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In order to simulate the function of bowed string instruments, it is necessary to
model the frictional interaction between the bow hair and the vibrating string.
This is possible using an elasto-plastic friction model, which has previously
succeeded in reproducing experimental data captured on a monochord
setup. In this study, this elasto-plastic model is refined to guarantee passivity,
and a stable numerical scheme is derived that inherits the energy balance of the
underlying continuous model. The approach presented considers a finite-width
bow, thus spreading the bow–string interaction over an area. The compliance of
the bow hair and the torsional motion of the string are also taken into account. A
sound example and animations of the string motion are provided to demonstrate
the behavior of the model.
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1 Introduction

In order to simulate bow–string interaction, it is crucial to accurately model the friction
between string and bow. Several friction models—both static and dynamic—have been
developed in recent decades. The static models were obtained after measuring the coefficient
of friction either in a steady-state (see friction curve model suggested by Smith and
Woodhouse (1999)) or in a transient part of the waveform (see friction curve model
suggested by Galluzzo, 2004). Among existing dynamic friction models used to simulate
string vibrations are an elasto-plastic friction model developed by Dupont et al. (2002) and
first applied in bow–string simulations by Serafin et al. (2003) and a thermal model
introduced by Woodhouse (2003) where the temperature of rosin is considered; it is
implemented using digital waveguides in Maestre et al. (2014). Regardless of the modeling
choice, it is essential to use a guaranteed-passive model along with a discretization method
that preserves the energy-conservation properties of the continuous system (e.g., Chabassier
and Joly, 2010; Bilbao et al., 2015; Desvages, 2018; Ducceschi and Bilbao, 2022; vanWalstijn
et al., 2024).

This study examines the application of the elasto-plastic friction model by Dupont et al.
(2000) and Dupont et al. (2002) to numerical modeling of bow–string interaction. Their
formulation is a refinement of the LuGre friction model (de Wit et al., 2024) which
encountered drift at low sliding velocities. The idea behind the model is that two sliding
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surfaces are irregular at the microscopic level; their interaction is
modelled as a bundle of elastic bristles, with each bristle contributing
to the overall frictional force. This model has already been applied to
bowed strings: it was implemented using a finite difference method
in Willemsen et al. (2019), where it was applied to point-bowing a
stiff string, and in Matusiak and Chatziioannou (2024), where it was
applied to a finite-width bow model. A comparison between this
elasto-plastic model and the thermal friction model introduced in
Smith and Woodhouse (1999) was conducted in Serafin (2004)
using both a digital waveguide implementation and a finite
difference method locally under the bow. That study focused on
highlighting the differences and similarities between these two
dynamic friction models. It was demonstrated in Matusiak and
Chatziioannou (2024) that, given the right set of parameters, the
elasto-plastic friction model is able to reconstruct the steady-state as
well as the transient of a measured waveform.

Although the elasto-plastic friction model has been successfully
implemented in the above studies, the passivity of the model has not
been thoroughly investigated. This is important in order to
guarantee the stability of numerical simulations. In a recent study
by Falaize and Roze (2024) on nonlinear interaction modelling, the
Dupont model was incorporated in a Port-Hamiltonian
formulation, which—besides the part related to the elastic
bristles—can be shown to be passive. Passivity, however, is not
guaranteed for the coupled bow–string interaction model, since the
dissipation term associated with the bristle displacement can
become negative for certain parameter values.

In this study, we re-examine this issue and propose a refined
model which is shown to be passive for any model parameters. Such
a refinement can also demonstrate the existence and uniqueness of
solutions to the underlying differential equations. Furthermore, in
order to numerically implement the model in a stable manner, an
energy preserving discretization scheme is derived. This is an
improvement on the implementation proposed in Willemsen
(2021), where the numerical bristle energy was not guaranteed to
be non-negative.

The paper is structured as follows. In Section 2, the elasto-plastic
model is introduced in the context of a lumped bowed mass, and
energy analysis is performed in the continuous domain to reveal the
lack of passivity of the original elasto-plastic model. Section 3
presents a refined version of the model that preserves passivity
and guarantees the uniqueness of the solution. Section 4 is
concerned with the numerical formulation of the bowed mass
model; discretization using the finite difference method and
energy analysis in the discrete setting are performed, followed by
numerical experiments and comparison of the two models. In
Section 5, the friction model is applied to the problem of bowing
a string with a bow of finite width. Transverse and torsional waves
on the string are accounted for. Section 6 presents the numerical
model for the bow–string interaction, including analysis of the
discrete energy, and some concluding remarks are given in Section 7.

2 Elasto-plastic friction model

It is helpful to first present the problem in its simpler form,
which involves modelling the bowing of a lumpedmass connected to
a stiff spring. This represents a specific case of the bowed string

model, restricted solely to the transverse movement of a string that is
bowed at a single contact point and considering only its fundamental
mode of vibration (see Appendix).

Consider a bowed massm undergoing a tangential friction force
F (Figure 1). The mass is excited by a bow moving with velocity vb
which is modeled as a harmonic oscillator with bow hair mass mh,
stiffness Kh [kg/s2], and damping Γh [kg/s]. The bow hair
displacement relative to the rigid bow is denoted by η � η(t).
The motion of the two masses can be then described by

m€u � −κu − γ _u − F, (1)
mh€η � −Khη − Γh _η − F, (2)

v � _u − vb − _η( ), (3)
where u � u(t) denotes the displacement of the mass attached to a
spring of stiffness κ [kg/s2] and damping γ [kg/s]. The relative
velocity v between bow and mass is given by Equation 3.

Following Dupont et al. (2002), an elasto-plastic model is used to
simulate the tangential friction force. This model assumes that the
two surfaces—in this case the bow hair and the mass—are irregular
at the microscopic level, and their contact is modelled through an
ensemble of elastic bristles, each contributing to the total friction
load. The bristles are modelled as damped stiff springs, and when the
strain exceeds a certain breakaway threshold, the bristles break, and
the two surfaces begin to slide. Denoting by z, the average bristle
deflection, and by v, the relative velocity between the string and the
bow, the model is described as follows.

F � σ0z + σ1 _z, (4)

_z � v 1 − α z, v( ) z

zss v( )[ ], (5)

where σ0 in [kg/s2] and σ1 in [kg/s] are bristle stiffness and damping,
respectively. The change of rate with which the bristles stretch or
contract is related to the relative velocity through the adhesion map
α, defined as

α z, v( ) � 0, vz≤ 0
αm z, v( ), vz> 0,

{ (6)

where

αm z, v( ) �
0, |z|≤ zba
�αm v, z( ), zba < |z|< |zss v( )|
1, |z|≥ |zss v( )|,

⎧⎪⎨⎪⎩ (7)

and where zba ≤ μCfN/σ0 is the breakaway displacement

�αm z, v( ) � 1
2

sin πθ z, v( )( ) + 1[ ],

θ z, v( ) � |z| − 1
2 |zss v( )| + zba( )
|zss v( )| − zba

,
(8)

and zss is the steady-state displacement for constant velocities

zss v( ) �
fN

σ0
μC + μS − μC( )e−|v/vS |p( ), v≥ 0

−fN

σ0
μC + μS − μC( )e−|v/vS |p( ), v< 0,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (9)

with vS > 0 and p≥ 1. When p � 2, vS is referred to as “Stribeck
velocity.” In the numerical experiments in Sections 4.4 and 6.4,
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p � 2 is used. Here, μS and μC denote static and dynamic friction
coefficients, respectively, and fN is the normal force applied by the
bow. For small bristle displacements, when |z|≤ zba, α(v, z) � 0, and
consequently _z � v, a purely elastic and reversible regime is entered,
referred to as “pre-sliding” (sticking). For larger
displacements—that is, when zba < |z|< |zss(v)|—some bristles
start to break, and a mixed elasto-plastic sliding occurs. Finally,
for |z|≥ |zss(v)|, all bristles break, and a purely plastic regime is
achieved—the string slips under the bow. In that situation,
α(z, v) � 1. This model for a friction force was first developed in
Dupont et al. (2000) and used for simulating friction in various
industrial applications.

