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The vocal apparatus is a biophysical dynamic system capable of self-oscillation,
which involves fluid–structure interactions and human control. This study on the
sound synthesis of voiced sounds presents a physical quasi-1Dmodel of the vocal
apparatus in the port-Hamiltonian framework and its validation through
numerical experiments. The modelling ensures balanced power exchanges
between fluid, tissues, and human control. Fluid is represented in the larynx
and in the vocal tract using a unified 1D PDE handling transverse geometry
variations. A regularisation procedure is introduced to mitigate the numerically
stiff behaviour of the model observed at channel closure. Vocal folds and vocal
tract walls are represented by lumped element models as well as the radiation
load at the lips, which consists of a first-order high-pass filter. Spatial
discretisation of the fluid model and temporal discretisation of the full system
are made using structure-preserving methods to ensure energy consistency
(passivity). The second part of this paper focuses on numerical experiments to
progressively characterise the model and assess its validity. These experiments
begin with frequency response analysis of a static vocal tract under quasi-linear
conditions followed by simulations of vowel transitions (diphthongs) under
forced excitation. Next, self-oscillation studies are conducted on an isolated
larynx where contact parameters are adjusted. Lastly, full simulations of the self-
oscillating vocal apparatus with co-articulation, representing a voice synthesizer
capable of articulating vowels, are presented. The dynamics are also analysed in
terms of energy transfer and passivity. Finally, these results are discussed to
establish a basis for future model refinements and to identify directions for
enhancing the accuracy and realism of vocal synthesis.
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1 Introduction

Understanding the mechanisms of voice production has been the focus of numerous
studies on the physical modelling of the vocal apparatus. Highly detailed models that capture
the range of physically relevant phenomena typically involve high-dimensional
representations, which can be computationally intensive. Consequently, these studies often
focus on specific components or aspects of the vocal apparatus (e.g., Alipour et al., 2000;
Gunter, 2003; Xue et al., 2010; Guasch et al., 2013; Zhang, 2015; Valášek, 2021). In contrast,
low-order models aim to replicate the qualitative behaviour of the vocal apparatus along with
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certain quantitative features (such as the relationship between
subglottal pressure and fundamental frequency, as demonstrated in
Ruty et al. (2007)) while maintaining relatively low computational
costs. This computationally efficient approach has been a key focus
since the early days of sound synthesis, with foundational models like
the Kelly–Lochbaum model (Kelly, 1962) or digital implementations
of lumped-parameter physical models (e.g., Maeda, 1982) for the
vocal tract. These models are well-suited for vocal synthesizer
applications or parameter studies. For the laryngeal part, low-order
models (e.g., Ishizaka and Flanagan, 1972; Story and Titze, 1994; see
also the review in Erath et al., 2013) typically represent the vocal folds
as assemblies of lumped mass-spring-damper elements and assume a
quasi-steady behaviour of fluid flow in the glottis. However, this
approach introduces a one-way coupling between the flow and the
vocal folds, limiting the model’s ability to accurately represent power
exchanges between the fluid and tissue, and it may introduce
instabilities in numerical simulations.

Recent efforts have focused on developing power-balanced,
reduced-order models of voice production within the port-
Hamiltonian (pH) framework first introduced in Maschke and van
der Schaft (1992). Notably, Encina et al. (2015) reformulated the
body-cover vocal fold model from Story and Titze (1994), and early
self-oscillating power-balanced models were introduced in Hélie and
Silva (2017) and Mora et al. (2018) using lumped representations of
glottal flow. Subsequent research by Mora et al. (2021b) and Wetzel
(2021) proposed discrete, scalable models of compressible fluid within
tubes with moving boundaries, tailored for vocal tract applications.
However, this set of studies primarily focused on isolated larynx
models (possibly coupled with an oversimplified acoustic load) or on
isolated vocal tracts under basic configurations.

This paper presents a complete simplified power-balanced
model of the vocal apparatus within the pH framework, designed
for the synthesis of voiced sounds. A one-dimensional distributed
fluid model is developed and described as a port-Hamiltonian
system of partial differential equations, accounting for
compressibility, time-varying geometry, and convective
acceleration. A new regularisation procedure for handling glottal
closure is introduced. This model is then spatially discretised in a
structure-preserving manner, from which the discrete fluid model
from Mora et al. (2021b) is recovered. The vocal fold model is based
on the lumped-element body-cover model from Story and Titze
(1994), while the vocal tract walls are represented by a series of
simpler mass-spring damper systems. At the lips, the radiation
condition is modelled as an impedance load, represented by a
first-order high-pass filter, tuned according to acoustic
considerations and designed to be passive and compatible with
time-varying configurations. Each component is formulated within
the pH framework and interconnected via ports using a two-way
coupling, ensuring a global power balance. Simulations are
performed using an energy-preserving time integration method
across various configurations, including the vocal tract alone, the
larynx alone, and the complete assembly. Notably, the ability of the
complete model to reproduce the co-articulation of diphthongs in
self-oscillating configurations is demonstrated—an achievement
that, to the best of our knowledge, is unprecedented in the
context of energy-based modelling of voice production. Energy-
based modelling explicitly reveals the power exchanges and
dissipated power signals, which are discussed in detail.

After positioning our contributions within the existing literature
on voice production modelling in Section 1, the remainder of this
paper is organised as follows. Section 2 introduces the fluid and
tissue models used in the experiments. Section 3 presents a series of
numerical experiments based on these models, progressively
increasing in complexity and realism, to assess their validity and
capabilities. Finally, Section 4 discusses the results and outlines
potential directions for future work.

2 Model

Energy-based models for fluid dynamics and vocal folds are
proposed within the port-Hamiltonian framework. These models
are subsequently interconnected, resulting in power-preserving
fluid–structure interactions. Symmetry around the laryngeal
midplane is assumed, allowing reduction of the problem to the
case of a single vocal fold and simplifying the presentation.

2.1 Fluid flow model

The modelling of the fluid flow is proposed within the
framework of port-Hamiltonian systems. It relies on the strict
separation of the intrinsic behaviour of the fluid (described by
means of the Hamiltonian, summing up kinetic energy and
internal energy, or more specifically by the fluid behaviour law
relating the pressure to the mass density) from the evolution laws
(provided as mass and momentum conservation laws). As an
original contribution of this paper, the latter are formulated as
1D partial differential equations under a detailed set of assumptions.
Spatial discretisation is applied to obtain a discrete model, similar to
that used in Mora et al. (2021b), with the change of state variables
proposed in Risse et al. (2024). Here, the model with this revised set
of state variables is presented. The model is constructed as a
conservative system (the energy conservation naturally derives
from the port-Hamiltonian systems), and lumped dissipation
laws are added after spatial discretisation.

2.1.1 Formulation as a continuous 1D PDE system
The time-varying fluid domain is described in 3D cartesian

space as follows:

Ω t( ) � ξ � x, y, z( )|x ∈ 0, l0( ), y ∈ 0, h x, t( )( ), z ∈ 0, L0( ){ }. (1)

FIGURE 1
Fluid domain Ω(t) and associated boundaries.
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Figure 1 presents the domain as well as its boundaries.
Boundaries ∂LΩ and ∂RΩ represent the inlet and outlet of the tube
through which fluid can flow. In contrast, ∂AΩ denotes a rigid, sealed,
and impermeable boundary, while ∂BΩ corresponds to a mobile
impervious fluid–structure interface.

