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As the interference environment of Global Navigation Satellite Systems (GNSS)
becomes increasingly complex and diverse, real-time and precise interference
detection and identification technologies are crucial for enhancing the anti-
interference capabilities of receivers. However, most existing interference
detection and identification methods focus on single interference types, with
limited research on composite interference and a lack of quantitative conclusions.
Therefore, this study investigates composite interference detection and identification
techniques using deep learningmethods, improving the system’s capability to detect
and identify composite interference. This paper first constructs single interference
model and composite interference model, proposes three signal preprocessing
methods, and generates corresponding image datasets. Subsequently, the
interference detection and identification performance under different signal
preprocessing methods is analyzed using the ResNet-18 deep learning neural
network. The optimal signal preprocessing method is identified, and quantitative
conclusions are obtained. Finally, a lightweight network, LcxNet-Fusion, is designed,
which significantly reduces the number of network parameters and forward
processing time while maintaining an acceptable level of accuracy reduction.
Results show that among the time-frequency 2D diagrams, power spectral
diagrams, and histograms generated by signal preprocessing, the time-frequency
diagramyields thebest detection and identificationperformance.When thedetection
rate reaches 90%, the jamming-to-noise ratio (JNR) sensitivity of the time-frequency
diagram is−20dB;when the identification rate reaches 90%, the JNR sensitivity of the
time-frequency diagram is −13 dB. On the Tesla V100 GPU, the LcxNet-Fusion
network has 24.32 MB parameters, an 43% reduction compared to the ResNet-18
network, with a forward processing time of 1.25 s, reducing by 15%. This work holds
promising prospects in the field of interference detection and identification for GNSS
systems under complex electromagnetic environments.
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1 Introduction

Global Navigation Satellite Systems (GNSS) are widely utilized in transportation,
emergency rescue, financial transactions, precision agriculture, and drone navigation,
serving as an indispensable technological backbone for the normal functioning of
modern society. However, GNSS signals are inherently weak and susceptible to external
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interference, including intentional interference and unintentional
interference. In recent years, GNSS interference events have
occurred frequently, disrupting the normal operation of multiple
industries. In recent years, GPS interference incidents have
frequently occurred during military operations (Buesnel, 2018;
Foundation, 2017). For instance, in 2018, multiple GPS
interference events were observed in northern Finland during a
NATOmilitary exercise, accompanied by warnings about large-scale
GPS signal disruptions (Yleisradio, 2018).

These cases highlight the significant challenges faced by GNSS
systems in complex electromagnetic environments and emphasize
the importance of promptly identifying and addressing interference.
Timely and effective interference detection and identification
technologies not only help identify potential interference sources
and prevent losses caused by malicious attacks but also mitigate the
impact of unintentional interference on critical services. For
instance, by monitoring GNSS signals in real time, detecting
abnormal fluctuations and sudden signal losses, interference
sources can be swiftly localized, and necessary measures can be
taken to ensure the reliable operation of navigation and positioning
systems. Therefore, with the widespread application of GNSS across
various fields, developing and implementing advanced interference
detection and identification technologies has become increasingly
important. This is not only critical to the efficient functioning of the
global economy but also essential for societal safety and stability.

Traditional GNSS interference detection and identification
methods primarily rely on signal feature analysis and statistical
techniques, typically detecting interference by monitoring
variations in signal parameters. For example, Sakorn. C et al.
proposed a detection method based on signal power and
C/N0 analysis, which identifies interference by monitoring
noise levels and signal loss in GNSS receivers (Sakorn and
Supnithi, 2021). These traditional methods rely on setting
threshold values, where the system triggers interference

alarms once the signal parameters exceed predefined
thresholds. Zhu. W et al. proposed a spectrum analysis
method based on Fourier transform to identify interference in
GNSS signals (Zhu et al., 2024), while Jeong. S et al. introduced a
CUSUM-based GNSS interference detection method (Jeong
et al., 2020). This method first collects GNSS signal data to
establish a reference model, then calculates and accumulates the
deviations between real-time signals and the reference model.
Interference is determined when the cumulative deviation
exceeds a predefined threshold. Wang. Y et al. designed an
SVM-based detection method that leverages feature extraction
and selection techniques to extract frequency-domain and time-
domain features from GNSS signals, enabling effective
interference classification (Wang et al., 2020). Traditional
interference detection methods achieve high accuracy under
specific conditions but require manual extraction of
interference features with explicit physical meanings. They
rely on prior knowledge and fixed models, making it difficult
to accurately and promptly identify interference types in
complex environments. In contrast, deep learning-based GNSS
interference detection and identification methods enable
automatic recognition of interference signals through model
training, improving both accuracy and robustness. For
instance, CNN based classification is widely used in signal
classification, and results are comparable even in some
instances superior results (Cheikh and Soltani, 2006;
Chralampidis et al., 2001; Darzikolaei et al., 2015; Ibrahim
et al., 2009), which automatically extracts signal features and
identifies various interference types by training on historical
receiver data. By training on large-scale historical interference
datasets, the model can learn the characteristic patterns of
different interference types without requiring predefined
thresholds for interference recognition. This approach is
particularly suited to complex and dynamically changing
interference environments, achieving significantly higher
detection accuracy than traditional rule-based methods.

Although deep learning methods have demonstrated significant
potential, research indicates that they still face several challenges.

FIGURE 1
Composite interference.