2.1 Energy balance

In order to investigate the passivity of the model given
by Equations 1–5, the energy balance of the system is considered.

Multiplying Equation 1 with _u, Equation 2 with _η, and Equation
5 with σ0z, summing up and using the relation in Equation 3 yields
the energy balance

m€u _u + κu _u︸����︷︷����︸
_Hr

+mh€η _η +Khη _η︸�����︷︷�����︸
_Hh

+ σ0z _z︸�︷︷�︸
_Hb

� − vbF︸�︷︷�︸
P

− γ _u2︸�︷︷�︸
Qr

− Γh _η2︸�︷︷�︸
Qh

− σ1v
2 + α z, v( ) vz

zss v( ) σ0z − σ1v( )( )︸���������������︷︷���������������︸
Qb

,

where

Hr � m

2
_u2 + κ

2
u2 ≥ 0

is the oscillator kinetic & potential( )energy,
Hh � mh

2
_η2 + Kh

2
η2 ≥ 0

is the bow hair kinetic & potential( )energy and

Hb � σ0
2
z2 ≥ 0

is the energy stored in the bristles.

P is the power supplied by the bow via the friction force, andQr,Qh,
and Qb are dissipation terms, corresponding to the oscillator, the
bow hair, and the bristles, respectively. This leads to the following
conservation law:

Hr +Hh +Hb + ∫ P +Qr +Qh +Qb( )dt � H 0( ), (10)

where H(0) is the initial system energy (if any). Qr and Qh are
trivially non-negative, and Qb is non-negative whenever α ≠ 1. For
α � 1, and for high—relative to σ0—values of σ1, Qb can become
negative, which violates passivity and is unphysical (Dupont et al.,
2000). Therefore, without a certain condition on the relationship
between the stiffness and damping coefficients, passivity cannot be
ensured. Following Olsson (1996), who analyzed a simpler version of
the Dupont model—the so-called LuGre friction model (deWit et al.,
2024)—Willemsen (2021) derived a condition on σ1 to guarantee
passivity for the elasto-plastic friction model. The condition reads:

σ1 ≤
4σ0zss v( )

|v| . (11)

However, without knowing the maximal relative velocity, v, it is
not possible to set the value for σ1. In Section 3, a different condition
on the bristle damping term is proposed that is less restrictive and
does not require any knowledge of the limits of v.

Falaize and Roze (2024) employed the elasto-plastic friction
model in the framework of port-Hamiltonian systems and arrived at
the same dissipation term— Qb. For certain parameter choices, the
dissipation matrix defined in Falaize and Roze (2024) is semi
positive-definite, but for that property to generally hold, a
refinement of σ1 is needed.

2.2 Boundedness of the bristle displacement

Boundedness of bristle displacement was first shown in Olsson
(1996) for a LuGre friction model, and subsequently in Dupont et al.
(2000) for an elasto-plastic model, by defining a positive definite
Lyapunov function and an invariant set of solutions. Here a slightly
different approach is presented.

The bristle displacement z(t) can be thought of as a parametric
curved defined by z(t) and v(t) whose rate of change is

_z t( ) � v t( ) 1 − α z t( ), v t( )( ) z t( )
zss v t( )( )[ ], (12)

and

sign _z t( )( ) �
−1, z t( )> zss v t( )( )
0, z t( ) � zss v t( )( ) or v t( ) � 0.
1, z t( )< zss v t( )( )

⎧⎪⎨⎪⎩ (13)

This means that for v(t)> 0, if z(t) reaches the maximal value of
zss(v(t)) which is zss(0) � μSfN

σ0
, it cannot rise any further but has to

either decrease or stay constant. Similarly, for v(t)< 0, if z(t) reaches
theminimal value of zss(v(t)), which equals limv→0−zss(v(t)) � −μSfN

σ0
,

it cannot decrease any further but has to either rise or stay constant.
Therefore, |z(t)|≤ μSfN

σ0
(see Figure 2 for visualization). The

boundedness of z by itself does not, however, imply stability.

3 Refined elasto-plastic model

This section presents a refined version of the elasto-plastic
friction model that addresses the passivity of the system.

FIGURE 1
Sketch of the bowed lumped mass system.

Frontiers in Signal Processing frontiersin.org03

Matusiak et al. 10.3389/frsip.2025.1525044

https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://doi.org/10.3389/frsip.2025.1525044


Consider a massm bowed with velocity vb as described in Section 2,
by Equations 1–5, where bristle damping σ1 is not constant but
varies with v and fN as follows:

σ1 v( ) � μCfN������
v2 + ϵ2

√ , ϵ � μCfN

�σ1
, (14)

such that 0≤ σ1(v)≤ �σ1 and σ1(0) � �σ1.
A similar velocity-dependent damping term σ1(v) � �σ1e−(v/v

2
d)

was introduced by Olsson (1996) for the LuGre model, motivated by
the need to reproduce certain friction phenomena. Provided that the
additional free parameter vd chosen is sufficiently small, the
condition in Equation 11 is satisfied, in turn guaranteeing
passivity of the LuGre model. This dependency on an external
parameter is avoided in the refinement proposed here (Equation
14). Furthermore, for large v values, σ1 stays closer to the original
constant �σ1 than with the exponential formula of Olsson.

3.1 Energy balance

With σ1 now being a function of the relative velocity v, the
passivity of the system in Equations 1–5 is guaranteed.

Proposition 1: Let F be a friction force as defined in Equation 4
with bristle damping σ1 defined in Equation 14. Then, the system in
Equations 1–5 is passive.

Proof: All terms in the energy balance (Section 2.1) are trivially
non-negative, apart from Qb. For α(v, z)< 1, Qb is always non-
negative. Therefore, only the case when α(z, v) � 1, which happens
when sign(z) � sign(v) and |z|≥ |zss(v)|, is considered here. In that
case, we have

Qb �σ1 v( )v2 + |z||v|
|zss v( )| σ0|z| − σ1 v( )|v|( )

≥ σ1 v( )v2 + |z||v|
|zss v( )| σ0|zss v( )| − σ1 v( )|v|( )

≥ σ1 v( )v2 + |z||v|
|zss v( )| μCfN − σ1 v( )|v|( )

� σ1 v( )v2 + |z||v|
|zss v( )|μCfN 1 − |v|������

v2 + ϵ2
√[ ]> 0.

3.2 Existence and uniqueness of the solution

The passivity of the system can be shown to guarantee the
existence and uniqueness of the solution. By introducing a variable
ϕ, the bowed mass system of Equations 1–5 together with Equation
14 can be written as an autonomous system of equations.

_u � ϕ, (15)
_η � v + vb − ϕ, (16)
_ϕ � 1

m
−κu − γϕ − σ0z − σ1 v( )v 1 − α z, v( ) z

zss v( )[ ][ ], (17)

_v � −κu − γϕ

m
+ −Khη − Γh v + vb − ϕ( )

mh

− m +mh

m ·mh
σ0z + σ1 v( )v 1 − α z, v( ) z

zss v( )[ ][ ], (18)

_z � v 1 − α z, v( ) z

zss v( )[ ]. (19)

Let x � (u, η,ϕ, v, z), then the above can be written as

_x � S x( ), (20)
where S � (su, sη, sϕ, sv, sz) with the functions s corresponding to
Equations 15–19. Given initial conditions x(t0) � (u0, η0,ϕ0, v0, z0),
existence and uniqueness of the solution to Equation 20 is
guaranteed whenever S(x) is Lipschitz continuous (Barreira and
Valls, 2012).