The following assumptions are made for the fluid in Ω(t):

Hypothesis 1. The fluid is composed of an ideal gas (H1a)
undergoing homentropic flow (i.e., constant entropy in space and
time) (H1b).

Hypothesis 2. The fluid is inviscid.

Hypothesis 3. The flow is irrotational.
Let v denote the fluid velocity, ρ the volumetric mass density, P

the pressure, and u the specific internal energy (i.e., the internal
energy per unit mass). The specific enthalpy is defined as h � u + P

ρ,
while the total specific enthalpy is htot � 1

2v
2 + h. Accounting for the

fundamental thermodynamic relation du(ρ, s) � −P(ρ, s)d(1/ρ) +
T(ρ, s)ds and for hypothesis (H1b) (with constant specific entropy
s � s0, i.e., ds ≡ 0), the pressure P, temperature T, specific internal
energy u, and specific enthalpy h depend effectively on ρ only with

a( ): du ρ( ) � −P ρ( )d 1/ρ( ) � P ρ( )
ρ2

dρ

5 b( ): 1
ρ
dP ρ( ) � dh ρ( ). (2)

Under Hypotheses 2 and 3, Euler equations for irrotational flow
in the domain Ω can be written as

∂tρ + div ρv( ) � 0 mass equation( ), (3a)
∂tv + grad

1
2
v2( ) + 1

ρ
grad P( )︸









︷︷









︸

�2b( )
grad htot( )

� 0 momentum equation( ). (3b)

To close the system of equations, thermodynamic
considerations are used to provide expressions for functions P(ρ)
and u(ρ). The following additional hypothesis is used, which
provides a valid approximation within the amplitude range of
typical voice pressure signals.

Hypothesis 4. The function ρ ↦ P(ρ) is linearised around the
equilibrium at rest, with ρ0 and P0 � P(ρ0) and assuming P(ρ) −
P0 � c20(ρ − ρ0).

The corresponding expression for the specific internal energy (i.e.
per unit mass) u(ρ) is obtained by integrating Equation 2 from
u0 � u(ρ0), yielding u(ρ)−u0 � c20 ln(ρ/ρ0)+(P0 − c20ρ0)(1/ρ0 −1/ρ).
The enthalpy is then given by h(ρ)≡ ∂(ρu(ρ))/∂ρ� h0 + c20 ln(ρ/ρ0).
Note that the choice of constants P0, u0, and h0 does not affect the
dynamics of the fluid system. In the numerical experiments, pressure
fluctuations P̂�P−P0 and enthalpy fluctuations ĥ� h−h0 are used,
ensuring that the resulting values and interpretations remain
independent of these constants.1

We now explicitly consider the fluid flow in the geometry
depicted in Figure 1 and perform the 1D reduction. The
boundary conditions are as follows. Boundaries ∂LΩ and ∂RΩ will
be forced by either a prescribed enthalpy or a prescribed mass
flow. At the sealed impermeable boundary ∂AΩ, the normal
component of the fluid velocity is zero. At the mobile
fluid–structure interface ∂BΩ, the continuity of normal velocity
and stress is assumed. The 3D equations are reduced to a set of 1D
equations by making the following additional assumptions and
integrating over a section S(x0, t) � {α ∈ Ω(t) | x � x0} with area
�S(x, t) � L0h(x, t).

Hypothesis 5. vz � 0 in Ω

Hypothesis 6. The fluid–structure interfaces ∂AΩ and ∂BΩ are
impervious, meaning that the normal velocity components of the
boundary and fluid are equal—w · n � v · n—where w represents
the boundary velocity and n is the unit normal to the boundary.

Hypothesis 7. The contribution of the transverse velocity vy to the
kinetic energy 1/2 ρv · v is negligible.

Hypothesis 8. vx and ρ are independent of the y and z
coordinates. This assumption corresponds to a plane wave
model in acoustics.

Hypothesis 9. The moving boundary ∂BΩ has no component in the
x direction w � wyey � _hey .

Mass equation: considering a cross-section S(x) of area �S and
introducing the linear mass density μ � ρ�S and the axial mass flow
qx � �Sρvx, the integration of Equation 3a over S yields, using
Hypotheses 5 and 6),2

∂tμ + ∂xqx � 0. (4)

Axial momentum equation: the integration of Equation 3b and
the use of Hypotheses 7 and 8 yield

∂tvx + ∂xhtot � 0. (5)

The distributed state α1Df � [vx, μ, h]u is introduced, from
which the Hamiltonian (energy of the system) is written as the
sum of kinetic and compression energies (valid for μ≥ 0 and h≥ 0).

H1D
f α1D

f( ) � ∫l0

0

1
2
μ v2x + μ u

μ

L0h
( )[ ]dx. (6)

Efforts are obtained as variational derivatives of the Hamiltonian
with respect to the state variables (e.g., Olver, 1986, chapter 4, for a
definition of variational derivative).

1 See Mora et al. (2021a) for port-Hamiltonian formulations of general 3D

fluid mechanics

2 (H6) directly provides an instantaneous relationship between w, vy , and

possibly vx at the fluid structure interfaces. Elsewhere, values of vy have no

impact on the fluid system presented below and are thus never

reconstructed. Refer to Wetzel (2021) for a port-Hamiltonian model

that incorporates this transverse component into the Hamiltonian and

addresses its effects on the power exchanges at themobile fluid–structure

interfaces

Frontiers in Signal Processing frontiersin.org03

Risse et al. 10.3389/frsip.2025.1525198

https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://doi.org/10.3389/frsip.2025.1525198


δvxH1D
f � μvx ≕ qx, δμH1D

f � 1
2
v2x + h ≕ htot,

δhH1D
f � −L0ρ

2u′ ρ( ) ≕ − L0P.
(7)

The pH formulation including the dynamics of the geometry
configuration given by Hypothesis 9 then reads

∂tvx
∂tμ
∂th

ydis � L0P

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �
0 −∂x 0 0

−∂x 0 0 0
0 0 0 1
0 0 −1 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
δvxH1D

f � qx
δμH1D

f � htot

δhH1D
f � −L0P

udis � wy

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (8)

where the velocity udis � wy of the boundary ∂BΩ is used as a
distributed input for the system, and the corresponding power
conjugated output is given by ydis � −L0P. In addition to this
distributed fluid–structure interaction, boundary conditions have
to be defined at the open boundaries ∂LΩ and ∂RΩ. The power balance
over the domain is expressed as a function of the trace of the efforts
at the boundaries:

d

dt
H1D

f � ∫l0

0
δα1D

f
H1D

f( )u

_α1D
f dx � − qxhtot[ ]l00 − L0∫l0

0
Pwydx, (9)

Splitting the exchanged power into a distributed
contribution ∫l0

0
ydisudisdx due to the variation of geometry and

contributions qx(0)htot(0) and qx(l0)htot(l0) of the incoming
and outgoing fluid flows at the open ends of the tube. As we
considered nonlinear effects in the momentum conservation,
power flows at the open boundaries correspond to the product of
total enthalpy andmass flow. Linearisation of the system would yield
the usual acoustic power flow as a product of volume flow and
pressure. In general, three configurations of open ends are to be
considered:

(C0) Total enthalpy control on both sides, with mass flows as
power-conjugated outputs.
(C1) Mass flow control on both sides, with total specific
enthalpies as power conjugated outputs.
(C2) Mixed boundary conditions—(C0) on one side, (C1) on
the other.

Remark 1. The reduction from 3D equations to a 1D reduced
model involved the definition of a new state variable h describing the
geometry of the channel. In this respect, the procedure used and
the resulting 1D equations are reminiscent of the shallow
water equations.

