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This study considers time-series representations of polynomials. Often in data
modelling and many other applications, accurate estimations of the degree of a
polynomial, of the noise standard deviation, and of the coefficient of the highest
degree of a polynomial are useful in detection, estimation, and prediction. Themajor
contributions of this paper can be found in the original research offering novel
theoretical and experimental results. The theoretical results include an alternative
proof of the qth order AR time-series representation, with a constant, of a polynomial
of degree q, an alternative proof of the (q+ 1)-th order AR time-series representation,
without a constant, of a polynomial of degree q, as well as generalized equations
(valid for a polynomial of an arbitrary degree) for reduced variance estimation of the
polynomial coefficient corresponding to the highest degree. The experimental
investigations are the most comprehensive so far, in that they use well over
35 times more realisations than before, use a greater variety of noisy data
(Gaussian, Uniform, and Exponential noise), and use a larger range of polynomial
degrees as well as of noise standard deviations than before. Experimental results on
estimations of the degree of a polynomial, of the noise standard deviation, and of the
polynomial coefficient corresponding to the highest degree using seven methods
(AIC, AICc, GIC, BIC, Chi-square, F-distribution, and PTS2) are presented. Results
indicate clearly that PTS2 performs the best.
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1 Introduction

The representation of a polynomial of an arbitrary degree with an ARmodel of the same
order with a constant term was presented in (Nandi, 2020a), in which all the coefficients of
the AR model were explicitly derived independent of the polynomial coefficients and the
constant term was also derived, containing the degree of the polynomial and the polynomial
coefficient corresponding to the highest degree. Inspired by this research, a completely
original paradigm for polynomial degree estimation (PTS1) was introduced (Nandi, 2020b).
Until recently, the estimation of the degree of a polynomial has been achieved using many
model order selection techniques. Existing techniques select a model, which includes both
the degree and all coefficients of a polynomial, from a set of candidate models which are
then fitted to the data. Instead, the novel paradigm in (Nandi, 2020b) utilizes the variance of
the estimated constant term in the corresponding AR representation to estimate the degree
of a polynomial, without requiring either the estimation or the knowledge of any
polynomial coefficients; this is fundamentally different from what have been practised
in the past.

OPEN ACCESS

EDITED BY

M. L. Dennis Wong,
Newcastle University, United Kingdom

REVIEWED BY

Sanghyuk Lee,
New Uzbekistan University, Uzbekistan
Marina Polyakova,
Odessa National Polytechnic University,
Ukraine

*CORRESPONDENCE

Asoke K. Nandi,
Asoke.Nandi@ brunel.ac.uk

RECEIVED 23 February 2025
ACCEPTED 17 March 2025
PUBLISHED 09 April 2025

CITATION

Nandi AK (2025) Theoretical and experimental
results on time-series representations
of polynomials.
Front. Signal Process. 5:1582043.
doi: 10.3389/frsip.2025.1582043

COPYRIGHT

© 2025 Nandi. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Signal Processing frontiersin.org01

TYPE Original Research
PUBLISHED 09 April 2025
DOI 10.3389/frsip.2025.1582043

https://www.frontiersin.org/articles/10.3389/frsip.2025.1582043/full
https://www.frontiersin.org/articles/10.3389/frsip.2025.1582043/full
https://www.frontiersin.org/articles/10.3389/frsip.2025.1582043/full
https://crossmark.crossref.org/dialog/?doi=10.3389/frsip.2025.1582043&domain=pdf&date_stamp=2025-04-09
mailto:Asoke.Nandi@ brunel.ac.uk
mailto:Asoke.Nandi@ brunel.ac.uk
https://doi.org/10.3389/frsip.2025.1582043
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org/journals/signal-processing#editorial-board
https://www.frontiersin.org/journals/signal-processing#editorial-board
https://doi.org/10.3389/frsip.2025.1582043