FIGURE 2
Histogram legend of CHIRP.
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Firstly, publicly available GNSS interference datasets include only
five types of interference, which severely limit the ability of CNN-
based methods to learn more complex signal features. The
overlapping of multiple interference types in composite
interference scenarios has yet to be addressed. Furthermore, the
impact of different signal preprocessing methods on deep learning
approaches remains unclear and unquantified. Finally, most CNN-
based methods utilize typical networks, such as AlexNet (Krizhevsky
et al., 2012), ResNet-18 (He et al., 2016), and VGG-11 (Simonyan
and Zisserman, 2015), as classifiers, which consume substantial
memory. These networks were originally designed for the
ImageNet dataset and are not well-suited for interference
identification tasks, leading to suboptimal performance.

2 GNSS single interference and
composite interference model

Based on the surveyed literature (Borio et al., 2016; Kraus et al.,
2011), this section categorizes single interference into five types:
single-frequency continuous wave interference, pulse interference,
chirp interference, narrowband noise interference, and matched
spectral interference. The following are the models for these
single and composite interferences.

2.1 Single-frequency continuous wave
interference

Single-frequency continuous wave interference (Continuous
Wave Jamming, CW) is a persistent interference signal

characterized by a fixed frequency and relatively high power.
This type of interference appears as a sinusoidal wave with a
constant frequency in the time domain and as a pulse centered at
the interference frequency in the frequency domain. Its expression is
given as:

J t( ) � ��
PJ

√
ej 2πfJt+θJ( ) (1)

Where PJ is the interference amplitude, fJ is the interference
frequency, and θJ is the interference phase.

2.2 Chirp interference

Chirp interference refers to an electromagnetic interference
signal whose frequency continuously varies over time. It disrupts
the normal operation of communication devices by continuously
altering the frequency of the interference signal within a specific
range. Its expression is as follows:

J t( ) � ��
PJ

√
e
j 2πf0t+π fmax−fmin

Tswp
t2+θJ( ) (2)

where PJ is the interference amplitude, f0 is the starting frequency
of the chirp, fmax − fmin is the chirp bandwidth, Tswp is the chirp
period, and θJ is the interference phase.

2.3 Pulse interference

Pulse interference features high peak power, short duration, and a
wide spectrum, providing greater interference efficiency than

FIGURE 3
Histogram legend of interference at 0 dB. (a) CW. (b) CHIRP. (c) NB. (d) PULSE. (e) MATCH. (f) MATCH_CHIRP. (g) NB_PULSE. (h) noJam.
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continuous waves of equivalent power. When the pulse interference
center frequency sweeps across a range overlapping the receiver
bandwidth, it interferes with the receiver. Its mathematical
expression is:

si t( ) � 1 − τ

2
+ nT≤ t≤

τ

2
+ nT, n � 1, 2...

0 else

⎧⎪⎨⎪⎩ (3)

J t( ) � ��
PJ

√
ej 2πfJt+θJ( )s t( ) (4)

where PJ is the interference amplitude, fJ is the interference
frequency, θJ is the interference phase, τ is the pulse width, and
T is the pulse repetition period.

2.4 Narrow band interference

Narrow Band Gaussian interference (NB) refers to Gaussian
noise with a band-width of 1%–10% of the actual bandwidth of the
satellite signal. Its expression is:

J t( ) � ��
PJ

√
ej 2πfJt+θJ( ) ⊗ h t( ) (5)

H j2πf( ) � 1, f
∣∣∣∣ ∣∣∣∣≤WI

0, otherwise
{ (6)

where PJ is the interference amplitude, fJ is the interference
frequency, θJ is the interference phase, h(t) is a low-pass
filter that controls the bandwidth of Narrow Band
interference.

2.5 Matched spectral interference

Matched spectral interference is a type of interference signal
that matches the spectral characteristics of the target signal.
Unlike traditional broadband or narrow band interference,
matched spectral interference is highly customized, making it
nearly indistinguishable from the target signal. This significantly
increases the decoding difficulty for the receiver. Its expression is
given as follows:

J t( ) � PJpN t( )d t( )ej 2πfJt+θJ( ) (7)
here PJ is the interference amplitude, fJ is the interference
frequency, and θJ is the interference phase, PN(t) is the p-code,
d(t) is the navigation messages.

FIGURE 4
Histogram legend of interference at 9 dB. (a) CW. (b) CHIRP. (c) NB. (d) PULSE. (e) MATCH. (f) MATCH_CHIRP. (g) NB_PULSE. (h) noJam.

FIGURE 5
PSD legend of CHIRP.
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2.6 Composite interference

In complex electromagnetic environments, GNSS receivers
often face interference signals from various sources. These types
of interference not only take diverse forms but are also growing
increasingly complex. Composite interference, as an efficient form of
interference, combines different types of interference signals to
produce more pronounced effects, severely disrupting the normal
operation of GNSS systems. Composite interference is generally
defined in the following categories.

2.6.1 Composite interference of suppression
and deception

Composite interference of suppression and deception refers to
the combination of the characteristics of both suppression and
deception interference to achieve more sophisticated interference
effects. The process typically involves first using suppression
interference to disable the receiver’s ability to acquire real
satellite signals. Subsequently, deceptive signals are used to
transmit false satellite signals, leading to positioning misguidance
that not only prevents the victim system from recognizing genuine
signals but also guides it to an erroneous state.

2.6.2 Composite interference with multiple
modulation methods

Composite interference with multiple modulation methods
refers to the combination of various modulation techniques
during the interference process to enhance the interference
effectiveness and the complexity of anti-interference measures.
For example, narrowband interference can be modulated within
the continuous wave interference frequency band, creating new
interference components within the receiver and increasing the
difficulty of interference detection, identification, and anti-
jamming efforts.