2.1.2 Spatial discretisation: finite differences on
staggered grids

The 1D continuous equation is semi-discretised using a power-
preserving finite difference approximation on a staggered grid
(Trenchant et al., 2018). For the sake of brevity, only the
configuration (C1) where mass flows inputs are considered at
both ends of the domain is detailed here, but other
configurations can be obtained using the same procedure. The
1D mesh is first presented, and then field approximations are
made on that mesh. The resulting dynamics obtained from
injection of these approximations in Equation 8 and integration
on mesh volumes are presented using a set of chosen discrete
state variables.

2.1.2.1 Meshing of the 1D domain
• The domain is divided in a primal grid of N sub-intervals (or
edges) e � {e0, . . . , eN−1} of lengths ld � [ld0, . . . , ldN−1]u,
yielding N + 1 nodes x � [x0, . . . , xN]u, including
boundary nodes.

• The dual grid is built from the primal grid. ItsN + 2 nodes are
defined as ~x � [x0, ~x0, . . . , ~xN−1, xN]u � [x0, (Ax)u, xN]u
using the averaging operator

A � 1
2

1 1 0( )
1 1
1 1

0( ) 1 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ∈ RN× N+1( ). (10)

A total of N + 1 edges ~e � {~e0, . . . , ~eN} of lengths ~ld � Auld �
[~ld0, . . . ,~ldN]u are naturally obtained for the dual grid (Figure 2).

Remark 2. We introduce the notations for Hadamard
(elementwise) operations on vectors: multiplication
(a ⊙ b)i � aibi, division (a ⊘ b)i � ai/bi, and exponentiation
(a°2)i � (ai)2.

2.1.2.2 Approximation of the fields
• Velocity vx(x, t) and height h(x, t) are assumed to be
piecewise constant on edges of the primal grid and are
denoted by their discrete values:

vx t( ) � vx,0 t( ), . . . , vx,N−1 t( )[ ]u ∈ RN, and

h t( ) � h0 t( ), . . . , hN−1 t( )[ ]u ∈ RN.
(11a)

The choice of discretisation for h(x, t) allows the definition of
volumes of fluid associated with edges of the primal grid V(h) �
L0ld ⊙ h and of the dual grid ~V(h) � Au V(h).3

• Volumetric mass density ρ(x, t) is assumed to be piecewise
constant on edges of the dual grid with the set of
discrete values:

~ρ t( ) � ~ρ0 t( ), . . . , ~ρN t( )[ ] ∈ RN+1. (11b)

2.1.2.3 Choice of state variables and discrete Hamiltonian
The state is chosen to be

αf � νu, ~mu, hu[ ]u, (12)

with the degrees of freedom of velocity ν(t) � ld ⊙ vx(t) ∈ RN on
the primal grid and of masses of fluid ~m(t) � ~V(h) ⊙ ~ρ(t) ∈ RN+1

in the volumes of the dual grid. This choice is motivated by the
simplicity of the port-Hamiltonian formulation resulting from it and
has no impact on the dynamics of the system.

The energy of the discrete fluid system is obtained by injecting
field approximations in Equation 6, yielding

3 Consider the fluid at rest state—ρ(x, t) is then a homogeneous quantity on

the domain; however, μ(x, t) is not. In particular, and given the chosen

discretisation of h(x, t), μ(x, t) is not homogeneous on the edges of the

dual grid. To correctly represent the rest state, it is then preferable to

approximate ρ(x, t) than μ(x, t).
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Hf αf( ) � 1
2
ν ⊘ ld( )udiag m( ~m, h)( ) ν ⊘ ld( ) + ~mu u ~ρ( ), (13)

making use of functions of the state variables to reconstruct the
volumetric mass densities in volumes of the dual grid ~ρ( ~m, h) �
~m ⊘ ~V(h) and primal grid ρ( ~m, h) � A~ρ( ~m, h) and the masses of
fluid in volumes of the primal grid m( ~m, h) � V(h) ⊙ (A~ρ( ~m, h)).
We also introduce the function of the state reconstructing the
mean squared velocity in volumes of the dual grid
ṽ2(ν, h) � (A(h ⊙ ν◦2 ⊘ ld)) ⊘ (A(h ⊙ ld)). Effort are naturally
obtained as the gradient of the Hamiltonian:

∂νHf � m( ~m, h) ⊙ ν ⊘ l◦2d �: q, (14a)
∂ ~mHf � 1

2
diag 1 ⊘ ~V(h)( )Au V(h) ⊙ ν◦2 ⊘ l◦2d( ) + u ~ρ( )
+ ~ρ ⊙ u′ ~ρ( )( )

�: ~htot, (14b)
∂hHf � −L0ld ⊙ A ~ρ2 ⊙ u′ ~ρ( )( ) − 1

2
A ~ρ ⊙ ṽ2(ν, h)( ) − ρ ⊙ ν◦2 ⊘ l◦2d( )( )[ ]

�: −Fc, (14c)
and provide the mass flow rates q averaged over the volumes of the
primal grid, the enthalpy ~htot averaged over the volumes of the dual
grid, and the net reaction force Fc of the fluid at the fluid-structure
interfaces of the primal grid.

2.1.2.4 Semi-discrete dynamical system
Injecting the field approximations in the 1D conservation

equations and integrating Equation 3b on the edges of the primal
grid and Equation 3a on the edges of the dual grid yields the semi-
discrete dynamical system. one obtains the port-Hamiltonian
formulation:

∂tν
∂t ~m
∂th

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ � −
0 D− 0
D+ 0 0
0 0 0

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦
︸




︷︷




︸

Jf

∂νHf � q
∂ ~mHf � ~htot
∂hHf � −Fc

⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦ + Gfuf, (15)

where uf � [qin, qout,wu
y ]u is the input vector composed of the

ingoing mass flow qin at x � x0, outgoing mass flow qout at x � xN,
and fluid structure interface velocities wy. The finite difference

matrix D− � −(D+)u ∈ RN×(N+1) and the input matrix
Gf ∈ R(3N+1)×(3N) are written as

D− �
−1 1 0( )

1 1

1 1

0( ) −1 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, Gf �

0N,1 0N,1 0N,N

Gml Gmr 0N+1,N
0N,1 0N,1 IN,N

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

Gml �
1
0
..
.

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, Gmr �

0
..
.

0
−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (16)

The power-conjugated outputs of the system are obtained by
skew-symmetry as yf � −Gu

f ∇Hf � [−~htot0, ~htotN,Fuc ]u, such that
dHf

dt + yuf uf � 0.

Remark 3. Note that the reaction force Fc contains the discrete
equivalent of the pressure integral on the moving boundary
with an additional term depending on the squared velocity.
The latter contribution is a consequence of the chosen
discretisation procedure.

2.1.3 Lumped dissipation laws
The fluid system presented in Equation 15 has no dissipative

effects. Indeed, it was first built from conservative Euler equations as
it simplifies the process (Hypothesis 4 does not allow a correct
representation of dissipation effects when going from 3D to 1D).
Lumped dissipation laws are now introduced to account for the
various effects below.

• Friction forces induced by the shear stress in the fluid.
According to Stevens (1971), half4 of the net drag force for
a viscous fluid flowing in a rectangular slit of section area
2hjL0 and length ldj with a mass flow rate q is written
as follows:

FIGURE 2
Staggered grid discretisation with notations for the primal grid (upper part) and dual grid (lower part).

