%

xc7z020clg400 30,000 64 92% 65% 40% 50% 52%

xczu3eg-sfvc784 45,000 80 88% 88% 44% 70% 45%

xc7z035ffg676 110,000 310 97% 54% 34% 80% 54%

xc7z100ffg900 180,000 500 99% 39% 33% 79% 69%

xczu15eg-ffvb1156 300,000 800 88% 41% 43% 77% 73%

xczu19eg-ffvc1760 350,000 700 98% 78% 30% 49% 66%
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performance, which may be advantageous in specific real-time
audio processing applications.
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