2.6.3 Composite interference with multiple
interferences

Composite interference with multiple interferences refers to
the superposition of multiple types of interference signals within
the same frequency spectrum, forming a complex interference
field. The superimposed interference signals may originate from
devices with different frequency bands and power levels. Due to
differences in the spectral and time-domain characteristics of
these signals, the resulting interference effects are highly
complex, making it difficult for the receiver to distinguish
between interference sources, which severely degrades GNSS
positioning performance.

Due to the widespread application of wireless
communication, radar, broadcasting, remote sensing, and
other systems, multiple signal sources are typically present in
urban environments, industrial zones, and military areas. These
signal sources, with varying frequency ranges, power levels, and
modulation methods, are highly prone to forming composite
interference with multiple interferences. Therefore, this paper
focuses on investigating the scenario of composite interference
with multiple interferences. The schematic diagram and
mathematical expression of the composite interference are
shown as Figure 1 and Equation 8.

J t( ) � ∑N JN t( ) � J1 t( ) + J2 t( ) +/JN t( ) (8)

Where N represents the number of individual interference
types. For example, when N � 3 composite interference can be
expressed as:

J t( ) � J1 t( ) + J2 t( ) + J3 t( )
� JPULSE t( ) + JCW t( ) + JNB t( )
� ���

PJ1

√
exp j 2πfJ1t + θJ1( )( )s t( ) + ���

PJ2

√
exp j 2πfJ2t + θJ2( )( )

+ ���
PJ3

√
exp j 2πfJ3t + θJ3( )( ) ⊗ h t( )

(9)

3 Signal preprocessing method

Signal preprocessing is a critical step in signal analysis, aiming to
transform raw-data into datasets suitable for analysis, modeling, or
deep learning. Directly inputting raw signal data into neural
networks without preprocessing increases the burden of feature
extraction, necessitates complex and powerful network models, and
imposes high demands on data volume and computational
resources. Signal preprocessing methods make hidden features
explicit, reduce the complexity of raw signals, facilitate more
efficient feature learning by models, lower the difficulty of model
training, and shorten training time. The field of signal processing
typically explores signal characteristics from multiple dimensions,
such as time-domain, frequency-domain, and time-frequency
domain features. Selecting appropriate signal preprocessing
methods is crucial, depending on specific application scenarios
and requirements. This study employs three preprocessing
methods to evaluate their impact on interference detection and
recognition.

(1) Time-domain histogram distribution (Huang et al., 2024):
used to extract statistical features of signals in the time
domain. Many interferences exhibit randomness or
deviation from normal signals in their time-domain
distribution, which can be effectively distinguished through
histogram analysis. Moreover, time-domain histogram
analysis is computationally simple, easy to implement, and
has low complexity, making it highly suitable for large-scale
real-time processing.

(2) Power spectral transformation (Macii et al., 2001): used to
represent the energy distribution of signals in the frequency
domain, revealing periodic or frequency component
characteristics. Many interferences exhibit specific
frequency characteristics in the frequency domain, which
can be effectively detected and identified through power
spectral analysis. Additionally, power spectral analysis has
strong noise resistance, enabling clearer extraction of signal
features in noisy environments.

(3) Time-frequency transformation (Wei and Mo, 2025): In non-
stationary scenarios, the frequency components of a signal may
vary over time, making it difficult for time-domain or frequency-
domain analysis alone to comprehensively characterize the signal
features. Time-frequency transformation reveals time-varying
frequency characteristics on a two-dimensional time-frequency
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plane, enabling the description of transient characteristics. In
many applications, interferencemay be transient or time-varying,
making time-frequency transformation an effective analytical
tool. Time-frequency transformation captures spectral
information varying with time and extracts time-frequency
image features. These two-dimensional features are well suited
for integration with deep learning techniques for pattern
recognition and classification. This method effectively handles
non-stationary signals, which is particularly important for
analyzing such signals.

3.1 Time-domain histogram distribution

The time domain histogram characterizes the amplitude
distribution of a signal in the time domain. The horizontal axis
depicts the real part of the signal’s amplitude, while the vertical axis
indicates its occurrence count. The formula for computing the time
domain histogram is as follows. First, identify the amplitude range of
the signal [n] , defined by its maximum xmax and minimum xmin .
The amplitude range [xmax, xmin] is then divided into equal width
intervals B.

Δx � xmax − xmin

B
(10)

For each interval, the number of signal samples falling within
that interval is counted. Assuming the range of the bth interval is
[xb, xb+1] , the corresponding statistical quantityNb is calculated as:

Nb � ∑N
n�1

II xb < x n[ ]< xb+1( ) (11)

Where II represents the indicator function, which takes the value
of 1 when the condition is true, otherwise 0.

Taking CHIRP interference as an example, its time-domain
histogram is shown in Figure 2.

The x-axis represents the real part amplitude, while the y-axis
represents the number of statistical samples.

The absence of x-y axis information is intentional, as image
datasets for deep learning training should retain only the most useful
image features while removing redundant elements (such as axes
and scale markers). This helps the convolutional neural network
(CNN) focus on learning distinguishing features between different
labels, thereby improving training performance. Based on the
interference model described in Section 2, a subset of
interference histogram datasets was generated at a JNR of 0 dB,
as shown in Figure 3.