4 As a hemilarynx is considered
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Fv � 3μ0q
ρ20

ldj
L0h

3
j

, (17)

with μ0 the dynamic viscosity of air.

• Loss of kinetic energy due to the flow separation that can occur
at the exit of the constriction, with transfer to the small scales
of the velocity field in the downstream mixing region. This
results in a drop in the total specific enthalpy of Δhtot �
1
2δk

q2

(ρ0L0h)2 for positive flow rate q> 0 and with the kinetic
energy dissipation coefficient 0≤ δk ≤ 1.

• Acoustic radiation at the lips. For simplicity, we consider the
approximation of the acoustic radiation impedance by a first-
order high-pass filter Zrad � Rrad

jω/ω0

1+jω/ω0
with fixed coefficients

Rrad and Lrad and cut-off pulsation ω0 � Rrad/Lrad. Following
(Flanagan (1965)—section 4.2; Equation 4.4), coefficients are
obtained from a low-frequency approximation as Rrad �
Z0128/9π2 and Lrad � Z08r/3πc0, where r is the output
radius and Z0 � ρ0c0/πr

2. We fix the coefficients using a
radius of r �

!!!
5e−4
π

√
, corresponding to the output section for

vowel /ɑ/. A natural extension left for the future is considering
time-dependent coefficients of the filter as functions of the
output cross-section area.

The dynamics of the fluid system are modified to account for
these phenomena through the introduction of the dissipation
matrix Rf

∂tαf � Jf − Rf α( )( )∇Hf + Gfuf,

Rf α( ) �
diag R] αf( )( ) 0 0

0 0 0

0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (18)

where R](α) is the dissipation vector. Identification with Equation
17 yields

R] αf( ) � 3μ0ld
ρ20L0

⊘ h◦3, (19)

for friction forces, to be completed by an additional term rg �
δkq2j/2(ρ0L0hj)2 when qj > 0 for the kinetic energy loss term at the
exit of the glottis (at the j-th term of R]). Finally, the acoustic
radiation model presented in Supplementary Appendix SA4.3 is
connected in a power-balanced manner to the fluid model at the exit
of the vocal tract, writing qout � qrad and ~htot,N + ~htot,rad � 0.

Remark 4. In the vocal tract, visco-thermal losses and fluid–tissue
coupling are relevant dissipation phenomena. A lumped tissue
model for the vocal tract walls is presented in Section 2.3. Visco-
thermal losses are left for future studies.

2.1.4 Equivalent circuit representation of a section
of the semi-discretised model

An equivalent circuit representation of a portion of the fluid
domain (more precisely to an edge of the primal grid) is depicted in
Figure 3, evidencing two sub-circuits. The lower sub-circuit
accounts for axial inertia and mass accumulation as in classical
transmission line structures, while the upper one handles the
reaction of the fluid to a change of geometry (connected to a

model of tissues to be described in the next sections). Even if the
two sub-circuits seem to be disconnected, they are in reality coupled
through the multivariate non-separable Hamiltonian Hf that
intrinsically links the various energy-storing components.

2.2 Vocal fold model

The classical body-cover model of the vocal fods presented in
Story and Titze (1994) is used. It consists of a body mass coupled
with two cover masses. The port-Hamiltonian formulation has been
developed in Encina et al. (2015).

2.2.1 Presentation
The assembly, presented in the left section of Figure 4, comprises

the three masses coupled together by four springs and three dampers.
Derivation of the port-Hamiltonian formulation of this assembly is
recalled here. The body massmb describes the displacement of the in-
depth vocalismuscle while the lower and upper cover masses ml and
mu correspond to movements of upstream and downstream parts of
the superficial layers (vocal ligament and epithelium). The state of this
system, identified by the subscript t for “tissues”, can be chosen as

αt � ql, qu, qb, πl, πu, πb[ ]u, (20)
where ql, qu, and qb are the displacement of the three masses around
the equilibrium positions, and πl, πu, and πb are the momentum of
the three masses. From the state, potential energy functions and total
potential energy are denoted:

Ut αt( ) � Ul( ql − qb︸

︷︷

︸
≔el

) + Uu( qu − qb︸

︷︷

︸
≔eu

) + Ub( qb︸︷︷︸
≔eb
)

+ Ulu( qu − ql︸

︷︷

︸
≔elu

). (21)

The resultant force of the springs on each mass Fri are directly
recovered by differentiation with respect to masses displacements:

Fri � ∂qiU αt( ). (22)

The total kinetic energy of the system is computed as

Kt αt( ) � 1
2

π2
l

ml
+ π2

u

mu
+ π2

b

mb
( ), (23)

such that the Hamiltonian is given by

Ht αt( ) � Ut αt( ) + Kt αt( ). (24)

The port-Hamiltonian formulation of the dynamics including
linear dissipation effects and external interactions is

_αt � Jt − Rt( )∇Ht αt( ) + Gtut, (25)
with

Jt � 0 I

−I 0
[ ], Rt � 0 0

0 R
[ ], R �

rl 0 −rl
0 ru −ru
−rl −ru rl + ru + rb

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦,
(26)

and where dissipation coefficients rl, ru, and rb are associated with
linear dampers. In the numerical experiments, these coefficients are
tuned from a single damping ratio ξ as rl � 2ξ

!!!!
mlkl

√
,
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ru � 2ξ
!!!!!
muku

√
, and rb � ξ

!!!!!
mbkb

√
. The inputs ut � [Fext

l , Fext
u ] are

the external forces applied on the lower and upper cover masses,
with the associated input matrix:

Gt � 0 0 0 −1 0 0
0 0 0 0 −1 0

[ ]u

. (27)

The power-conjugated output vector yt � −Gu
t ∇Ht(αt) �

[vl, vu] contains the velocities vl and vu of the cover masses.

2.2.2 Setting the characteristics of the springs
The above formulations leave us with the choice of

potential energy functions Ui(ei). State-of-the-art lumped
models of the vocal folds commonly use nonlinear springs
with an added third order term (e.g., Ishizaka and Flanagan,
1972; Story and Titze, 1994,), such that the potential

energies, restoring forces, and effective stiffness of individual
springs are

Ui ei( ) � 1
2
kie

2
i 1 + 1

2
ei/erefi( )2( ),

Fi ei( ) � kiei 1 + ei/erefi( )2( ) and keff ei( ) � ki 1 + 3 ei/erefi( )2( ),
(28)

where erefi is a reference elongation for the nonlinearity, such that the
effective stiffness is multiplied by a factor of four for ei � erefi .

2.3 Vocal tract tissue

A better representation of low-frequency resonances of the vocal
tract requires the introduction of a model for tissues of the vocal

FIGURE 3
Equivalent circuit representation of a cell of the semi-discrete fluid model. Component laws are coupled through the Hamiltonian and thus depend
on the state of the current cell and of the neighbouring sections.

FIGURE 4
Tissue schematics: body cover model for the vocal fold and mass spring damper systems for vocal tract walls.
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tract. We here consider a simplified local mechanical wall surface
impedance Zwall(ω) � rwall + j(ω mwall + kwall/ω), where rwall,
mwall, and kwall are, respectively, the equivalent unit surface
resistance, mass, and stiffness. Their values are adapted from
those given in Birkholz et al. (2022). Parameter values for
lumped components depicted in the right section of Figure 4 are
naturally obtained by integration of their unit surface equivalent
on the fluid-structure interface surfaces (Rwj � rwallL0ldj,
Mwj � mwallL0ldj, Kwj � kwallL0ldj). The outer wall velocity vw is
an input of the wall dynamical model, such that the overall geometry
can still be controlled. The port-Hamiltonian formulation of this
model, ready for connection to the fluid model, is presented in
Supplementary Appendix SA4.4.