Following the aforementioned two studies, a third study was
reported (Nandi, 2021), which adopted the novel paradigm and
proposed a novel method (PTS2) to estimate the degree of a
polynomial. Using the estimated degree, it proposed a method to
estimate the additive noise standard deviation and another method
to estimate the value of the polynomial coefficient corresponding to the
highest degree. Novel applications of these studies are being developed.
In (Sivaraman et al., 2024), authors wrote, “Nandi’s seminal works
(Nandi, 2020a; Nandi, 2020b; Nandi, 2021) have significantly advanced
our understanding of polynomial and time-series representations,
model-order selection, and noise power estimation, forming the
basis for the current study”. They presented a novel approach for
adaptive non-linear state estimation in a modified autoregressive time
series with fixed coefficients. Their proposed adaptive polynomial
Kalman filter (APKF) has been claimed to be superior in estimating
the state of the true system compared with the traditional Kalman
filters. In (Zhang et al., 2025), the authors developed a broken-track
association method for multi-target tracking. They utilise the results
from Stone-Weiestrass theorem that any time-varying motion of a
maneuvering target can be described well by a high-order polynomial
(You et al., 2019). Hence, instead of directly using the polynomial
model, which requires the knowledge of the unknown polynomial
coefficients, they chose to adopt the corresponding time-series
representation.

This paper contains original research, including novel
theoretical and experimental results. Section 2 contains
theoretical results, including 1) an alternative proof of the qth
order AR time-series representation, with a constant, of a
polynomial of degree q, 2) an alternative proof of the (q + 1)-th
order AR time-series representation, without a constant, of a
polynomial of degree q, as well as 3) generalized equations, valid
for a polynomial of an arbitrary degree, for reduced variance
estimation of the polynomial coefficient corresponding to the
highest degree. Section 3 provides details of the experimental
investigations and novel comprehensive results from noisy data
using additive Gaussian, Uniform, and Exponential noise. Finally,
the paper is concluded in Section 4.

2 Theoretical results

This section is comprised of three subsections. The first
subsection provides an alternative proof of the fact that every
polynomial of degree q can be represented by an autoregressive
(AR) time-series of order q with a constant term µ, such that the

time-series coefficients are given by (−1)i+1 q
i

( ), for i � 1, 2, . . . , q

and µ � c(q)Tq(q!), T being the sampling period. The second
subsection provides a proof of an alternative time-series
representation that every polynomial of degree q can be
represented by an autoregressive (AR) time-series of order
(q + 1) without any constant term, such that the time-series

coefficients are given by (−1)i+1 q + 1
i

( ), for i � 1, 2, . . . , (q + 1).
The third subsection provides new generalized theoretical relations for
obtaining reduced variance estimation of the polynomial coefficient
corresponding to the highest degree.

2.1 An alternative proof of the time-series
representation with a constant term

A polynomial of degree q in a continuous variable t (let us say
that it is time) can be written as

y t( ) � ∑q
i�0
c i( ) ti (1)

If the continuous variable, t, is uniformly sampled (or discretized),
it can be represented as t � nT, where n is an integer and T is the
sampling period. In this scenario, the above equation can be rewritten as

y(nT) � ∑q
i�0c(i) (nT)i. For simplicity in notations and without the

loss of any generality, this can be re-written as

y n( ) � ∑q
i�0
c i( ) ni (2)

The new value of c(i) in Equation 2 is the old value of c(i)
multiplied by Ti. In (Nandi, 2020a) it was proven that all noise-
free data from uniformly sampled polynomials of finite degree q
can be represented by an autoregressive “time-series” model of
order q such that

y n( ) � ∑q
i�1
a i( ) y n − i( ) + µ

where

µ � c q( ) q!( )
and

a i( ) � −1( )i+1 q
i

( ), f or i � 1, 2, . . . , q.

That proof in (Nandi, 2020a) was developed by 1) uniformly
sampling the continuous polynomial, 2) conjecturing the time-series
model, and 3) finally verifying the conjectured time-series model
from first principles. From here on, T is assumed to be 1 for the sake
of simplicity and without any loss of generality.