It can be intuitively observed that different types of interference
exhibit distinct characteristics in the time-domain histogram
distribution. These features can be effectively used as inputs to
neural networks for interference recognition. However, the
characteristics of CW and CHIRP interference are similar in the
time-domain histogram, making it likely to confuse their
recognition results during interference identification. When the
JNR increases to 9 dB, the histograms of the aforementioned
types of interference are illustrated, for example, in Figure 4.

It can be observed that as the JNR increases, all types of
interference exhibit more distinct characteristics. However, the

images of CW and CHIRP interference remain similar, indicating
that their recognition results are likely to remain confused in the
histogram recognition process, even as JNR increases. In contrast,
the recognition rates of other types of interference improve
significantly as the JNR increases.

3.2 Power spectral transformation

The power spectral density (PSD) characterizes the energy
distribution of a signal within the frequency domain. The
horizontal axis indicates the frequency, while the vertical axis
denotes the amplitude or power associated with the frequency.
For discrete signals [n] , the power spectrum is derived using the
discrete Fourier transform (DFT). The DFT of the signal is defined
as [k] :

X k[ ] � ∑N−1

n�0
x n[ ]e−j2πkn/N (12)

The PSD is:

S k[ ] � 1
N

X k[ ]| |2 (13)

Taking CHIRP interference as an example, its PSD is shown
in Figure 5.

Where S[k] represents the power spectral density of the signal at
the k frequency, andN represents the length of the DFT. The x-axis
indicates the frequency, while the y-axis denotes the amplitude or
power associated with the frequency. The PSD plots of some
interference types at a JNR of 0 dB are shown in Figure 6.

It can be observed that the distinguishing features of different
types of interference are more pronounced in the power spectrum
and show significant differences compared to the characteristics in
the absence of interference. This suggests that using the PSD for
interference detection and recognition yields better results
compared to histograms.

3.3 Time-frequency transformation

The time-frequency 2D diagram is used to represent the
relationship between time and frequency. Common time-
frequency transformation methods include the Short-Time
Fourier Transform (STFT), Continuous Wavelet Transform
(CWT), Wigner-Ville Distribution (WVD), and Hilbert-Huang
Transform (HHT). The advantages and disadvantages of various
time-frequency transformation methods are summarized in Table 1.

Although STFT has certain limitations in terms of resolution, it
provides good computational efficiency and intuitiveness in
practical applications. It is a widely used general purpose time-
frequency analysis tool in engineering, medicine, and science. STFT
is often the preferred method for scenarios requiring fast, efficient,
and reliable signal analysis. Based on these criteria, this paper adopts
the STFT method for analysis. The basic principle involves
segmenting the signal and performing Fourier transforms on
each segment to observe how the signal frequency changes over
time. The main formula of STFT is as follows:
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X t, f[ ] � ∑∞
n�−∞

x n[ ]ω n − t[ ]e−j2πfn/N (14)

X[t, f] is the output of STFT, representing complex values of time
and frequency. ω[n] represents the window function.

Taking CHIRP interference as an example, its Spectrogram is
shown in Figure 7.

The x-axis indicates the time, while the y-axis represents the
frequency. The time-frequency diagrams of some interference types
at a JNR of 0 dB are shown, for example, in Figure 8.

It can be observed that interference exhibits distinct characteristics
in time-frequency diagrams, and the time-frequency diagram of
composite interference is a superposition of the corresponding single
interference diagrams. This suggests that time-frequency diagram-based
detection and recognition should demonstrate good performance, with
composite interference achieving recognition results consistent with its

corresponding single interference components. However, the
characteristics of matched spectral interference are relatively similar
to noise, which may result in slightly lower detection and recognition
performance compared to other single interference types. Likewise,
composite interference involvingmatched spectral interferencemay also
exhibit lower detection and recognition performance than other
composite interferences.

4 Analysis of the impact of
preprocessing methods on
interference detection and recognition
performance

This section first develops the interference detection and
recognition flowchart. Then, based on the interference models

FIGURE 6
PSD legend of interference at 0 dB. (a) CW. (b) CHIRP. (c) NB. (d) PULSE. (e) MATCH. (f) NB_CHIRP. (g) MATCH_PULSE. (h) noJam.

TABLE 1 Advantages and disadvantages of various time-frequency transformation methods.

Method Advantages Disadvantages

STFT (Wang et al., 2024) Simple to implement (based on FFT), intuitive and clear time-frequency
distribution, no crosst erm interference, suitable for real-time analysis

Time and frequency resolution are limited by window length, unable to
achieve both high time resolution and high frequency resolution

CWT (Zhang et al., 2024) Provides multi-resolution analysis, suitable for signals with drastic
frequency changes over time, capable of capturing instantaneous

features

High computational complexity, frequency resolution varies with scale,
which may be difficult tointerpret

WVD (Wang and Jiang,
2018)

Provides high time-frequency resolution, capable of revealing detailed
features for multi-component signals

Prone to cross term interference, sensitive to noise

HHT (Yin et al., 2023) Accurately represents nonlinear and non-stationary signals, high time-
frequency distribution resolution

Relies on empirical mode decomposition, susceptible to noise, complex
algorithm, poor real-time performance

Gabor Transform (Yuan
et al., 2022)

Provides smooth time-frequency distribution, theoretically suitable for
processing localized signals

High computational complexity, resolution similar to STFT, results are
highly dependent on window selection
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and signal preprocessing methods presented in the previous
sections, it generates the image dataset required for deep
learning. Subsequently, it introduces the deep learning
environment and neural network used to explore the impact of
preprocessing methods on interference detection and recognition.
Finally, the performance of different preprocessing methods on
interference detection and recognition is presented, and their
effects on various types of interference are quantitatively
analyzed. The interference detection and recognition process is
shown in Figure 9.