Definition 1: A vector-valued function S(x) is Lipschitz continuous
if there exists an L≥ 0, called the “Lipschitz constant,” such that for all
x, y in the domain of S

|S x( ) − S y( )|≤L|x − y|. (21)

If S(x) � (s1(x), . . . , sK(x)), then the norm of S(x) is defined as

|S x( )|2 � ∑K
i�1

|si x( )|2.

The norm of x is similarly defined.

FIGURE 2
Behavior of the bristle displacement z(t). Left: pink color indicates regions where z(t) is decreasing (sign( _z(t)) � −1) and yellow is where z(t) is
increasing (sign( _z(t)) � 1). Blue line is the region where _z(t) � 0, and the black dashed line denotes the maximum and minimum value of zss. Right:
Example trajectory in the v − z plane for model parameters as in Table 1.
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Proposition 2: Consider a bowed mass m described by Equations
1–5 with bristle damping given by Equation 14. Then, for given initial
conditions, there exists a solution to the bowed mass system that
is unique.

Proof: By the Picard–Lindelöf theorem (Barreira andValls, 2012), a
system of ordinary differential equations S has a global unique solution
if S is Lipschitz continuous with respect to x with a Lipschitz constant
not depending on x. This is equivalent to all the functions su, . . . , sz
being Lipschitz continuous with respect to each variable u, η, ϕ, v, and z.

By passivity, all the variables are bounded. Lipschitz continuity
of su and sη is trivial. Similarly, Lipschitz continuity with respect to u,
η, and ϕ is trivially satisfied for all the functions su, sη, sϕ, sv , sz.
Moreover, it is straightforward to verify that σ1(v) defined in
Equation 14 is Lipschitz continuous. It remains to show that

~g z, v( ) � α z, v( ) zv

zss v( ) (22)

is Lipschitz continuous.

(i) Let v be fixed. Then, for z1, z2,

~g z1, v( ) − ~g z2, v( )∣∣∣∣ ∣∣∣∣
≤

|v|
|zss v( )| |α z1, v( )||z1 − z2| + |z2||α z1, v( ) − α z2, v( )|( )

≤
|v|

|zss v( )| |z1 − z2| + π

2
μSfN

σ0
θ z1, v( ) − θ z2, v( )| |( ),

where the last inequality follows from the Lipschitz continuity of
the sin function with Lipschitz constant equal to 1, with
| sin(π2 θ(z1, v)) − sin(π2 θ(z2, v))|≤ π

2|θ(z1, v) − θ(z2, v)|. The
function θ is also Lipschitz continuous with respect to z,

θ z1, v( ) − θ z2, v( )| | � ||z1| − |z2||
|zss v( )| − zba

≤
|z1 − z2|

|zss v( )| − zba

≤
σ0

μCfN − σ0zba
|z1 − z2|.

Let v be bounded by Bv, then

~g z1, v( ) − ~g z2, v( )∣∣∣∣ ∣∣∣∣≤ Bvσ0
μCfN

+ πBvσ0μS
μC μCfN − σ0zba( )[ ]︸������������︷︷������������︸

Lz

|z1 − z2|.

Hence, ~g(z, v) is Lipschitz continuous with respect to z with
Lipschitz constant Lz.

(ii) Now, let z be fixed and z> 0. Then

~g z, v( ) �
0, v≤ 0

α z, v( ) zv

zss v( ), v≥ 0

⎧⎪⎨⎪⎩
is continuous and everywhere differentiable except for

v � 0, with

∂~g

∂v
�

0, v< 0

∂α

∂v

zv

zss
+ α

zzss − zv _zss
z2ss

, v> 0,

⎧⎪⎪⎨⎪⎪⎩
and

∂α

∂v
� π

2
cos πθ( ) _zss zba − |z|( )

zss − zba( )2 .

The partial derivative of ~g with respect to v is bounded and positive,
since all the elements are bounded and positive. Therefore, by the
mean value theorem for v1, v2 > 0

~g z, v1( ) − ~g z, v2( )∣∣∣∣ ∣∣∣∣≤L1
v|v1 − v2|, L1

v � max
∂~g

∂v
{ }, (23)

and ~g is Lipschitz continuous for v> 0, with Lipschitz constant L(1)v ,
and trivially for v< 0, with any L(2)v ≥ 0 as a Lipschitz constant. Now
let v1 > 0 and v2 ≤ 0, then

~g z, v1( ) − ~g z, v2( )∣∣∣∣ ∣∣∣∣
|v1 − v2| � ~g z, v1( )∣∣∣∣ ∣∣∣∣

|v1 − v2| ≤
~g z, v1( )∣∣∣∣ ∣∣∣∣
|v1| � |z|

|zss v1( )|≤
μS
μC
.

Let L(3)v � μS/μC. Hence, ~g is Lipschitz continuous with respect to v
with Lipschitz constant Lv � max{L(1)v , L(2)v , L(3)v }. A similar proof
holds for z< 0.

Therefore, S is Lipschitz continuous with respect to x, and a
unique solution to Equation 20 is guaranteed.

The original Dupontmodel was not shown to be passive, as there
was no guarantee that v is bounded. In that case, the system in
Equations 1–5 has a unique solution only locally.

4 Numerical formulation

In the present section, a finite difference numerical scheme is
utilized to discretize the system in Equations 1–5. The proposed
discretization is energy conserving.

4.1 Numerical preliminaries

The approximations to u(t) at points nΔt are denoted as un,
where Δt is the time step. The variable z is approximated at an
interleaved grid—that is, zn+1

2 denotes the approximation to z(t) at
time t � (n + 1

2)Δt. The following centered, second-order accurate
discretization operators are defined:

δt○u
n � un+1

2 − un−1
2

Δt
� _u nΔt( ) +O Δ2

t( ),
δt·un � un+1 − un−1

2Δt
� _u nΔt( ) +O Δ2

t( ),
μt○u

n � un+1
2 + un−1

2

2
� u nΔt( ) +O Δ2

t( ),
μt·u

n � un+1 + un−1

2
� u nΔt( ) +O Δ2

t( ).
In addition, one may define non-centered, first-order accurate

discretization operators

δt−un � un − un−1

Δt
� _u nΔt( ) +O Δt( ),

δt+un � un+1 − un

Δt
� _u nΔt( ) +O Δt( ),

μt−u
n � un + un−1

2
� u nΔt( ) +O Δt( ),

μt+u
n � un+1 + un

2
� u nΔt( ) +O Δt( ).
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The composition of first-order accurate operators results in
second-order accurate operators,

δttu
n � δt+δt−un � un+1 − 2un + un−1

Δ2
t

� €u nΔt( ) +O Δ2
t( ),

μttu
n � μt+μt−u

n � un+1 + 2un + un−1

4
� u nΔt( ) +O Δ2

t( ),
and several useful identities can be constructed, including

δt·unδttu
n � δt+

1
2
δt−un( )2{ }, δt·unμttu

n � δt+
1
2
μt−u

n( )2{ },
δt·unun � δt+

1
2
unun−1{ }, δt○z

nμt○z
n � δt+

1
2
(zn−1

2( )2{ }.
4.2 Discretization

For simplicity of notation, let

g z, v( ) � v 1 − α z, v( ) z

zss v( )[ ]. (24)

The system of Equations 1–5 is discretized as follows:

mδttu
n � −κun − γδt·un − Fn, (25)

mhδttη
n � −Khμttη

n − Γhδt·ηn − Fn, (26)
vn � δt·un − vnb + δt·ηn, (27)
Fn � σ0μt○z

n + σ1 vn( )δt○zn, (28)
δt○z

n � g μt○z
n, vn( ). (29)

In the case of the original Dupont model, σ1(vn) � �σ1. In order
to ensure numerical stability for the lumped mass model (Equation
25), the following stability condition is obtained using frequency
domain analysis (Bilbao, 2009):

Δt < 2 m/κ( )1/2.