An alternative and shorter proof of the above is presented below.
This follows from 1) working with a continuous polynomial, 2)
differentiating this polynomial q times with respect to the
continuous variable (“time”), and 3) representing the qth order
derivative with linear differences using existing results. From
Equation 1, we can write

dqy
dtq

� c q( ) q!( ) (3)

Using results on backward differences from (Abramowitz and
Stegun, 1972), page 877, and after somemanipulations, the left-hand
side of the Equation 3 can be re-written and the Equation 3 can be
transformed to

y n( ) −∑q
i�1
a i( ) y n − i( ) � c q( ) q!( ) (4)

where

a i( ) � −1( )i+1 q
i

( ), f or i � 1, 2, . . . , q.
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Thus, µ � c(q)(q!). Such time-series representations of
polynomials of the first five degrees are given below:

y n( ) � y n − 1( ) + c q( ) q!( ) (5)
y n( ) � 2y n − 1( ) − y n − 2( ) + c q( ) q!( ) (6)

y n( ) � 3y n − 1( ) − 3y n − 2( ) + y n − 3( ) + c q( ) q!( ) (7)
y n( ) � 4y n − 1( ) − 6y n − 2( ) + 4y n − 3( ) − y n − 4( ) + c q( ) q!( )

(8)
y n( ) � 5y n − 1( ) − 10y n − 2( ) + 10y n − 3( ) − 5y n − 4( )

+ y n − 5( ) + c q( ) q!( ) (9)

It should be observed that.

1) for different values of µ, the Equation 4 describes every
polynomial of an arbitrary degree q, irrespective of the
values of their coefficients,

2) for a fixed value of µ, the Equation 4 describes only those
polynomials of degree q, with the AR constant
term µ � c(q)(q!), and

3) for a fixed value of µ, this represents every polynomial of
degree q, with the polynomial coefficient corresponding to the
highest degree c(q) � µ/(q!). Therefore, this formulation
maintains a connection between this time-series
representation with a specific and infinite set of
polynomials of degree q.

2.2 An alternative time-series representation
without a constant term

In the previous subsection and in Nandi (2020a) it has been
demonstrated that all noise-free data from uniformly sampled
polynomials of finite degree q can be represented by an
autoregressive “time-series” model of order q with a constant
term of µ � c(q)(q!), such that

y n( ) � ∑q
i�1
a i( ) y n − i( ) + µ

with

µ � c q( ) q!( )
and

a i( ) � −1( )i+1 q
i

( ), f or i � 1, 2, . . . , q.

In the previous subsection this was arrived at by deriving the qth
order derivative of the continuous polynomial in Equation 1, which
contributes the constant term. Remarkably, instead if one derives the
(q+1)-th order derivative of the same continuous polynomial in
Equation 1, one finds that

dq+1y
dtq+1

� 0 (10)

As in the previous subsection, using results on backward
differences from (Abramowitz and Stegun, 1972), page 877, and
after some manipulations, the Equation 10 can be re-written as

y n( ) −∑q+1
i�1

a i( ) y n − i( ) � 0 (11)

where

a i( ) � −1( )i+1 q + 1
i

( ), f or i � 1, 2, . . . , q + 1( ).
Such time-series representations of polynomials of the first five

degrees are given by Equations 12-16 below:

y n( ) − 2y n − 1( ) + y n − 2( ) � 0 (12)
y n( ) − 3y n − 1( ) + 3y n − 2( ) − y n − 3( ) � 0 (13)

y n( ) − 4y n − 1( ) + 6y n − 2( ) − 4y n − 3( ) + y n − 4( ) � 0 (14)
y n( ) − 5y n − 1( ) + 10y n − 2( ) − 10y n − 3( ) + 5y n − 4( )

− y n − 5( ) � 0 (15)
y n( ) − 6y n − 1( ) + 15y n − 2( ) − 20y n − 3( ) + 15y n − 4( )
− 6y n − 5( ) + y n − 6( ) � 0 (16)

Although such equations have been observed before (Sivaraman
et al., 2024; Zhang et al., 2025), both the above derivation and the
observation of their lack of connection with any polynomial
coefficient are novel. It should be noted that.

1) the Equation 11 describes every polynomial of degree q,
irrespective of the values of their coefficients,

2) although the Equation 11 describes every polynomial of degree
q, it has no connection with any of the coefficients in any of the
polynomials of degree q, and

3) unlike the representation in the Equation 4 that can be
configured to estimate the degree of a polynomial as well as
the polynomial coefficient corresponding to the highest
degree, the representation in the Equation 11 can be
configured to estimate the degree of a polynomial but it
cannot directly offer any knowledge of any of the
coefficients of a polynomial.