Interference detection and recognition primarily consist of two
steps: offline training and real-time recognition. In the offline
training phase, the receiver first collects signals via the antenna
and transmits them to the front end of the receiver to generate raw
sampled data. The sampled data is then preprocessed to construct a
training dataset. Finally, the training data is input into the neural
network for training, and the resulting network weights are saved. In
the real-time recognition phase, the receiver antenna collects
unknown signals, transmits them to the front end, and generates
raw data. The data is then preprocessed, and its image dimensions
are adjusted to meet the requirements of the neural network input.
Finally, the processed data is input into the neural network, the
weights saved from the offline training phase are loaded, and the
classification results of the interference signal are output.

4.1 Simulated dataset

At the receiver front end, GNSS signals are first converted down
to an intermediate frequency, then sampled into a digital sequence
and finally sent to the acquisition and tracking module (Ferre et al.,
2019). The received signal is represented as:

x t( ) � ∑M
i�1
si t( ) + n t( ) + j t( ) (15)

where M is the number of observed satellites, si(t)n(t) j(t)
represent the signal from the i th satellite, zero-mean Gaussian

white noise with variance σ2n , and jamming signal. Based on the
investigation of interference source parameter settings both
domestically and internationally, as well as a literature review,
the simulated dataset in this paper generates B3I-type navigation
signals with an initial code phase of 1,000 and a signal-to-noise ratio
(SNR) set to −26 dB. The parameter ranges for the interference are
shown in Table 2.

The sampling rate is set to 21 MHz, the sampling time is 2 ms, and
the JNR is set to −21–27 dB. Based on the above parameters and model,
a simulated signal dataset is generated, followed by image datasets for
each preprocessing method. The interference signals in the dataset
include 16 types: 5 single interference types, 10 composite interferences
combining two different interference types, and 1 case without
interference. The JNR is set to range from −21 to −13 dB, with
increments of 1 dB (as the detection probability and recognition
accuracy vary significantly at lower JNR levels). Once the detection
probability and recognition accuracy stabilize, the JNR is set
from −12–27 dB with increments of 3 dB, resulting in 23 total JNR
cases. For each JNR, 400 images are generated, with the validation, test,
and training sets split in a ratio of 1:2:7. Specifically, for each JNR,
40 images are allocated to the validation set, 80 images to the test set, and
280 images to the training set.

4.2 Neural network and deep learning
environment

This section focuses on the impact of preprocessing methods on
interference detection and recognition performance. Therefore, a
neural network that balances accuracy and parameter size should be
selected. Figure 10 illustrates the relationship between recognition
accuracy and GPU parameters for various neural networks used in
image recognition. It is evident that the ResNet-18 network strikes a
balance between image recognition speed and accuracy, achieving
relatively short runtimes and high recognition rates (Sunnetci et al.,
2023). Therefore, ResNet-18 is chosen as the standard neural
network in this section. The network structure of ResNet-18 is
shown in Figure 11.

ResNet-18 consists of 17 convolutional layers, 1 dense layer, and
additional layers such as pooling layers, batch normalization layers,
and activation functions. The roles of these layers are as follows.

(1) Convolutional Layer: Convolutional layers perform the cross
correlation operation to extract features and yield the feature
map. The process is achieved by sliding a window, called the
convolutional kernel, across the input matrix to compute an
element-wise multiplication and sum up the result.

(2) Pooling Layer: Pooling layers perform the down sampling
operation to further aggregate features. Unlike the
convolutional operator with learnable parameters, the
pooling operator is deterministic and typically calculates
either the maximum or average value of elements in the
pooling window.

(3) Batch Normalization Layer: Batch normalization layers are
generally implemented after convolutional layers or pooling
layers. It normalizes the inputs by subtracting their mean and
dividing by their standard deviation, leading to faster training
and less overfftting for deep networks.

FIGURE 7
Spectrogram legend of CHIRP.

Frontiers in Signal Processing frontiersin.org08

Liu et al. 10.3389/frsip.2025.1567926

https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://doi.org/10.3389/frsip.2025.1567926


(4) Activation Function: The objective of activation functions
is to decide whether a neuron should be connected to the
next layer.

(5) Dense Layer: Dense layer, also referred to as the fully connected
layer, is the last layer of the network and plays the role of
classification.

The training process was conducted using 50 iterations, with a
learning rate set to 0.001 and a batch size of 64. An Nvidia Tesla
V100 GPU was employed to accelerate computation. The hardware
setup included an Intel® Xeon® Gold 6234 CPU operating at
3.30 GHz and an Nvidia Tesla V100 GPU, running on a Linux
operating system. The software environment was configured with
g++ and gcc compilers, along with CUDA 11.6 and PyTorch 2.0.0 as
the deep learning framework.

4.3 Analysis of interference detection and
recognition performance under different
signal preprocessing methods

4.3.1 Performance analysis of detection and
recognition

The results indicate that the detection rates of the time-
frequency diagram and the power spectrum are comparable, both
outperforming the histogram in detection performance. At a
detection rate threshold of 90%, the sensitivity of time-frequency
detection is approximately −20 dB, while spectrum detection
achieves a sensitivity of −19 dB. In contrast, the histogram
detection exhibits significantly lower sensitivity,
approximately −3 dB. The relationship between detection
probability and JNR is illustrated in Figure 12.