This discretization choice for the equation of motion of the
lumped mass is motivated by the discretization that is carried out for
the string model in the distributed case in Section 6. On the other
hand, the stiffness term for the bow hair in Equation 26 is discretized
using an averaging operator in order to avoid introducing a further
stability condition.

For simpler notation, let rn � μt○z
n. Using the discretization

operators, one can establish identities

δttu
n � 2

Δt
δt·un − δt−un( ), δt○z

n � 2
Δt

rn − zn−
1
2( ),

μttu
n � Δt

2
δt·un − δt−un( ) + un.

(30)

Substituting into Equations 25, 26, and 28, one obtains

m
2
Δt

+ γ( )δt·un � −κun +m
2
Δt
δt−un − σ0r

n − σ1 vn( ) 2Δt
rn − zn−

1
2( ),

mh
2
Δt

+Kh
Δt

2
+ Γh( )δt·ηn � −Khη

n + mh
2
Δt

+ Kh
Δt

2
( )δt−ηn

− σ0r
n − σ1 vn( ) 2Δt

rn − zn−
1
2( ).

Considering un, un−1, ηn, ηn−1, and zn−1
2 to be known, let pn � δt−un

and sn � δt−ηn. Using Equation 27, rn can be expressed as a function
of vn

rn � −A vn( )vn + B vn( ), (31)
where

A vn( ) �
m

2
Δt

+ γ( ) mh
2
Δt

+ Kh
Δt

2
+ Γh( )

2
Δt

m +mh( ) + Kh
Δt

2
+ γ + Γh

σ0 + 2
Δt
σ1 vn( )( )−1

,

B vn( ) � A vn( )
−κun +m

2
Δt
pn

m
2
Δt

+ γ
+
−Khη

n + mh
2
Δt

+Kh
Δt

2
( )sn

mh
2
Δt

+Kh
Δt

2
+ Γh

− vnb

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

2
Δt
σ1 vn( )zn−1

2

σ0 + 2
Δt
σ1 vn( )

.

For the original Dupont model, A(vn) and B(vn) are independent of
vn, and rn is linearly related to vn. Substituting Equation 31 into
Equation 29 and using the middle identity in Equation 30 yields a
nonlinear equation in the unknown vn,

2
Δt

B vn( ) − A vn( )vn − zn−
1
2[ ] � g B vn( ) − A vn( )vn, vn( ).

An iterative solver, such as the Newton–Raphson method, can
be applied to

G vn( ) � g B vn( ) − A vn( )vn, vn( ) − 2
Δt

B vn( ) − A vn( )vn − zn−
1
2[ ],
(32)

in order to solve for vn such that G(vn) � 0. Once vn is known, the
friction force Fn can be calculated and the variables un+1, ηn+1, and
zn+1

2 can be updated as follows:

Fn � B vn( ) − A vn( )vn( )σ0 + σ1 vn( ) 2Δt
B vn( ) − A vn( )vn − zn−

1
2( ),

zn+
1
2 � 2 B vn( ) − A vn( )vn( ) − zn−

1
2,

ηn+1 � 2Δt

mh
2
Δt

+ Kh
Δt

2
+ Γh

× −Khη
n + mh

2
Δt

+ Kh
Δt

2
( )sn + mh

2
Δt

+Kh
Δt

2
+ Γh

2Δt
ηn−1 − Fn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,
un+1 � un−1 + 2Δt vn + vnb −

ηn+1 − ηn−1

2Δt
[ ].

The solution of the nonlinear equation G(vn) � 0, for G(vn)
as defined in Equation 32 plays a key role in the algorithm
described above. It was shown in Section 3 that in the
continuous case, the refined elasto-plastic model has a unique
solution. However, this property is not immediately transferable
to the numerical case. It remains an open problem to find a
threshold on the time step Δt that would guarantee a
unique solution.
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4.3 Numerical energy balance

The stability of the numerical scheme is analyzed by
investigating whether the discrete energy balance preserves the
passivity of the underlying continuous system.

Multiplying Equation 25 with δt·un, Equation 26 with δt·ηn, and
Equation 29 with σ0μt○z

n yields

mδt·unδttu
n + κ δt·un( )un︸����������︷︷����������︸
δt+Hn

r

� −δt·unFn − γ δt·un( )2︸���︷︷���︸
Qn

r

,

mhδt·ηnδttηn + Khδt·ηnμttη
n︸�����������︷︷�����������︸

δt+Hn
h

� −δt·ηnFn − Γh δt·ηn( )2︸����︷︷����︸
Qn

h

,

σ0μt○z
nδt○z

n︸�����︷︷�����︸
δt+Hn

b

� σ0μt○z
ng μt○z

n, vn( ).
Summing up the above and using relation Equation 27 yields

δt+ Hn
r +Hn

h +Hn
b{ } � −Pn −Qn

r −Qn
h −Qn

b, (33)
where

Hn
r �

m

2
δt−un( )2 + κ

2
unun−1( )≥ 0,

Hn
h �

mh

2
δt−ηn( )2 + Kh

2
μt−η

n( )2 ≥ 0,

Hn
b �

σ0
2

zn−
1
2( )2 ≥ 0,

Pn � vnbF
n,

Qn
b � σ0 vn( )2μt○zn + g μt○z

n, vn( ) σ1v
n − σ0μt○z

n( )≥ 0,

(34)

P is externally supplied power and Qr, Qh, and Qb are dissipation
terms with Qr and Qh trivially non-negative. The proof of passivity
in the numerical formulation goes line by line as in the continuous
case, with z being substituted by μt○z

n and v by vn.
The energy balance in Equation 33 induces the following

discrete conservation law (Chatziioannou and van Walstijn, 2015):

En � Hn+1 + Δt ∑n
i�0

P i +Qi
r +Qi

h +Qi
b( ) � H0, (35)

where Hn � Hn
r +Hn

h +Hn
b. This is the discrete equivalent of

Equation 10. The conservation of this quantity, subject to
machine precision, can be assessed by monitoring the energy
conservation error en � En −H0.

4.4 Numerical experiments

To demonstrate the behavior of the model, simulation results are
shown in Figure 3. For these simulations, the bow accelerates from
0 at 3.439 m/s2 until it reaches the steady-state value vb (given in
Table 1) and then remains constant. Themodel parameters (Table 1)
are set to values found in Matusiak and Chatziioannou (2024) and
Pitteroff and Woodhouse (1998a) considering this lumped model
hypothesis. The values were obtained for the fundamental mode of a
vibrating string (Table 2) according to Equations 64–66 in the

FIGURE 3
Comparison of the original (orange) and refined (blue) elasto-plastic friction model applied to simulating a bowed lumped mass. Model parameters
are given in Table 1. Plotted signals are the mass displacement, bow hair displacement, relative velocity, and energy error, as defined in Equation 35.
Bottom right plot shows the deviation of the bristle damping coefficient, in the case of the refined model, from the constant value �σ1.
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Appendix. The energy conservation error en (where, in this case
H0 � 0) is also shown in Figure 3.

For this parameter set, the refined model generates signals that
are nearly identical to those generated by the original Dupont model.
The latter has been used to simulate a string bowed by a finite-width
bow and was validated against experimental measurements for the
case of a monochord played by a bow (Matusiak and Chatziioannou,
2024). Therefore, it is possible to deduce that the refined model can
also reliably resynthesize measured signals.