2.3 Reduced variance estimation of the
polynomial coefficient corresponding to the
highest degree

It is clear from the subsection 2.1 that the value of µ contains
information about the coefficient of the highest degree, q. It was
discussed in (Nandi, 2020b; Nandi, 2021) that real-valued noisy data
from polynomials in uniformly sampled discrete time can be
represented by

x n( ) � ∑q
i�0
c i( ) ni + e n( ), (17)

In Equation 17, e(n) represents noise. In turn, the Equation 4 can be
recast with known noisy data values x(n) as follows

−∑q
i�1
a i( ) x n − i( ) + x n( ) � µ n, q( ) (18)

where µ(n, q) may depend on both n and q. Further it was
demonstrated that, for the correct degree and in the presence of
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additive zero-mean i.i.d. Gaussian noise of variance σ2, µ(n, q) � N
(c(q)(q!), α(q)σ) from Equation 18, where α2(q) = 2, 6, 20, 70, 252,
and 924 for q = 1, 2, 3, 4, 5, and 6 respectively (Nandi, 2021).
Therefore, while the values of µ and, in turn, c(q) can be estimated in
this way, their standard deviations or variances would increase with
the true degree (q) and the standard deviation of the additive noise
increase, if one estimates µ using Equation 18. Essentially, the
variance is given by Equation 19 below

< σμ q( ) > 2 � 1( )2 +∑q
i�1
a i( )2⎛⎝ ⎞⎠σ2 (19)

A quick check of Equations 4–9 highlights the greater spread of
a(i) values within polynomials of degree q as well as between
different degrees of polynomials. This greater spread of a(i)
values within polynomials of degree q gives rise to greatly
increasing values of α2(q) and, in turn, the greatly increasing
values of variance or standard deviation of µ and c(q).

Below we demonstrate how µ (and, in turn, c(q)) may be
estimated with lower standard deviation or variance. This will
not be achieved by using Equation 18 or Equation 4 directly, but
by deriving new equations for µ using Equation 4, such that the
spread of time-series coefficient values in the new equation
is much less.

2.3.1 An example for a polynomial of degree 3
To begin with, consider the estimation of µ, for a time-series of

order 3 corresponding to a polynomial of degree 3, using the
Equation 4. In this case, one can write µ � y(n) − 3y(n − 1) +
3y(n − 2) − y(n − 3). Thus, the corresponding coefficients of y(.)
are [1, −3, 3, −1], which are fairly spread out and give rise to the
variance of estimated µ from Equation 4 of 20σ2 in the presence of
additive zero-mean i.i.d. Gaussian noise of variance σ2.

Now, consider the following set of four equations

µ � y n + 3( ) − 3y n + 2( ) + 3y n + 1( ) − y n( ) (20)
µ � y n + 2( ) − 3y n + 1( ) + 3y n( ) − y n − 1( ) (21)
µ � y n + 1( ) − 3y n( ) + 3y n − 1( ) − y n − 2( ) (22)
µ � y n( ) − 3y n − 1( ) + 3y n − 2( ) − y n − 3( ) (23)

Adding Equations 20–23, one obtains

4µ � y n + 3( ) − 2y n + 2( ) + y n + 1( )[ ]
− y n − 1( ) − 2y n − 2( ) + y n − 3( )[ ] (24)

In Equation 24, the coefficients of y(.) are [1, −2, 1, −1, 2, −1],
which are less spread out. Remarkably, the variance of estimated 4 µ
from Equation 24 is only 12 σ2 in the presence of additive zero-mean
i.i.d. Gaussian noise of variance σ2. It is clear therefore that the
Equation 24 provides a lower variance estimate of µ than Equation 4.

The Equation 24 is based on one set of four consecutive
equations, i.e., Equations 20–23. One can extend this idea
further, by adding non-overlapping β sets (where β = 1, 2, 3, . . .)
of four consecutive equations. For example, the set of four
consecutive equations leading to Equation 24 corresponds to β =
1. In turn, the next set of four consecutive and non-overlapping
equations corresponding to β = 2 are presented below:

µ � y n + 7( ) − 3y n + 6( ) + 3y n + 5( ) − y n + 4( ) (25)

µ � y n + 6( ) − 3y n + 5( ) + 3y n + 4( ) − y n + 3( ) (26)
µ � y n + 5( ) − 3y n + 4( ) + 3y n + 3( ) − y n + 2( ) (27)
µ � y n + 4( ) − 3y n + 3( ) + 3y n + 2( ) − y n + 1( ) (28)