2.4 Assembly

2.4.1 Fluid–tissue connection
In the context of the numerical experiments, the models

presented are tested in various configurations. The vocal tract
will consist of the fluid model alone, the geometry of which will
be controlled by inputs defined in order to produce articulations of
different vowels. In the larynx, the fluid model will be connected to
the vocal fold model by assuming the continuity of normal velocities
and net forces at the fluid–structure interface. Note that several fluid
cells may be connected to a single mass of the vocal folds. In this
case, connected fluid cells share the same geometrical velocity, and
the force received by the vocal fold mass is the result of pressure
forces of all fluid cells connected to it. The resulting assembled
system can be written as a new port-Hamiltonian system, the state of
which is composed of the concatenation of the states of the fluid and
the vocal folds.

2.4.2 Glottal closure
In many cases, self-oscillations of the vocal folds include phases

of glottal closure and thus contact between the vocal folds. This
phenomenon is handled in the modelling by introducing direct
coupling between the vocal folds model that is only activated when
the vocal folds are detected to be in contact—when the heights h of
the fluid elements connected to the vocal fold masses are negative.
The implementation is straightforward by adding the compression
energy of these springs to the energy of the assembled system
without any change in the J matrices. However, the fluid
modelling described in Section 2.1 prevents the full closure of the
channel, as the reaction force Fc diverges to infinity when h goes to 0,
making the system stiff—which makes time integration difficult.

Mora et al. (2021b) proposed a switching port-Hamiltonian
model that disconnects the fluid from the vocal folds when h< ϵh,
effectively taking the stiffness of the fluid layer away from the
dynamics of the fold during contact. Considering the anatomical
3D geometry of the glottal channel and the imperfect contact
between vocal folds in the human larynx (possibly with glottal
leakage), we propose an alternative non-idealised approach to
model contact without the need for logical switches checks
during the simulation. Considering a given distance threshold ϵ,
an effective height heff(h) � ϵ + α

π + (h − ϵ)(1/2 + 1/π arctan(h−ϵα ))
of the glottal flow channel is introduced, such that
heff(h) ~ max(h, ϵ), with α specifying the smooth transition

width. The Hamiltonian for the fluid domain (Equation 13) is
then modified to account for the effective glottal heights: Ĥ(αf �
[ν, ~m, h]) � Hf(ν, ~m, heff(h)).

Moreover, the discrepancy ceff(h) � h − heff ≠ 0 can be
interpreted as a measure of compression of the vocal fold
tissues and used within a modified Hamiltonian for the vocal
fold model Ĥt(αt) � Ht(αt) + Uci(ceff(hi)), with Uci(ceff(hi)) �
1/2kcic2eff(hi)(1 + 1/2(ceff(hi)/erefci )2) to account for the additional
stiffness term corresponding to fold interpenetration. Additional
linear dissipation is also added to the folds when they are
interpenetrating, taking the form of an augmentation of the
damping ratio to its critical value ξi � 1 when qi ≤ 0. The effect
of parameters ϵ, α, kc, and erefci will be discussed in the numerical
experiments.

3 Numerical experiments

The energy-consistent model established in the previous section
as a port-Hamiltonian system is now tested and discussed through a
sequence of numerical experiments of increasing complexity. The
final experiment simulates the full vocal apparatus exhibiting self-
oscillations, where vowel articulation is achieved through
geometrical control of the vocal tract.

3.1 General numerical setting and
experimental configurations

For time discretisation, a continuous Galerkin time-stepping
method is used which preserves a discrete power balance and is
unconditionally stable. The method is presented in Chapter 5 of
Müller (2021). Second-order polynomials are used for the
projection. All simulations are run at a standard audio sampling
rate 44100Hz.

General fluid and fold physical parameters are taken as in Mora
et al. (2021b) and listed in Table 1. For each numerical
configuration, values of configuration-specific parameters are
listed in Table 2. Four configurations are studied.

1. The frequency response of the fluid model alone in static
configurations is studied. Resonance frequency convergence
with respect to spatial discretisation is shown in the simple case
of a straight tube. Formant frequencies obtained from the
simulation of a geometry configuration corresponding to a
single vowel are compared to experimental estimations.

2. Diphthong articulation: the geometry of the fluid model alone
is controlled to produce the articulation of diphthongs. A
synthetic glottal flow model is used to excite the vocal tract.

3. Isolated larynx: the fluid model is connected to the fold model,
exhibiting self-oscillations. As the vocal tract is not modelled,
this configuration corresponds to an excised larynx alone.

4. Larynx and vocal tract: the fluid model extends from the glottis
to the lips and is connected to the fold model in the larynx.
Again, self-oscillations are observed. The geometry of the part
of the fluid model corresponding to the vocal tract is forced to
produce diphthongs. This experiment yields a full self-
oscillating vocal apparatus.
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3.2 Frequency response

In the first experiment, the frequency response of the fluidmodel
in static configurations is studied. Firstly, a straight tube of total
length l0 � 17 · 10−2m, homogeneous height h � 1 · 10−2m, and with
rigid walls is considered. The model is excited by a mass flow
impulse of amplitude 2 · 10−4kg.s−1 on the left end side. On the right
end side, a zero total enthalpy is prescribed (no radiation) so that the
waveguide should theoretically exhibit resonances at frequencies
fn � (2n + 1) c0

4l0
under acoustic approximations (small-amplitude

fluctuations of velocity and enthalpy). As the proposed model is
nonlinear, the results of the time-domain simulation are analysed
and the frequency response is estimated from the ratio of the
spectrum of the right mass flow qout to that of the prescribed
impulse of left mass flow qin, evidencing as many resonances as
the number N of edges. The convergence of resonance frequencies
with respect to the spatial discretisation step is studied and shown in
Figure 5, with a convergence of order 2.

Remark 5. Frequency responses are obtained from time-domain
simulation of the models. The time discretisation method introduces
additional frequency warping. However, in the range of studied
frequencies and given the sampling frequency of 44100Hz, it is
expected to be of lower impact than the warping due to spatial
discretisation. Warping due to spatial discretisation only could be
obtained by computations of the eigenvalues of the semi-discrete
system linearised around its rest state.

Static vocal tract configurations are now considered. The
geometry is set to correspond to a vowel articulation; area
functions from Story et al. (1996) are interpolated to produce a
set of N � 20 equidistant cross-section areas from which the values
of h used for the simulation are determined. The total length l0 is set
to the vocal tract length corresponding to the simulated vowel. The
soft wall model is now used, as well as the radiation condition at the
lips. Figure 6 presents the discretised area function for the vowel /ɑ/
and the associated equivalent impedance and mass flow transfer

function. Table IV of Story et al. (1996) presents the first three
formant frequencies for different vowels, extracted from audio
recordings of the individual whose vocal tract geometry was
measured. Figure 7 compares these measured values to those
obtained from simulations of the model for different vowels.
Values obtained from simulation show significant differences
with those measured, indicating the need for a better loss model.
In particular, and as pointed out in studies such as Fleischer et al.
(2015), we observed that the vocal tract wall model shifts up the first
formant frequency. The choices made for the fluid domain
description in this paper mean that only a part of the fluid
domain boundary (corresponding to ∂BΩ in Figure 1) corresponds
to a fluid–structure interface, reducing the effective area of mobile
vocal tract walls. An alternate formulation of the fluid model for
arbitrary shape of cross-sections, which would remove this issue, is
briefly presented in Supplementary Appendix SA4.5.