The difference between the two models comes into play when
the Dupont model violates the passivity condition (Equation 34); the
two models then behave quite differently (Figure 4). To generate this
figure, the bristle stiffness σ0 was reduced to 500 N/m, the bristle
damping σ1 was increased to 3 kg/s, and the bow force fN was
increased to 0.25 N. It can be observed that, in the case of the Dupont
model, the total energy loss may become negative, which violates
passivity. This results in the friction force not closely following the
underlying steady state friction curve. By allowing the bristle
damping to vary (bottom left of Figure 4), passivity is guaranteed
and the friction force trajectory remains close to the steady-
state curve.

As discussed in Section 4.2, a further issue with this modeling
approach is whether the system possesses a unique solution.

This can only be shown for the refined model in the continuous
case. For the discrete case, the uniqueness of the solution
could only be demonstrated empirically. The nonlinear function
G(v) in Equation 32 is plotted in Figure 5 for both the refined
and the Dupont model for increasing sampling rates. Model
parameters are as in Table 1, except for �σ1 � 100 kg/s. The
nonlinear function is plotted for time instance t � 0.0299 s. It
can be observed that while, for the refined model, G(v) has a single
root, this is not the case for the original model. Furthermore, the
existence of multiple roots in the latter case cannot be avoided by
increasing the sampling rate (i.e., oversampling towards the
continuous case does not alleviate this issue). While a strict
upper bound for Δt guaranteeing uniqueness is not yet available
for the refined model, it has been empirically observed, for a
large set of parameter values, that a unique solution exists
even for sampling rates lower than the audio sampling
rate (fs � 44100 Hz).

Furthermore, it is possible to observe that for both models, the
derivative of G(v) may become equal (or approximately equal) to
0 for certain values of v. While this may hinder the convergence of
the Newton–Raphson method, there are alternative approaches that
may be used to approximate the root of G(v) (e.g., Deuflhard, 2011;
Hueso et al., 2009).

TABLE 1 Table with parameter values used to generate signals in Figure 3.

Parameter Value Parameter Value

vb Bow velocity [m/s] 0.3439 m Mass [kg] 0.0028

fN Bow force [N] 1.6403 κ Spring stiffness [N/m] 1,055.7

σ0 Bristle stiffness [N/m] 1 · 105 γ Spring damping [kg/s] 0.0095

�σ1 Bristle damping [kg/s] 0.5

vS Stribeck velocity [m/s] 0.228 mh Bow hair mass [kg] 0.0042

μC Dynamic friction [-] 0.5071 Kh Bow hair stiffness [N/m] 48,297

μS Static friction [-] 1.0207 Γh Bow hair damping [kg/s] 57.674

TABLE 2 Table with parameter values used to generate the signals in Figure 7. Bow-hair mass, stiffness, and damping are as in the lumped case (see Table 1),
divided by the width of the bow hair.

String parameters Value Bow parameters Value

L String length [m] 0.7 ab Bow acceleration [m/s2] 0.8722

r String radius [m] 5 · 10−4 vb Bow velocity [m/s] 0.3439

T String tension [N] 149.74 fN Bow force [N/m] 2.3433

ρ Material density [kg/m3] 10,128 Wb Bow-hair width [m] 0.01

E Young’s modulus [Pa] 1.37 · 1010

c Wave speed [m/s] 137.2 σ0 Bristle stiffness [N/m2] 3.186 · 105

γ0 Freq. independent damping (s−1) 1.537 σ1 Bristle damping [kg/(m·s)] 0.0027

γ1 Freq. dependent damping [m2/s] 0.0087 vS Stribeck velocity [m/s] 0.228

KT Torsional stiffness [N· m2] 3.03 · 10−4 μC Dynamic friction [-] 0.5071

PT Polar moment of inertia [kg·m] 4.2 · 10−10 μS Static friction [-] 1.0207

γ2 Torsional damping [1/s] 0.0172 β Bow position [-] 0.0786
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Finally, the convergence of the refined model is illustrated in
Figure 6. A global error is defined, assuming a reference signal û that
is obtained with 1024 times oversampling, as

eg � ∑ u − û( )2�����∑ û( )2
√ (36)

5 Distributed system

The insights obtained while studying the bowed-mass system are
now applied to a distributed system—a string bowed with a finite
width bow. In the following, let u(x, t) and ~u(x, t) be real-valued
functions defined over an interval [0, L] and for time t≥ 0, with an
inner product and a norm defined as

FIGURE 4
Comparison of the behavior of the original (orange) and refined (blue) elasto-plastic friction models when the passivity condition of the original
model is violated. The total energy loss of the original model becomes negative, violating passivity, and the friction force deviates significantly from the
underlying theoretical steady-state friction curve.

FIGURE 5
Nonlinear functionG(v) for the refinedmodel (left) and the original Dupontmodel (right). OS is an oversampling factor, with sampling rate fs � OS · fs
and fs � 44100 Hz.
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〈u, ~u〉 � ∫L

0
u x, t( )~u x, t( ) dx, ‖u‖2 � 〈u, u〉.

Using the subscripts x and t to denote differentiation with respect
to space (∂x) and time (∂t), respectively, the following
identities hold.

〈∂tu, u〉 � d

dt

1
2
‖u‖2{ }, (37)

〈u, ∂x~u〉 � −〈∂xu, ~u〉 + u L, t( )~u L, t( ) − u 0, t( )~u 0, t( ), (38)
where d

dt is the total derivative with respect to time.

5.1 String model

The governing equations for the motion of a string excited by a
bow are the equations describing transverse (Equation 39) and
torsional (Equation 40) waves. They are coupled through the
distributed friction force f ([N/m]), and this force in turn is
linked to the bow hair displacement η (Equation 41). The bow
hair is modeled as a harmonic oscillator (Pitteroff and Woodhouse,
1998a). The friction force is modelled according to the elasto-plastic
friction model. The partial differential equations describing the
motion of the bowed string are (Bilbao, 2009; Pitteroff and
Woodhouse, 1998b):

ρA∂2t u � T∂2xu − EI∂4xu − 2γ0ρA∂tu + 2γ1ρA∂t∂
2
xu − f, (39)

PT∂
2
t w � KT∂

2
xw − 2γ2PT∂tw + rf, (40)

Dh∂
2
tη � −Khη − Γh∂tη − f, (41)

where ρ is the material density, A � πr2 is the cross-sectional area
of the string with radius r, T is the tension of the string, E is
Young’s modulus, I � πr4/4 are the area moment of inertia, and
γ0 and γ1 represent frequency independent and frequency
dependent damping. In addition, PT denotes the polar
moment of inertia, KT torsional stiffness, and γ2 is a torsional
damping coefficient. The bow stick is regarded as a rigid frame

moving at a given velocity vb and supporting a ribbon of
compliant bow-hair of density Dh ([kg/m]) with distributed
spring and damping constants Kh and Γh, respectively. The
relative bow–string velocity is then expressed as

v � ∂tu − rδtw( ) − vb − ∂tη( ). (42)

This model simplifies string damping and omits body coupling.
This simplified approach is favored in this case, as including these
additional factors would not enhance the presentation of the
friction model.

Assuming simply supported ends, the boundary conditions for
the transverse movement of the string are

u x, t( )|x�0,L � 0, ∂2xu|x�0,L � 0, (43)

and for the torsional movement we assume fixed boundary
conditions

w x, t( )|x�0,L � 0. (44)

A fourth equation, needed to close the system, describing the friction
force f is

f z, v( ) � σ0z + σ1 v( )∂tz, (45)
where σ0 and σ1 are now distributed stiffness and distributed
damping, respectively, and ∂tz is the time derivative of z. It is
related to v through

∂tz � v 1 − α z, v( ) z

zss v( )[ ], (46)

where the adhesion map α is defined in Equation 6 and zss is a
steady-state displacement function given by the Stribeck
curve (Equation 9). The damping term σ1(v) is defined in
Equation 14.