FIGURE 8
Time-frequency diagrams legend of interference at 0 dB. (a) CW. (b) CHIRP. (c) NB. (d) PULSE. (e) MATCH. (f) NB_CHIRP. (g) NB_CW. (h) noJam.

FIGURE 9
Detection and recognition process.
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The results demonstrate that the average recognition
accuracy of the time-frequency diagram is marginally higher
than that of the spectrum diagram and substantially higher
than that of the histogram. At a recognition accuracy
threshold of 90%, the sensitivity of the time-frequency
recognition method is −13 dB, while the spectrum recognition
method achieves a sensitivity of approximately −9 dB. In
contrast, the histogram method achieves a maximum
recognition accuracy of only 77.4%, reflecting a higher false
detection rate and greater susceptibility to confusion between
interference types. The relationship between recognition
accuracy and JNR is depicted in Figure 13.

4.3.2 Analysis of the recognition of different types
of interference using different
preprocessing methods
4.3.2.1 Histogram

Experimental results indicate that in single interference
recognition using histograms, the recognition accuracy for NB,
PULSE, and MATCH interference approaches 100% only at high
JNR levels. When the recognition accuracy reaches 90%, their
sensitivity levels are 0, 3, and 18 dB, respectively. In contrast, the
recognition accuracy for CW and CHIRP interference remains low.
The relationship between the recognition accuracy of single
interference using histograms and JNR is shown in Figure 14A.
The recognition accuracy for NB, PULSE, and MATCH interference
generally increases, while the accuracy for CHIRP and CW
interference fluctuates significantly. At the same JNR, when
CHIRP interference achieves relatively high recognition accuracy,
CW interference has lower accuracy, and vice versa. This indicates
that CHIRP and CW interference are prone to mutual confusion
during recognition.

In composite interference recognition, CW-CHIRP, NB-PULSE,
MATCH-PULSE, and MATCH-NB achieve relatively high
recognition accuracy. When their recognition accuracy reaches
90%, their sensitivity levels are 0, 15, 3, and 15 dB, respectively.

The recognition accuracy for the remaining interference types is
suboptimal. The confusion matrix at a JNR of 6 dB is shown
in Figure 15.

From the confusion matrix, it can be observed that the reason for
the low recognition accuracy of certain composite interferences is their
combination with either CW or CHIRP interference. For example,
CHIRP-NB is misclassified as CW-NB interference, and MATCH-
CHIRP is misclassified as MATCH-CW interference. This is because
the histogram features of CW and CHIRP are similar. The
fundamental reason is that during signal generation, CHIRP
interference is created by linearly varying the frequency of CW,
which does not affect its time-domain statistical characteristics. The
recognition accuracy-JNR plot for composite interference using
histograms is shown in Figures 14B, C.

4.3.2.2 Power spectral density
Experimental results show that in single interference

recognition, the recognition accuracy increases with the JNR, and
NB interference exhibits higher recognition accuracy at low JNR
levels. The JNR sensitivity for the five types of single interference
when the recognition accuracy reaches 90% is as follows: PULSE,
NB, CW: -9 dB; CHIRP, MATCH: -6 dB. The relationship between
recognition accuracy for single interference and JNR is shown
in Figure 16A.

Experimental results indicate that at low JNR levels, CW-PULSE
and CW-MATCH exhibit superior recognition performance. At a
JNR of −20 dB, their recognition accuracy reaches 94% and 100%,
respectively, significantly higher than other types of composite
interference. For the remaining composite interferences, the JNR
sensitivity when the recognition accuracy reaches 90% is as follows:
CW-NB: -12 dB; CHIRP-PULSE, NB-PULSE, MATCH-NB: -9 dB;
CHIRP-NB, CW-CHIRP: -6 dB; MATCH-CHIRP: -3 dB; MATCH-
PULSE: 9 dB. Among them, MATCH-PULSE is often misclassified
as MATCH interference during recognition. The relationship
between the recognition accuracy of composite interference using
PSD and JNR is shown in Figures 16B, C.

TABLE 2 Interference parameter settings.

Type of interference Parameter Parameter ranges

Single-Frequency Continuous
Wave Interference

fJ, θJ fJ: − 10 ~ 10MHz
θJ: 0 ~ 2π

Pulse Interference fJ, θJ, τ, T fJ: − 10 ~ 10MHz
θJ: 0 ~ 2π τ: 1 ~ 10μs
T: 20e−6 ~ 100e−6

Chirp Interference PJ, fJ, fmax , fmin , Tswp, θJ f0: − 10 ~ 5MHz
fmax: 5 ~ 20MHz
fmin: fmax/2
Tswp: 10 ~ 100μs θJ: 0 ~ 2π

Narrow Band Interference fJ, θJ, h(t) fJ: − 10 ~ 10MHz
θJ: 0 ~ 2π h t( ): Adjusting
bandwidth to 1 − 2 MHz
5% − 10% Signal bandwidth( )

Matched spectral Interference fJ, θJ, PRN fJ: − 10 ~ 10MHz
θJ: 0 ~ 2π PRN: Different
from the satellite number of
the navigation signal

Composite Jamming All above parameters Random selection within corresponding range
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FIGURE 10
Recognition accuracy and speed of different neural networks.

FIGURE 11
ResNet-18.

FIGURE 12
Relationship between detection probability and JNR.