3.3 Diphthong articulation

This experiment presents the use of the model as a vocal tract
with forced geometry to reproduce co-articulation of diphthongs.
The general configuration is similar to the previous one, with a total
length l0 � 17 · 10−2m divided intoN � 20 edges. A target sequence
of vowels is chosen. From this sequence, a target time trajectory for h
is derived by linear interpolation between individual vowel
geometries and smoothed using an averaging filter. The
corresponding input velocity to control the model is obtained
using a finite difference operator, ensuring that the effective
trajectory of h obtained by simulation is the same as the target
trajectory. An example target sequence for diphthong /ɑo/ is given at
the top of Figure 8, presenting the wideband spectrogram of the
radiated pressure prad � ρ0Rradqrad for a simulation corresponding
to this trajectory and using a synthetic glottal flow model (Klatt &
Klatt model, e.g., Doval et al., 2006). The spectrogram exhibits the
time evolution of formant frequencies as the geometry is modified.

TABLE 1 General physical constants and parameters.

Fluid ρ0 � 1.2 kg.m−3, c0 � 340m.s−1, μ0 � 1.8 · 10−5 kg/(m.s),

δk � 1, ϵ � α � 2 · 10−5 m

Folds mu � ml � 1 · 10−5 kg, mb � 5 · 10−5 kg, kl � 5N.m−1, ku � 3.5N.m−1,

kb � 100N.m−1, klu � 2N.m−1, erefl � erefu � erefb � 1 · 10−3 m, ereflu � 0m−2

Walls mwall � 20 kg.m−2, kwall � 3.9 · 106 N.m−1.m−2, rwall � 1 · 10−4N.s.m−1.m−2

Geometry L0 � 1 · 10−2 m, vocal tract area functions from Story et al. (1996)

TABLE 2 Configuration specific parameters.

Experiment Left/right control N ld Connection to folds Geometry

Frequency response Mass flow/enthalpy Varying l0/N (m) No folds Fixed

Diphthong articulation 20 Forced

Isolated larynx Enthalpy/enthalpy 8 2 − 4 to lower mass,
5 − 7 to upper mass

Coupled to folds

Larynx + vocal tract 28 Mixed Coupled to folds and forced
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Remark 6. The total length l0 of the vocal tract is fixed during
the simulation. Indeed, the current model does not allow for
length variations of the vocal tract that occur when vowels are
articulated.

3.4 Isolated larynx

One of the main objectives of this model is to be able to
reproduce self-oscillations of the assembly composed of the

laryngeal fluid flow and the vocal folds. We first study a
configuration corresponding to an isolated larynx, with no
vocal tract model or load. Note that this type of configuration
is similar to that presented in Mora et al. (2021b) and can be
interpreted as an excised larynx experiment. We use a total of
N � 8 segments for the discretisation of h. Segments [1, 3] are
connected to the lower mass of the vocal folds and segments [4, 6]
to the upper mass. Segments 0 and 7 are fixed to a height of
h � 1 · 10−2 m. The geometry of the fluid system at rest is
defined as

FIGURE 5
Convergence of resonant frequencies with the number of tracts. Deviation is expressed in cents and is computed as
Deviation � 1200 log2(fsim/ftheo), where ftheo is the theoretical resonance frequency and fsim that extracted from the simulation. Each line corresponds to
a resonance, the first being the lowest on the graph.

FIGURE 6
Discretised vocal tract area function for vowel /ɑ/ with N � 20 (top) and associated equivalent acoustic impedance and mass flow transfer function
obtained from time-domain simulation of the model (bottom).
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hj �
1 · 10−2 m, for j � 0,
1.8 · 10−4 m, for 1≤ j≤ 3,
1.79 · 10−4 m, for 4≤ j≤ 6,
1 · 10−2 m, for j � 7,

⎧⎪⎪⎪⎨⎪⎪⎪⎩ ldj �
1.5 · 10−3 m, for j � 0,
5 · 10−4 m, for 1≤ j≤ 6,
1.5 · 10−3 m, for j � 7.

⎧⎪⎨⎪⎩
(29)

The subglottal total enthalpy is prescribed to be a smoothed step
function (as shown in the top axis of Figure 10). An ideal boundary
condition is set at the supra-glottal end, enforcing a zero
total enthalpy.

3.4.1 Oscillating configuration
Physical parameters from Table 1 are used for simulation,

corresponding to case C of Story and Titze (1994). Using their
value of ξ � 0.4 for the damping ratio, the model is unable to
oscillate for realistic sub-glottal pressure values. This can be
expected as no vocal tract loading is considered in this
experiment. However, Story and Titze (1994) mention that
estimated values of the damping ratio range from 0.1 to 0.4.
Figure 9 presents a cartography of simulation points
corresponding to varying values of the sub-glottal pressure
step, the approximated value of which is computed from the

sub-glottal enthalpy as Psub � htot
ρ0

and of the damping ratio ξ. In
the studied range of sub-glottal pressures, oscillations exist only
for ξ ≲ 0.3.

3.4.2 Signal analysis
Figure 10 shows the distances of the simulated masses to mid-

plane and mass flow under the cover masses, obtained for the
configuration indicated by a diamond marker in Figure 9. During
the first ~ 0.07 s, the oscillation builds up to reach a periodic regime,
lasting until the input enthalpy is decreased. Glottal closing happens
both under the lower and upper superficial masses when their
positions are negative. As expected from the high numerical
value of kb, the body mass oscillates with a smaller amplitude.
The bottom axis of the figure presents a zoom on one period of the
oscillation. A clear phase difference is visible between displacements
of the lower and upper masses. The model accounts for
compressibility and unsteady effects in the fluid. Mass flow
signals are similar under both masses, which is expected as the
fluid flow in the larynx is, in fact, almost incompressible and
stationary. Nonetheless, nonstationary effects related to geometry
variations do show a visible effect, such as on the portion of the cycle
where the channel is closed under the lower mass but not under the

FIGURE 7
Comparison of the three first formant frequencies of several vowel sounds obtained from simulation of the proposed model with measurement
from Story et al. (1996).

FIGURE 8
Wideband spectrogram of the radiated pressure for the simulation of the vowel trajectory indicated at the top of the figure. A synthetic glottal flow
excitation is used.
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upper one. The mass flow then vanishes under the lower mass but
not under the upper mass as its displacement still pushes fluid out of
the larynx.

Time evolution of the terms of the power balance is displayed in
Figure 11. The top row presents the variation of the Hamiltonian of
both the fluid and tissue systems as well as dissipated power and
power exchanged through the boundary at the sub-glottal end of the
fluid domain5. The power balance is recovered as the sum of these
three contributions vanishes (up to numerical precision). This
follows from the use of the energy-balanced PDE presented in
Equation 8 and of energy-preserving numerical schemes both for
space and time discretisation. The bottom row decomposes the
dissipated power in three contributions: loss of kinetic energy at the
glottal exit (labelled jet), viscous fluid losses, and dissipation within
the vocal folds. Analysis of the signals on one period (left column of
the figure) provides insightful information on different portions of
the cycle:

• During the opened phase (from ~ 0.1312s to ~ 0.1343s), most
of the power provided upstream is used to install a glottal flow
whose kinetic energy is largely dissipated at the end of
the glottis.