Now, two (� β) non-overlapping sets of four equations, i.e
Equations 20-23 and Equations 25-28, can be added to obtain

2 4µ( ) � y n − 1 + 4 * 2( ) − 2y n − 2 + 4 * 2( ) + y n − 3 + 4 * 2( )[ ]
− y n − 1( ) − 2y n − 2( ) + y n − 3( )[ ]

Thus Equation 24 can be generalized to obtain

β 4µ( ) � y n − 1 + 4β( ) − 2y n − 2 + 4β( ) + y n − 3 + 4β( )[ ]
− y n − 1( ) − 2y n − 2( ) + y n − 3( )[ ] (29)

Therefore, the Equation 29 provides an even lower variance
estimate of µ than Equation 24. Now, the question is whether these
ideas can be generalized for polynomials of any finite degree. If the
answer is in the affirmative, the relevant equations need to
be derived.

2.3.2 Generalizations for polynomials of
any degree

First, it is well to understand how Equation 24 has been
formed from Equations 20–23. The coefficients of y(.) in
Equation 24 has been obtained by adding all relevant
coefficients of y(.) along the diagonal line going from the left
to the right. The coefficients of y(.) can be obtained by rewriting
Equation 4 as

µ � y n( ) −∑q
i�1
a i( ) y n − i( ) � −∑q

i�0
a i( ) y n − i( )

� ∑q
i�0

−1( )i q
i

( )y n − i( ) (30)

Thus, the coefficients of y(n − i) in Equation 30 is given by

−1( )i q
i

( ) for i � 0, 1, 2, . . . , q.

Visualizing the layout of Equations 20–23, consider the main
diagonal going from the bottom left (y(n) in Equation 23) to the top
right (y(n) in Equation 20). When we sum the coefficients along the
parallel sub-diagonals above the main diagonal, starting from i � 0,

we obtain∑m
i�0 −1( )i q

i
( ), noting that the value ofm depends on the

specific sub-diagonal. In (Abramowitz and Stegun, 1972), page 822,

∑n
m�0

−1( )n−m r
m

( ) � r − 1
n

( ), f or r ≥ n + 1( ) (31)

By changing r to q, m to i, and n to m, Equation 31 can be
transformed, as shown in Equation 32, to

∑m
i�0

−1( )i q
i

( ) � −1( )m q − 1
m

( ) � −a m( ), f or q≥ m + 1( ) (32)

corresponding to a polynomial of degree (q − 1) and for m �
0, 1, 2, . . . , (q − 1).

When we sum the coefficients along the main diagonal, it is
found that
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∑q
i�0

−1( )i q
i

( ) � ∑q−1
i�0

−1( )i q
i

( ) + −1( )q q
q

( )
� −1( )q−1 q − 1

q − 1
( ) + −1( )q � −1( )q−1 + −1( )q � 0

(33)
Now consider summing the coefficients along the parallel sub-

diagonals below the main diagonal, i.e., ∑q
i�j −1( )i q

i
( ), for

j � 1, 2, . . . , q, noting that the value of j depends on which
sub-diagonal.

∑q
i�j

−1( )i q
i

( ) � ∑q
i�0

−1( )i q
i

( ) −∑j−1
i�0

−1( )i q
i

( )
Equation 33 confirms that the first term on the right hand of the

above equation is 0. Setting m � (j − 1), the above equation can be
written as

∑q
i�m+1

−1( )i q
i

( ) � −∑m
i�0

−1( )i q
i

( ) � a m( ), f or q≥ m + 1( )

corresponding to a polynomial of degree (q − 1) and for m �
0, 1, 2, . . . , (q − 1).

Therefore, for any value of q, the sum of the coefficients along
the main diagonal is zero, and the sum of the coefficients below the
main diagonal is the negative of the sum of the coefficients above the
main diagonal. These explain, among others, the structure of
Equation 24 for the particular case of q � 3, as shown in
Equation 34,

4µ � y n + 3( ) − 2y n + 2( ) + y n + 1( )[ ]
− y n − 1( ) − 2y n − 2( ) + y n − 3( )[ ] (34)

In the case of a polynomial of an arbitrary degree, q, the
Equation 29 can be further generalized to, as in Equation 35,

β γµ( ) � − ∑q−1
m�0

a m( )y n −m − 1 + γβ( ) + ∑q−1
m�0

a m( )y n −m − 1( )

(35)
where γ � (q + 1), a(m) corresponds to a polynomial of degree (q −
1) for m � 0, 1, 2, . . . , (q − 1), and β � 1, 2, 3, . . .