FIGURE 13
Relationship between recognition probability and JNR.
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4.3.2.3 Time-frequency diagram
In single interference recognition, under the threshold condition of

achieving a recognition accuracy of 90%, the JNR sensitivities for the five
types of single interference are as follows: PULSE: -19 dB, NB: -17 dB,
CW and CHIRP: -16 dB, MATCH: -3 dB. As the JNR increases, the
recognition accuracy for single interference shows a consistent upward
trend, eventually approaching 100%. The relationship between the
recognition accuracy of single interference using time-frequency
diagrams and JNR is shown in Figure 17A.

During the recognition of composite interference, CW-PULSE
interference exhibits higher recognition accuracy at low JNR levels.
When the recognition accuracy reaches 90%, the JNR sensitivities
for ten types of composite interference are as follows: CW-PULSE:
-19 dB, CW-CHIRP: -14 dB, CW-NB and CHIRP-PULSE: -12 dB,
NB-PULSE and CHIRP-NB: -9 dB, MATCH-CW: 0 dB, MATCH-
CHIRP andMATCH-NB: 3 dB, MATCH-PULSE: 15 dB. The results
indicate that in single interference recognition,MATCHhas the weakest
recognition performance. When combined with other single
interference types to form composite interference, the recognition
performance of the resulting composite interference types is also
suboptimal. In contrast, CW and PULSE achieve the best

FIGURE 14
Relationship between recognition accuracy of interference and JNR using histograms. (a) Single interference. (b) and (c) composite interference.

FIGURE 15
The confusion matrix of the histogram at a JNR of 6 dB.
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recognition accuracy in single interference recognition, and CW-PULSE
also performs the best in composite interference recognition. It can be
inferred that the time-frequency spectrogram of composite interference
is the superposition of the corresponding single interference
spectrograms. Therefore, the recognition accuracy of composite
interference aligns with the trends of its constituent single
interference recognition accuracy. The recognition accuracy-JNR plot
for composite interference using time-frequency diagrams is shown in
Figures 17B, C.

His section compares the performance of three signal
preprocessing methods in interference detection and recognition.
The results indicate that the data preprocessing methods generating
time-frequency diagrams and PSD plots achieve similar detection
and recognition performance, which is higher than that of
histograms. Furthermore, the interference detection and
recognition results were quantitatively analyzed, and the
detection sensitivity for different methods was obtained. In the
next step, the conclusions of this chapter will be used to integrate
the preprocessing methods with better performance to further
improve interference detection and recognition performance.

5 Low-complexity detection and
recognition method for GNSS
composite interference

Traditional interference recognition methods include threshold
detection, spectral analysis, decision trees, and support vector
machines (SVMs). These approaches typically rely on signal
processing techniques and statistical analysis for manual feature
extraction, resulting in lower recognition accuracy and sensitivity in
complex interference scenarios. In contrast, deep learning methods
leverage automatic feature extraction, offering higher recognition
accuracy, better adaptability to complex interference environments,
and the ability to handle nonlinear relationships between signals.
The recognition accuracy and sensitivity of various methods are
shown in Figure 18.

Existing CNN-based interference classification techniques
mostly adopt typical CNNs (AlexNet, ResNet-18, VGG-11) as
classifiers. These networks are specifically designed for the
ImageNet dataset and are not well-suited for interference
recognition tasks, resulting in suboptimal performance.

FIGURE 16
Relationship between recognition accuracy of interference and JNR using PSD. (a) Single interference. (b) and (c) composite interference.
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Another drawback of typical CNNs is that they contain
numerous convolutional layers, leading to large data sizes and
significant memory usage when deployed on terminal devices.
Based on the dataset and hardware setup from the previous
chapter, calculations show that the initial ResNet-18 network
requires 42.67 MB of parameters, has a forward processing time
of 1.43 s, and can process one image every 1.63 milliseconds on
average. To achieve model light-weighting, this paper reduces the
number of convolutional layers in typical CNNs, addressing their
large number of convolutional layers, and designs the LcxNet
network to reduce processing time. The architecture of the
LcxNet network is shown in Figure 19.

This network employs only three convolutional layers and three
pooling layers, significantly reducing the number of parameters and
computational complexity compared to deep networks like ResNet-
18. This makes it more suitable for devices with limited
computational resources. Additionally, the use of a 7 × 7 large
kernel convolution for initial feature extraction effectively expands
the receptive field and enhances information extraction efficiency,
thereby reducing the need for deeper layers.

The first layer utilizes a 7 × 7 large kernel convolution
(56 channels) for preliminary feature extraction, followed by a
2 × 2 max pooling operation to reduce data dimensionality and
improve computational efficiency. Subsequently, a 3 × 3 small kernel
convolution (56 channels) is applied to extract local details, followed
by another pooling operation to further reduce computation. The
final layer employs a 3 × 3 small kernel convolution (28 channels) to
extract deeper features, combined with 2 × 2 max pooling to further
compress the data volume, providing a refined feature
representation for the fully connected layer. This network
incorporates a multi-layer Dropout (0.5) mechanism, inserting
Dropout after pooling layers to prevent overfitting and enhance
the model’s generalization ability. Dropout is mainly applied to
feature-rich layers to avoid redundancy and improve model stability.
After feature extraction through convolutional and pooling layers, a
512-dimensional fully connected layer is used for feature fusion,
ultimately mapping to an 16-dimensional output layer, making it
suitable for 16-class classification tasks. Compared to ResNet-18,
this network significantly reduces the number of parameters and
computational complexity, making it more suitable for embedded

FIGURE 17
Relationship between recognition accuracy of interference and JNR using time frequency diagram. (a) single interference. (b) and (c) composite
interference.
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and edge computing devices, particularly for real-time interference
detection in complex electromagnetic environments.