• During the phase of closing of the glottis (from ~ 0.1343s to
~ 0.1351s), a power transfer from the fluid to the folds builds
up. This stems from the Bernoulli effect generating a pressure
drop under the lower mass, effectively closing the channel. At
the same time, the viscous loss phenomenon in the narrow
constriction (scaling with vx) becomes relevant and
progressively stops the fluid flow, whereas the kinetic
energy loss (scaling with v2x) vanishes.

• During the closed phase (from ~ 0.1351s to ~ 0.1383s), fluid
dynamics are stopped, and dissipation in the folds is greatly

enhanced as the damping factor of cover mass-spring systems
is set to 1 during the contact phase.

The time-averaged powers are plotted on the right column of
Figure 11. After establishing the periodic regime, it is clear that mean
variations of the Hamiltonian are null, as expected. Kinetic energy
dissipation is the most prominent source of energy loss whereas viscous
losses and dissipation in the folds are of the same order of magnitude.
From the energy budget of the larynx, the power received from the
lower airways is mostly used to install a glottal flow able to produce
flow-induced oscillations at the expensive cost of strong kinetic energy
losses at the glottal exit. Once the flow is installed, a small extra effort is
required to provide the power needed to compensate for viscous losses
within the glottis and damping in the tissues.

3.4.3 Numerical experiment on the effect and
choice of height regularisation parameters

The parameters ϵ and α specifying the regularisation of the
constriction height (Section 2.4.2) do not have a direct physical
interpretation, making their values difficult to set. In the following,
a choice is made that reduces the numerical stiffness and preserves
some important characteristics of the signals. Figure 12 presents
snapshots of three simulations corresponding to decreasing values of
ϵ � α � (8 · 10−5 m, 2 · 10−5 m, 2 · 10−6 m), all other parameters being
fixed to the same values as for the previous simulation.

The following can be observed.

• For ϵ � α � 8 · 10−5 m, both folds interpenetrate during the
oscillation cycle as their positions with respect to the midplane
goes negative. A significant leak is observed when the channel
is closed as the mass flow never reaches 0.

• For ϵ � α � 2 · 10−5 m, both folds still interpenetrate during
the oscillation cycle. However, during the closing of the upper
channel, the mass flow is now negligible compared to the
amplitude of mass flow oscillations.

• For ϵ � α � 2 · 10−6 m, the stiff behaviour of the fluid model is
seen as it prevents the folds interpenetrating. When the
channel is closed, fluid flow is still stopped.

FIGURE 9
Cartography of oscillating regions as a function of sub-glottal pressure and folds damping factor ξ. The diamond marker indicates the simulation
studied in following figures.

5 With the chosen convention, the exchanged power is the power received

by the source,meaning that negative values imply a positive power transfer

from the source to the system
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FIGURE 10
Simulation results in a self-oscillating configuration. Global signals (top) as well as a one-period zoom (bottom) are shown. Masses’ positions are
relative to themidplane, andmass flow signals below each of the cover masses are traced. The grey zone in the zoomed signals highlights a closed glottis
section of the oscillation cycle.

FIGURE 11
Power signals for the simulation presented in Figure 10. The left column shows the time series of the signals for a single period whereas the right
column contains the period-averaged values of these same signals for the full simulation. Dissipated power, power exchanged with the source, and
variation of the Hamiltonians of the fluid and fold systems are depicted in the top row with the power balance obtained as the sum of these four
contributions. The bottom row separates the dissipated power in its different physical origins: jet dissipation at the larynx output, viscous losses, and
dissipation in the folds.
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It is preferable to allow folds to interpenetrate as it allows for
better control of their behaviour during contact by tuning kc and ηc,
effectively reducing the stiffness of the numerical problem. When
the channel is closed, fluid flow should be stopped. Here, the value of
ϵ � α � 2 · 10−5 m is used for the simulations as it yields qualitatively
good behaviour at channel closing by letting folds interpenetrate and
stopping fluid flow. Further studies are necessary to assess the
impact of this choice on phonation pressure thresholds and to
find an optimal value from comparison with measurements or
higher order models.

3.5 Larynx connected to vocal tract

This last experiment focuses on the simulation of the larynx
coupled to the vocal tract. This effectively represents a simplified
vocal apparatus capable of self-oscillations and articulations. A
total of N � 27 fluid segments are used, with the first seven
segments corresponding to the larynx and the remaining
20 representing the vocal tract (Figure 4). Segments 1 to 3 are
connected to the lower mass of the vocal folds, and segments 4 to
6 are connected to the upper mass. The lengths of the segments are
defined as follows:

ldj �

1 · 10−2 m, for j � 0,

5 · 10−4 m, for 1≤ j≤ 6,

17.46 · 10−2
20

m, for 7≤ j≤ 26.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(30)

This configuration reproduces the concatenation of the larynx
and vocal tract fluid models used in the previous experiments. The
soft wall model is used in the vocal tract, and the boundary condition
at the lips is set using the high-pass radiationmodel. Like the isolated
larynx case, the sub-glottal total enthalpy serves as the control input
and is set to a smoothed step function. The vocal tract geometry

follows the trajectory defined in Figure 8 to produce the diphthong
/ɑo/. Initial laryngeal heights are retained from Section 3.4 (see
Equation 29), the damping ratio for the vocal folds set to ξ � 0.4, and
other physical parameters are provided in Table 1.

Time-domain results are presented in Figure 13. The top axis of
the figure displays the mass flow and cover mass displacement
signals over the full simulation duration. Oscillations build up at the
start of the simulation, followed by a stable periodic regime, which is
then modified by the transition of the vocal tract shape from /ɑ/ to
/o/ between 0.4s and 0.6s. After 0.6s, the vocal tract geometry
remains fixed, leading to another stable periodic regime. The
output mass flow amplitude, shown in grey in the middle row, is
significantly altered after the change in vocal tract shape. This
change is likely due to the substantial modification in the vocal
tract area at the lips, between the wide opening for /ɑ/ and the
narrow opening for /o/.

The middle axis of the figure depicts zoomed-in views of two
stable periodic regimes corresponding to vowels /ɑ/ and /o/. The
mass flow signals in the glottis are strongly influenced by the vocal
tract, as shown by comparisons of the respective waveforms. In
addition, the fundamental frequency is noticeably lower for /o/
(99 Hz) than for /ɑ/ (119 Hz). However, the displacement of the
masses is less perturbed by the acoustic coupling with the vocal tract
than the mass flow signals.

Averaged power signals are shown at the bottom of the figure,
with the averaging filter length set to ten periods of oscillation for
configuration /ɑ/. Unfiltered signals, containing high-frequency
content (amplified by the vocal tract), are not displayed;
however, the global power balance is verified up to machine
precision at each time step. The distinct physical origins of
dissipated power—jet dissipation at the larynx output, viscous
fluid losses, dissipation in the folds, radiated power at the lips,
and dissipation within the vocal tract walls—have varying
contributions. In particular, viscous fluid losses and fold
dissipation are more important here than in cases without a
vocal tract (Figure 11). Moreover, the relative contributions of

FIGURE 12
Snapshots of simulations of the larynx alone for different values of the effective height regularisation parameters ϵ � α ∈ {8 · 10−5 , 2 · 10−5 , 2 · 10−6},
in meters.
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each dissipation mechanism shift substantially after the vocal tract
shape modification—notably the increase of the dissipated power
related to viscous effects in the glottis and the vocal tract. Further
investigation is needed to explain this effect.