5.2 Energy analysis

The time derivative of the total energy of the combined
transverse and torsional movement of the string, bow hair,
and bristle energy may be derived by taking an inner product
of Equations 39, 40, 41, and 46 with ∂tu, ∂tw, ∂tη, and σ0z,
respectively, and summing the results. Utilizing Equation 37 and
the identity in Equation 38 repeatedly, the energy
balance follows:

dH
dt

� −Q − P + B
∣∣∣∣∣∣∣L0 , (47)

where

H � Hr +Hw +Hh +Hb,
Q � Qr +Qw +Qh +Qb,
B � Br + Bw,

and P(t) � 〈vb, f〉 is the power supplied by the bow. The string
energy coming from the transverse and torsional motions, Hr and
Hw, respectively, bow hair energy Hh, and bristle energy Hb are
given by

FIGURE 6
Error of the refined model for different time steps, as defined in
Equation 36. Dashed line indicates second-order convergence, while
dash-dotted line indicates first order convergence. Model parameters
are taken from Table 1.
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Hr t( ) � ρA

2
‖∂tu‖22 +

T

2
‖∂xu‖22 +

EI

2
‖∂2xu‖22 ≥ 0,

Hw t( ) � PT

2
‖∂tw‖22 +

KT

2
‖∂xw‖22 ≥ 0,

Hh t( ) � Dh

2
‖∂tη‖22 +

Kh

2
‖η‖22 ≥ 0,

Hb t( ) � σ0
2
‖z‖22 ≥ 0.

The dissipated energies in the string (Qr and Qw), bow hair (Qh),
and bristles (Qb) are given by

Qr t( ) � 2γ0ρA‖∂tu‖22 + 2γ1ρA‖∂x∂tu‖22 ≥ 0,
Qw t( ) � 2γ2PT‖∂tw‖22 ≥ 0,
Qh t( ) � Γh‖∂tη‖22 ≥ 0,
Qb t( ) � 〈σ1 v( )v, v〉 + 〈σ0z − σ1 v( )v, α z, v( ) zv

zss v( )〉,
and the boundary terms are

Br t( ) � T∂tu∂xu − EI∂tu∂
3
xu + EI∂t∂xu∂

2
xu + 2γ1ρA∂tu∂t∂xu,

Bw t( ) � KT∂tw∂xw.

Under simply supported boundary conditions, Br vanishes.
Similarly, Bw vanishes due to fixed boundary conditions for the
torsional movement of the string.

Given thatH≥ 0, the passivity of the system may be assessed by
observing the dissipated energy expressions. More precisely,
passivity is guaranteed if Qb ≥ 0. Let Wb be the width of the
bow, then

Qb t( ) � ∫
Wb

σ1 v( )v2 + α z, v( ) vz

zss v( ) σ0z − σ1 v( )v( )( )dt≥ 0

since, by Proposition 1, the expression under the integral is positive
if σ1(v) is defined as in Equation 14. Therefore, the refined elasto-
plastic friction model results in a passive system, also for this
distributed system.

6 Distributed system—Numerical
formulation

6.1 Operators and identities

Let u(x, t) be a function defined over an interval [0, L] and for
t≥ 0. Let dN � {lΔx: l � 0, . . . , N} be aN + 1 discrete spatial domain
corresponding to [0, L], with Δx � L/N. The approximations to
u(x, t) at points (lΔx, nΔt) are denoted as unl . Let
un � [un0 , . . . , unN]T. For two vectors un and ~un, the discrete inner
product and norm on dN are defined as

〈un, ~un〉dN � Δx ∑N
l�0

un
l ~u

n
l , ‖un‖2dN � 〈un,un〉dN.

Other domains that differ from dN by removing endpoints and will
later be used are

d�N � lΔx: l � 1, . . . , N{ },
dN � lΔx: l � 0, . . . , N − 1{ },
d�N � lΔx: l � 1, . . . , N − 1{ }.

(48)

The time difference and averaging operators introduced in
Sections 4.1, 4.2 are valid in their implementation to grid
functions. Similarly, as in the continuous case, the following
identities hold:

〈δt·un, un〉dN � δt+
1
2
〈un, un−1〉dN{ },

〈δt·un, δttun〉dN � δt+
1
2
‖δt−un‖2dN{ }.

Spatial forward, backward, and central discretization operators are
defined as

δx+un
l �

un
l+1 − un

l

Δx
,

δx−un
l �

un
l − un

l−1
Δx

,

δx·un
l �

un
l+1 − un

l−1
2Δx

,

(49)

and can be used to obtain approximations to higher-order partial
differential operators:

δxx � δx−δx+, δxxxx � δxxδxx.

Like in the continuous case, the following relation can be derived:

〈un, δxx~u
n〉dN � −〈δx+un, δx+~un〉dN + un

Nδx+~u
n
N − un

0δx+~u
n
0.

6.2 Discretization

Finite-difference schemes for the string in isolation and the
bowed string have been described in studies such as Bilbao (2009)
and Pitteroff and Woodhouse (1998b). In order to fix the notation,
let xL

B and xR
B be the positions on the string of the inner and outer

bow edges, respectively, with the center of the bow lying at xB. Let
M be a desired number of grid points under the bow, denoted
by xm.

The model is discretized in time and space with functions unl that
are approximations of u(x, t) at points (lΔx, nΔt). Discretization in
time is performed with t � nΔt, where Δt � 1/fs (in s) with fs the
sampling rate (in Hz) and n ∈ N, and in space with x � lΔx, where
the grid spacing Δx (inm) for the transverse movement of the string
must satisfy the following stability condition (Bilbao, 2009):

Δx ≥

��������������
τ +

����������
τ2 + 16κ2Δ2

t

√
2

√√
, (50)

where τ � c2Δ2
t + 4γ1Δt with c � �����

T/ρA
√

are the wave speed and κ �������
EI/ρA

√
is a stiffness coefficient. The grid points are

dN � {lΔx: l � 0, . . . , N}, where N � �L/Δx�; hence, the total
number of grid points is N + 1. For the torsional movement of
the string, the discretization in time is performed as for the
transverse motion while in space with x � lΔT

x , where the grid
spacing ΔT

x (in m) for the torsional movement of the string must
satisfy (Bilbao, 2009):

ΔT
x ≥ cTΔt, (51)

where cT � ������
KT/PT

√
is the torsional wave speed. The grid points are

dNT � {lΔT
x : l � 0, . . . , NT}, where NT � �L/ΔT

x�; hence the total
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number of grid points isNT + 1. Torsional waves travel much faster
than transverse waves; therefore, the number of grid points NT is
much smaller thanN. The spatial discretization operators associated
with grid dNT will be denoted with an upper T superscript—for
example, δTx+w

n
l � wn

l+1−wn
l

ΔT
x

.
For a point xm under the bow, the interpolation vectors ixm and

ixmT interpolate the string displacement at position xm for the
transverse and torsional motion, respectively. ixm is a row vector
of size N + 1 that multiplies the column vector un � [un0 , . . . , unN]T,
and ixmT is a row vector of size NT + 1 that multiplies the column
vectorwn � [wn