After using the LcxNet network, the parameter size is reduced
to 12.36 MB, the forward processing time is shortened to 1.21 s,
and the network can process one image every 1.38 milliseconds,
achieving a 15% improvement in recognition speed. This
demonstrates that reducing the number of convolutional layers
can significantly decrease network parameters and processing
time, but it also leads to a notable reduction in detection and
recognition accuracy to improve the interference detection and
recognition rate based on this model, the study proposes a method
of concatenating feature values obtained from different
preprocessing methods after convolutional layers. Additionally,
to further reduce model parameters, depthwise separable

convolution is adopted in the original convolution module,
making the network more light-weight.

In standard convolution operations, for an input tensor
H × W × Cin with height H, width W, and Cin input channels,
we typically use Cout convolutional filters, each of size K × K. The
total number of parameters Pn in a standard convolution is:

Pn � H × W × K2 × Cin × Cout (16)

The total computational cost arises because each pixel undergoes
convolution with all filters. In contrast, depthwise separable convolutions
decompose standard convolution into two independent steps:

• Depthwise Convolution: This operation applies a separate
convolution filter to each input channel individually, without

FIGURE 18
Average recognition accuracy and sensitivity of different methods for GNSS jamming.

FIGURE 19
LcxNet architecture.
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mixing information between channels. Each channel has its
own K × K kernel, but there is no cross-channel interaction.

• Pointwise Convolution: A 1 × 1 convolutional kernel (size:
1 × 1 × Cin × Cout) is used to combine information across
different channels. This operation linearly combines the
outputs of the depthwise convolution, effectively merging
multiple input channels into new output channels. By
separating spatial and channel-wise processing, this method
significantly reduces both the parameter count and
computational complexity compared to standard
convolutions. The total computational cost of depthwise
separable convolutions Ps is given by:

Ps � H × W × K2 × Cin +H × W × Cin × Cout

� H × W × K2 × Cin + Cin × Cout( ) (17)

Its computational cost is significantly lower than that of
traditional convolutional blocks:

Ps

Pn
� H × W × K2 × Cin + Cin × Cout( )

H × W × K2 × Cin × Cout

� 1
Cout

+ 1

K2

(18)

As a result, the LcxNet-Fusion network is designed. This
network uses time-frequency diagrams and power spectral
density plots, which have better interference recognition
performance, as inputs. The two network models are
concatenated to achieve feature fusion. The architecture of the
LcxNet-Fusion network is shown in Figure 20.

After using LcxNet-Fusion, the network parameter
size is reduced to 24.32 MB, and the forward processing
time is 1.25 s, with an average recognition time of 1.4 ms
per image. While the recognition accuracy is slightly lower
compared to ResNet-18, the accuracy under low signal-to-
noise ratio conditions is significantly higher than that of the
LcxNet network. The recognition accuracy of the three
networks under varying signal-to-noise ratios is shown
in Figure 21.

To verify the effectiveness of the deep learning network used
in this study for interference detection and recognition, we
provide a comparison of existing detection and recognition
methods, as shown in Table 3, along with their corresponding
JNR values at which they achieve a detection and recognition
accuracy of 90%.

FIGURE 20
LcxNet-fusion architecture.
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6 Conclusion

This study focuses on the detection and recognition of composite
interference. Using various signal preprocessing methods, we
analyzed the detection and recognition of composite interference
and obtained quantitative conclusions. Furthermore, we developed
the LcxNet-Fusion network, which reduces the parameter size within
an acceptable range of accuracy loss. This study addresses the
limitations of existing interference detection and recognition
methods, which mostly focus on single interference scenarios, and
enables lightweight deployment on terminals. It lays the foundation
for future research on suppressing composite interference in receivers.
The specific contributions of this paper are as follows:

• A composite interference model and dataset were constructed,
providing a foundation for future research on composite
interference suppression and more efficient detection and
recognition methods.

• The effects of three different signal preprocessing methods on
the detection and recognition of composite interference were
analyzed. Quantitative conclusions were drawn regarding the
relationship between JNR and detection results for various
interference types under each method.

• The LcxNet-Fusion network was developed to achieve a more
lightweight model with improved real-time performance
compared to the ResNet network.

To enhance the robustness of composite interference
detection and recognition for application across various
terminals, future research can be conducted in the following
directions:

• Investigate the integration of other preprocessing methods to
analyze the detection and recognition performance for specific
types of interference and to construct a more robust
network model.

FIGURE 21
Comparison of recognition accuracy among three networks.

TABLE 3 Comparison of existing interference detection and recognition methods.

Method of detection JNR value when the
detection rate reaches 90%

Method of recognition JNR value when the
recognition rate reaches 90%

Time-domain and frequency-domain
energy detection (Zhu, 2018)

−12~-9 dB Support Vector Machine
recognition (Cheng, 2019)

−3~0 dB

Wavelet transform detection (Sun and
Zhang, 2021)

−15~-12 dB BP Neural Network recognition
(Cheng, 2019)

−10~-8 dB

LcxNet detection −16~-14 dB LcxNet recognition −10~-7 dB

LcxNet-Fusion detection −18~-16 dB LcxNet-Fusion recognition −12~-9 dB

ResNet-18 detection −20~-19 dB ResNet-18 recognition −13~-9 dB
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• Design more interference combination scenarios to investigate
the detection and recognition of composite interference
integrating suppression and deception techniques.
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