4 Discussion and perspectives

This study demonstrates the effectiveness of a quasi-1D port-
Hamiltonian model in replicating key characteristics of voice

FIGURE 13
Simulation results for the co-articulation of diphthong /ɑo/ in self-oscillating condition. Signals of mass displacements relative to the midplane and
mass flows in the larynx are traced for the full simulation time (top) and two reduced time spans corresponding to stable /ɑ/ and /o/ configurations
(middle). Averaged power balance signals and dissipations are also presented (bottom).
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production, ensuring well-posed energy transfer dynamics between
fluid, tissues, and human control. The model exhibits self-oscillatory
laryngeal behaviours and incorporates a variable-geometry vocal tract.
It thus serves as a simple voice synthesizer capable of articulating
vowels. This positions the approach as a basis for developing a powerful
tool for voice synthesis. This statement is discussed in two parts: firstly,
through an analysis of the proposed model, and second, by considering
motivated refinements for future model development.

4.1 Simulations of the proposed model

In Section 3, we presented several simulations of the proposed
model corresponding to different configurations.

Vocal tract simulations show the evolution of formant
frequencies with variations of geometry of the conduit. The
incorporation of dissipative effects, such as radiation losses and
wall vibrations, proved crucial for obtaining realistic formant
bandwidths and frequencies—in line with Fleischer et al. (2015)
and Birkholz et al. (2022). Story et al. (1996) provides a set of MRI
measurements of vocal tract area functions corresponding to vowel
sounds, as well as the corresponding first three formant frequencies
extracted from acoustic recordings. Significant error is observed
between these measured formant frequencies and our model
predictions, which seems related to our choice of vocal tract wall
and radiation parameters. The discrepancies observed between these
measured formant frequencies and the model predictions—likely
stemming from parameter choices related to vocal tract wall
damping and radiation losses—highlight the need for further
research to refine the modelling of dissipation mechanisms or to
optimize these parameters for enhanced realism.

Simulations of the larynx alone and of the complete system show
self-oscillations of the vocal folds with constant sub-glottal total
enthalpy. We proposed a regularisation procedure to eliminate the
unrealistic behaviour of the discrete fluid model at glottal closure.
Qualitative analysis of simulation results for different values of the
regularisation parameter ϵ emphasises the effects of this procedure.
Consequently, the proposed model is suitable for the sound
synthesis of voiced sounds with coupling between glottis and
vocal tract. It enables vowel articulation during self-oscillation
and, theoretically, also consonant articulation, given the model’s
capability to handle local closures of the vocal tract. The study of this
last point will require the careful design of an appropriate control of
the geometry.

The reduced-dimensional approach adopted in this work also
proves valuable for exploring the parameter space, particularly in
determining oscillation pressure thresholds and pressure-
fundamental frequency relationships (Alipour and Scherer, 2007;
Ruty et al., 2007). This offers a natural extension of the work
presented, allowing comparison with in vivo measurements (in the
context of the ANR project AVATARS) or other models. This ability
to perform parameter studies is an advantage of the low order fluid
models such as that proposed here. Models with two- or three-
dimensional flows are more precise but generally too expensive
(days of computation for a few oscillation cycles) to perform
parameter studies. Voice synthesis based on machine learning is
efficient and produces very convincing results. However, any
access to the physical variables involved in voice production is lost.

To facilitate future numerical experiments, the development of a
fast numerical integration method is of great interest. Indeed, the
current in-house iterative solver based on the method presented in
Müller (2021), chapter 3 is fully implicit and results in long simulation
times (in the order of 10 min of computation time for 1 s of sound).
Ongoing research is focused on the development of a fast (explicit or
semi-explicit) time-stepping method that satisfies a discrete power
balance. Energy quadratisation techniques involving auxiliary variables,
as introduced in Shen et al. (2018), have been successfully applied or
extended to various problems in musical acoustics (Ducceschi et al.,
2023; Bilbao et al., 2023; Castera and Chabassier, 2023; Russo et al.,
2024) and show promise for enabling real-time synthesis, which
remains one of our primary future objectives.

4.2 Possible refinements for future models

The use of the port-Hamiltonian (pH) framework allows the
procedural connection of multiple sub-systems in a power-balanced
way. In this study, subsystems for fluid dynamics, tissues in the larynx
and vocal tract, and acoustic radiation were considered. Each subsystem
can be refined independently without breaking the overall energy
balance and passivity, offering significant flexibility for future model
improvements. We propose a list of perspectives in this regard.

4.2.1 Fluid model refinements
Use of the PDE presented in 2.1.1 is, to the best of our

knowledge, new in the context of vocal apparatus modelling.
Unlike Bernoulli-type glottal flow solvers commonly used in the
literature, this model accounts for unsteady effects and
compressibility, making it suitable for representing both wave
propagation in the vocal tract and glottal flow dynamics. The
spatial discretisation of this equation using finite differences results
in the model presented in Mora et al. (2021b). However, alternative
structure-preserving discretisation methods based on a variational
formulation, such as partitioned finite elements (Cardoso-Ribeiro
et al., 2018; Brugnoli et al., 2020), could also be employed.
Specifically, the cross-section area of the fluid domain may be
discretised using methods other than piecewise constant
approximations. Our intuition is that a smooth laryngeal profile
is expected to improve the behaviour of the discrete fluid model
during channel closure and may alleviate the need for the
regularisation procedure introduced in Section 2.4.2.

A first necessary step to apply these more involved discretisation
methods is to include distributed losses directly in the continuous
fluidmodel. In the larynx, viscous friction terms can be derived from a
non-homogeneous axial velocity profile on cross-sections, modelled
using a boundary layer approach. This is incompatible with the
homogeneity assumption (H8) on vx, requiring a relaxation of this
hypothesis in future work. A basic possible solution could be to
approximate ∫

S
v2xdS ≈ (∫

S
vxdS)2 in the Hamiltonian (or to consider

both the average and the standard deviation of vx as more detailed
degrees of freedom). Additionally, kinetic energy losses due to partial
pressure recovery at abrupt changes in cross-section area arise from
complex turbulent phenomena. These phenomena cannot be
captured well by a 3D-to-1D reduction but may be partially
represented by localising an ideal point where airflow separates
from the glottal walls. In this study, the separation point is fixed at
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the exit of the glottis. Future work could incorporate a dynamic
separation point, as proposed in Pelorson et al. (1994).

4.2.2 Vocal fold model refinements
The vocal fold model we use is the body-cover model from Story

and Titze (1994). Numerous lumped-element vocal fold models, often
based on mass-spring assemblies, have been developed over the years
(see Erath et al., 2013 for a review). Most of these models are
straightforward to implement within the port-Hamiltonian
framework and could be used with the fluid model presented here
without major difficulty. The proposed framework also allows for the
consideration of asymmetric vocal folds, which could be useful for
studying pathological configurations (Xue et al., 2010).

Following the earlier discussion around the fluid equations, the
use of “aerodynamically smooth” vocal fold models seems
particularly promising. However, one of the main challenges of
these lumped-element models is the identification of accurate
physical parameters. Modal representations derived from the
reduction of complex finite element models, as presented in
Yokota et al. (2021), may help improve this.

4.2.3 Control issues
Controlling vocal fold parameters based on muscle activations is

crucial for achieving realistic pitch modulation and natural vibrato
mechanisms in sound synthesis. Integrating control rules, such as
those proposed in Titze and Story (2002), into the current framework
while maintaining the preservation of energetic properties also
represents a promising avenue for future development.
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