0 , . . . , w
n
NT

]T. The simplest interpolation is the one of
0th-order where ixml � 1 for l � �xm/Δx�, and ixmT,l � 1 for
l � �xm/ΔT

x�, respectively, and zeros elsewhere. For the definition
of higher orders of interpolation vectors, see Bilbao (2009). On the
other hand, a spreading vector jxm is a column vector that distributes
the friction force around the bowing point xm on the grid lΔx.
Similarly, jxmT is a spreading vector that distributes the friction force
around the bowing point xm on the grid lΔT

x . The spreading and
interpolation vectors are related through

jxm � 1
Δx

ixm[ ]T, jxmT � 1

ΔT
x

ixmT[ ]T.
To simplify the notation, we first divide Equation 39 by ρA, then

discretize it to obtain

δttu
n � c2δxxu

n − κ2δxxxxu
n − 2γ0δt·u

n + 2γ1δt−δxxu
n

− MρA( )−1J fn, (52)

where J � [jx1 | . . . |jxM ] is an (N + 1) × Mmatrix withmth column
being jxm ,m � 1, . . . ,M, and fn � [fn

1 , . . . , f
n
M]T is a column vector

withM rows where each row describes the friction for a point xm of
the string that is in contact with the bow. The friction force is
discretized using an interleaved grid, with

fn
m � f μt○z

n
m, v

n
m( ),

where
f μt○z

n
m, v

n
m( ) � σ0μt○z

n
m + σ1 vnm( )g μt○z

n
m, v

n
m( ),

with

g μt○z
n
m, v

n
m( ) � vnm 1 − α μt○z

n
m, v

n
m( ) μt○z

n
m

zss vnm( )[ ],
form � 1, . . . ,M. For simplicity of notation, let gn denote theM × 1
column vector with entries gn

m

gn
m � g μt○z

n
m, v

n
m( ),

then

δt○z
n � gn. (53)

Assuming simply supported ends, the boundary
conditions imply

un
0 � un

N � 0, un
−1 � −un

1, un
N+1 � −un

N−1, (54)
for all n ∈ N.

Similarly, by dividing Equation 40 by PT, it is discretized
as follows:

δTttw
n � c2Tδ

T
xxw

n − 2γ2δt·w
n + r

MPT
J Tf

n, (55)

where J T � [jx1T | . . . |jxMT ] is an (NT + 1) × M matrix with the mth

column being jxmT , m � 1, . . . ,M. Assuming fixed ends, the
boundary conditions imply

wn
0 � wn

NT
� 0, (56)

for all n ∈ N.
Discretization of the equation governing bow hair displacement

is performed as in the lumped case:

Dhδttη
n � −Khμttη

n − Γhδt·ηn − 1
M

fn, (57)

where ηn � [ηn1 , . . . , ηnM]T. Here, for each point xm under the bow,
the bow hair compliance is computed. Then, if the bow velocity at
time nΔt is vnb, the relative velocities at points of the string in contact
with the bow are discretized as

vn � Iδt·un − rITδt·wn( ) − vnb − δt·ηn( ), (58)
where I � [ix1 ; . . . ; ixM ], IT � Δx

ΔT
x
[ix1T ; . . . ; ixMT ]T are M × (N + 1)

and M × (NT + 1) matrices with the mth row being ixm and ixmT ,
respectively, for m � 1, . . . ,M. Let EM be an M by M identity
matrix and

L � ξS
MρA

IJ + r2ξT
MPT

ITJ T + ξH
M

EM,

where ξS � ( 2
Δt
+ 2γ0)−1, ξT � ( 2

Δt
+ 2γ2)−1, and

ξH � ( 2
Δt
Dh + Δt

2 Kh + Γh)−1. Utilizing the expression in Equation
30 for the discrete operators δtt and μt○, Equation 58 becomes

vn + vnb � −L · fn + sn, (59)
where sn is an M × 1 column vector with entries
snm � ξSa

n
m − ξTb

n
m + ξHc

n
m, where

anm � ixm c2δxxu
n − κ2δxxxxu

n + 2γ1δt−δxxu
n + 2

Δt
δt−un[ ],

bnm � Δx

ΔT
x

ixmT rc2Tδ
T
xxw

n + 2r
Δt
δt−wn[ ],

cnm � Δt

2
Kh + 2

Δt
Dh[ ] ηnm − ηn−1m

Δt
−Khη

n
m.

In order to update the system variables, the vectors vn and μt○z
n

must first be computed. A system of 2M equations is formed using
Equation 59 and relation in Equation 53 together with
δt○zn � 2

Δt
(μt○zn − zn−1

2).
vn + Lfn − sn + vnb � 0, (60)

gn − 2
Δt

μt○z
n − zn−

1
2( ) � 0. (61)

The system can then be solved for vn and μt○z
n using an iterative

solver. Once vn and μt○z
n are known, un+1, wn+1, and ηn+1 can be

updated. First, the variables related to the friction force and the
friction force itself are computed,

zn+
1
2 � 2μt○z

n − zn−
1
2,

gn � zn+
1
2 − zn−

1
2

Δt
,

fn � σ0μt○z
n + Ξn

1g
n,
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where Ξn
1 is an M × M diagonal matrix with diagonal terms being

{σ1(vnm)}Mm�1. Then, the string and bow hair variables are updated as

un+1 � 2
Δt
ξS Aun + Bun−1[ ] − 2ΔtξS

MρA
J fn,

wn+1 � 2
Δt
ξT Cwn − 1 − γ2Δt( )wn−1[ ] + r

2ΔtξT
MPT

J Tf
n,

ηn+1 � D 2Dh

Δ2
t

− Kh

2
[ ]ηn −D Dh

Δ2
t

+ Kh

4
− Γh
2Δt

[ ]ηn−1 − D
M

fn,

where
A � 2E + 2γ1Δt + c2Δ2

t( )δxx − κ2Δ2
t δxxxx,

B � γ0Δt − 1( )E − 2γ1Δtδxx,
C � 2ET + c2TΔ2

t δ
T
xx,

D � Dh

Δ2
t

+ Kh

4
+ Γh
2Δt

[ ]−1
,

with E an (N + 1) × (N + 1) identity matrix and ET an
(NT + 1) × (NT + 1) identity matrix.

Note that Equations 60 and 61 can be reduced to solving just one
equation, as was performed in the case of the bowed lumped mass.
Using Equation 60 and writing the friction force in terms of μt○z

n as

fn � σ0μt○z
n + 2

Δt
Ξn
1 μt○z

n − zn−
1
2( ),

the bristle displacement can be expressed as

μt○z
n � −Ξn L−1 vn + vnb( ) + L−1sn + 2

Δt
Ξn
1z

n−1
2[ ], (62)

where Ξn is an M × M diagonal matrix with entries
(σ0 + 2

Δt
σ1(vnm))−1, m � 1, . . . ,M on the diagonal. Plugging (62)

into (61) and gn, only Equation 61 must be solved for vn. zn+1/2

can then be computed from Equation 62. This approach increases
computational efficiency for point bowing when M � 1, but with
more points under the bow it involves matrix inversion, which is
computationally expensive.

6.3 Numerical energy and stability condition

An energy balance for the discretized scheme follows from a
discrete inner product of Equation 52 with δt·un, an inner product of
Equation 55 with δt·wn, an inner product of Equation 57 with δt·ηn,
and an inner product of σ0

Mμt○z
n with δt○zn. Using summation by

parts identities as well as boundary conditions leads to

δt+Hn � −Qn − Pn + Bn, (63)
where H, the total numerical energy, is defined as H � Hr +Hw +
Hh +Hb and, assuming that the stability conditions in Equations 50
and 51 are satisfied,

Hn
r �

ρA

2
δt−un‖ ‖2dN + T

2
〈δx+un, δx+un−1〉dN

+ EI

2
〈δxxun, δxxu

n−1〉d
N
≥ 0,

Hn
w � PT

2
Δx

ΔT
x

δt−wn‖ ‖2dNT +
KT

2
Δx

ΔT
x

〈δTx+wn, δTx+w
n−1〉dNT ≥ 0,

Hn
h �

Dh

2
δt−ηn[ ]Tδt−ηn + Kh

2
μt−η

n[ ]Tμt−ηn ≥ 0,

Hn
b �

1
M

σ0
2

zn−
1
2[ ]Tzn−1

2 ≥ 0.