3 Experimental results

In a previous publication (Nandi, 2020b), polynomial degree
estimation results using five model order selection methods (AIC,
AICc, GIC, BIC, and PTS1) were presented for polynomials of four
different degrees (1, 2, 3, and 4) and for five different strengths of
additive noise (zero-mean Gaussian of standard deviations of 1, 2, 3,
4, and 5). There were 1,000 realizations for each degree of a
polynomial and each value of noise standard deviation. Each
realization had 101 data values, of which the first 60 data values
were used to estimate the degree of a polynomial. Thus, these
previous results were based on 20,000 (4 × 5 × 1,000)
realizations, using only zero-mean Gaussian noise.

Subsequently, in a different publication (Nandi, 2021),
polynomial degree estimation results using six model order
selection methods (AIC, AICc, GIC, BIC, PTS1, and PTS2) as
well estimations of additive noise standard deviations were
presented for polynomials of four different degrees (1, 2, 3, and
4) and for five different strengths of additive noise (zero-mean
Gaussian of standard deviations of 1, 2, 3, 4, and 5). There were
1,000 realizations for each degree of a polynomial and each value of
noise standard deviation. Each realization had 101 data values, of
which the first 60 data values were used to estimate the degree of a
polynomial. Therefore, these previous results were based on 20,000
(4 × 5 × 1,000) realizations, using zero-mean Gaussian noise;
however, it should be added that some limited results only on
degree estimation using zero-mean Uniform noise were
presented. It should be noted that both PTS1 and PTS2 (PTS2
was derived after PTS1), give the same polynomial degree estimates;
so, it is enough to use only PTS2.

3.1 This study

In this study we have carried out extensive experimental
investigations and produced novel comprehensive results from
noisy data. Instead of using only zero-mean Gaussian noise, we
have used three different types of zero-mean noise - Gaussian,
Uniform, and Exponential noise. As well as studying polynomial
degree estimations and additive noise standard deviation
estimations, estimations of the polynomial coefficient
corresponding to the highest degree have been explored for the
first time. Furthermore, these are based on the generalized equations
for reduced variance estimations of the polynomial coefficient
corresponding to the highest degree. The following polynomials
have been considered:

y n( ) � 2n + 1 (36)
y n( ) � 4n2 + 2n + 1 (37)

y n( ) � 8n3 + 4n2 + 2n + 1 (38)
y n( ) � 16n4 + 8n3 + 4n2 + 2n + 1 (39)

y n( ) � 32n5 + 16n4 + 8n3 + 4n2 + 2n + 1 (40)

The corresponding noisy data from these polynomials can be
described as x(n) � y(n) + noise, where noise is zero-mean and
either Gaussian (N(0, σ)) or Uniform (U(0, σ)) or Exponential
(E(0, σ)), where σ is the standard deviation of the noise.

In this study, for each of the three types of noise, polynomial
degree estimation results using seven model order selection methods
(AIC (Akaike, 1974; Akaike, 1978; Linhart and Zucchini, 1986;
Cavanaugh, 1997; Burnham and Anderson, 2002; Burnham and
Anderson, 2004; Stoica and Selen, 2004; Claeskens and Hjort, 2008;
Nandi, 2020b; Nandi, 2021), AICc (Sugiura, 1978; Konishi and
Kitagawa, 2008; Nandi, 2020b; Nandi, 2021), GIC (Bhansali and
Downham, 1977; Nandi, 2020b; Nandi, 2021), BIC (Schwarz, 1978;
Kashyap, 1982; Yang, 2005; Vrieze, 2012; Nandi, 2020b; Nandi,
2021), Chi-square (Wikipedia, 2025a), F-distribution (Wikipedia,
2025b), and PTS2 (Nandi, 2021)), estimations of additive noise
standard deviations, and estimations of the polynomial coefficient
corresponding to the highest degree are presented for polynomials of
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five different degrees (1, 2, 3, 4, and 5) and for five different strengths
of additive noise (standard deviations of 1, 2, 4, 7, and 10). There are
10,000 realizations for each degree of a polynomial and each value of
noise standard deviation. Each realization has 101 data values, of
which the first 60 data values are used to estimate the degree of a
polynomial. Thus, these results in this study come from 250,000 (5 ×
5 × 10,000) realizations for each of the three types of zero-mean
noise (Gaussian, Uniform, and Exponential). Therefore, this study
compares more model order selection methods, considers more
polynomial degrees, covers a wider range of noise standard
deviations, takes into account of more types of noise
distributions, and, for the first time, offers estimations of the
polynomial coefficient corresponding to the highest degree.