The total energy lost due to damping is defined as Q � Qr +Qw +
Qh +Qb with

Qn
r � 2γ0ρA δt·un‖ ‖2dN − 2γ1ρA〈δt·un, δt−δxxun〉dN ≥ 0,

Qn
w � 2γ2PT

Δx

ΔT
x

δt·wn‖ ‖2dNT ≥ 0,

Qn
h � Γh δt·ηn[ ]Tδt·ηn ≥ 0,

Qn
b �

1
M
Ξn
1 vn[ ]Tvn + σ0 μt○z

n[ ]Ton − Ξn
1 vn[ ]Ton ≥ 0,

where on is a vector with entries onm � α(μt○znm, vnm) μt○z
n
m

zss(vnm) for

m � 1, . . . ,M. The non-negativity of the dissipation term Qn
b can

be shown similarly to the lumped case. The energy supplied by the
bow P and boundary terms B � Br + Bw is

Pn � 1
M

vnb ∑M
m�1

fn
m,

Bn
r � T δt·un

Nδx+u
n
N − δt·un

0δx+u
n
0( )

+ EI δt·un
Nδx+δxxu

n
N − δt·un

0δx+δxxu
n
0( )

− EI δt·δx+un
Nδxxu

n
N − δt·δx+un

0δxxu
n
0( ),

Bn
w � KT δt·wn

Nδ
T
x+w

n
N − δt·wn

0δ
T
x+w

n
0( ).

For simply supported and fixed boundary conditions, the
boundary term B vanishes.

The bowed string model is passive, and the argument follows
that in the continuous case, where the integral becomes the sum:

Qn
b �

1
M

∑M
m�1

σ1 vnm( ) vnm( )2[
+α μt○z

n
m, v

n
m( ) vnmμt○znm

zss vnm( ) σ0μt○z
n
m − σ1 vnm( )vnm( )]≥ 0.

Non-negativity of Qn
b is guaranteed, since all terms inside the sum

are positive, as was the case for the lumped model.

6.4 Numerical experiments

Simulated signals using the refined bow–string interaction
model are shown in Figure 7. In this case, the bow starts in
contact with the string, and the force is kept constant while the
bow is accelerated from rest with a chosen acceleration value until
the steady-state bow velocity vb is reached. The physical model
parameters used to generate these signals are given in Table 2.

The original Dupont friction model was recently applied to
the distributed case of bowing a string in Matusiak and
Chatziioannou (2024). The performance of the original elasto-
plastic model was evaluated by simulating a Guettler diagram and
comparing it to a Guettler diagram obtained from measurements
(Lampis et al., 2024). A Guettler diagram is generated by
choosing a fixed location on the string and bowing from rest
with an accelerating bow. The bow force while bowing is kept
constant. Bowing is then repeated for different accelerations and
bow forces that are incremented in small steps. The number of
periods required to reach Helmholtz motion is visualized via the
color of each pixel (Figure 8). White corresponds to 0 periods
(perfect transient) and black to 20 periods, with intermediate
transient lengths resulting in different grayscale values. Guettler
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(2002) proposed such a diagram as a measure of assessing the
playability of a bowed string by measuring the length of the
transient necessary to arrive at Helmholz motion.

The refined model was utilized to simulate a Guettler
diagram with the same parameters as in Matusiak and
Chatziioannou (2024). The two diagrams are shown in

Figure 8 for comparison. The chaotic nature of the frictional
interaction manifests itself via the patchiness of the playability
regions. Neighboring pixels may correspond to largely different
transient durations, indicating sensitivity to small changes in
bow force and acceleration. Therefore, the diagrams slightly
differ due to the small underlying numerical differences of the

FIGURE 7
Simulated bridge force using the refined elasto-plastic model, along with various energy components. Total energy is the sum of the transverse and
torsional energies of the string as well as the bristle and bow hair energies. The energy error is shown on the bottom right. Model parameter values are
given in Table 2.

FIGURE 8
Guettler diagrams using Dupont (left) and refined models (right) with string parameters as in Table 2. The color bar refers to the number of periods
required for Helmholtz motion to be achieved (transient length).
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two models. Qualitative observations regarding the playability
of the system are nevertheless the same for both models.

6.5 Supplementary material

A sound example of the synthesis of a fast sautillé passage is
included in the supplementary material. Simulation of this bow
stroke style exposes the transient behavior of the proposed
bow–string model and offers the reader a preliminary aural
impression of it. For synthesis of the G2 notes, the bow velocity
and force were varied periodically over time according to patterns
similar to those observed in Demoucron (2008). Convolution with a
measured cello impulse response was applied to the bridge force
signal to render a more realistic audio signal.

Furthermore, animations of the string motion are provided for
the case shown in Figure 7, where Helmholtz motion is achieved,
as well as for a case where the bow force is reduced by 50% (fN �
1.17 N), resulting in a double-slip pattern. The matlab code for
the bowed-string simulations is available at doi:10.5281/
zenodo.15341818.

7 Conclusion

An elasto-plastic friction model has been investigated from the
point of view of energy conservation in the continuous domain and
discretized using a finite difference scheme. The model was first
analyzed in the setting of a bowed lumped mass. A refinement of the
model has been suggested that guarantees passivity for elasto-plastic
friction with the Stribeck effect and simultaneously leads to the
existence and uniqueness of the solution. A numerical scheme has
been derived that respects the energy balance of the underlying
continuous model, thus leading to a guaranteed passive model and
hence to stable simulations.

Based on this refined version of the elasto-plastic model,
simulations of a bowed string were revisited, including bow
compliance, string torsion, and a finite bow width. While results
are similar to those previously obtained using the original Dupont
model, the refined model presented is proven to be guaranteed
passive, as is the case for the lumped system.

The main limitation of the proposed implicit scheme is that the
Jacobian of the nonlinear function to be solved iteratively at each
time step can become singular, which—even when applying
deliberately modified versions of the iterative solver (e.g., Hueso
et al. 2009)—can lead to the necessity of a huge number of
iterations. In practice, this often necessitates heavy
oversampling, especially when driving the model with
articulation parameters (e.g., bowing force) that vary across
over time. A logical future research direction is therefore to
develop numerical schemes that sidestep the need for an
iterative solver, as has been achieved recently for numerical
simulation of various other nonlinear phenomena in musical
instruments, including collisions (e.g., van Walstijn et al., 2024).
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Appendix

The modal expansion for the displacement of the string,
assuming simply supported boundary conditions, is

u x, t( ) � ∑NM

i�1
qi t( )ψi x( ), where ψi x( ) � sin

iπ

L
x( ),

where NM is the number of modes, and it is normally
set according to the relevant frequency range. To
isolate a single mode of vibration, u(x, t) is
substituted into the equation governing the transverse
motion of the string,

ρA∂2t u � T∂2xu − EI∂4xu − 2γ0ρA∂tu + 2γ1ρA∂t∂
2
xu,

and an inner product with ψn is taken. Since 〈ψi,ψn〉 � L
2δi,n,

we obtain

m€qn � −κnqn − ~γn _qn,

where

m � ρAL

2
, (64)

κn � nπ( )2
2L

T + EI
nπ

L
( )2[ ], (65)

~γn � ρAL γ0 + γ1
nπ

L
( )2[ ]. (66)

Therefore, by settingNM � 1, the dynamics of the system reduce to a
damped harmonic oscillator.
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