3.2 Polynomial degree estimation

For each type of noise distribution, we have generated
10,000 realisations for each combination of polynomial degrees
(1, 2, 3, 4, and 5) and five different strengths of additive noise
(standard deviations of 1, 2, 4, 7, and 10). Each realization has
101 data values, of which the first 60 data values have been used to
estimate the degree of a polynomial using seven model order

selection methods (AIC, AICc, GIC, BIC, Chi-square,
F-distribution, and PTS2). These have been organized in five
Tables, where each Table was linked to a specific value of the
additive noise standard deviation. Each Table recorded the
number of correct model order estimation from each of the
seven methods for each of the five polynomial degrees. There are
five such Tables for one type of additive noise. Remember that all the
ideal mean values in each of these five Tables are the same and it is
10,000. So, to avoid too many Tables and yet to aggregate all the
information, we have averaged five Tables into one Table. Table 1,
Table 2, and Table 3 represent the summary results on polynomial
degree estimation in Gaussian noise, Uniform noise, and
Exponential noise respectively.

For each of the methods, Figure 1 visualises numbers of correct
polynomial degree estimates averaged over all five noise standard
deviations in Exponential noise versus each of the polynomial
degrees. AIC, AICc, BIC, GIC, Chi-square, F-distribution, and
PTS2 results are depicted in ‘up triangle’, ‘down triangle’, ‘plus’,
‘square’, ‘diamond’, ‘star’, and ‘open circle’ respectively. The black
solid line represents the ideal values. One can observe that AIC
performs the worst, while PTS2 is perfect. It is interesting to note
that Tables 1–3 are very similar. The performances of all the seven
methods are very similar in three different types of noise. So, we have

TABLE 1 Polynomial degree estimates in additive Gaussian noise averaged over all five noise standard deviations.

Deg = 1 Deg = 1 Deg = 2 Deg = 2 Deg = 3 Deg = 3 Deg = 4 Deg = 4 Deg = 5 Deg = 5

Mean RMS Mean RMS Mean RMS Mean RMS Mean RMS

AIC 6,981 38.17 7,049 28.49 7,192 36.94 7,483 35.05 8,100 39.30

AICc 7,576 31.21 7,728 21.76 7,899 33.63 8,167 45.62 8,631 35.08

BIC 9,320 15.36 9,291 19.19 9,259 23.55 9,270 26.08 9,376 32.41

GIC 9,359 15.82 9,328 14.22 9,301 17.56 9,307 25.76 9,407 31.81

Chi-sqr 7,496 15.05 7,931 16.58 8,345 45.80 8,845 25.64 9,392 31.01

F-dist 9,507 18.30 9,505 11.88 9,493 21.06 9,493 26.53 9,486 29.99

PTS2 10,000 0.00 10,000 0.00 10,000 0.00 10,000 0.00 10,000 0.00

TABLE 2 Polynomial degree estimates in additive Uniform noise averaged over all five noise standard deviations.

Deg = 1 Deg = 1 Deg = 2 Deg = 2 Deg = 3 Deg = 3 Deg = 4 Deg = 4 Deg = 5 Deg = 5

Mean RMS Mean RMS Mean RMS Mean RMS Mean RMS

AIC 6,979 57.65 7,061 54.04 7,142 45.41 7,518 28.57 8,159 12.84

AICc 7,589 57.22 7,756 34.27 7,872 49.68 8,183 39.90 8,672 22.11

BIC 9,323 17.43 9,305 21.76 9,276 11.36 9,299 33.42 9,399 17.42

GIC 9,366 17.93 9,348 20.47 9,319 14.57 9,340 35.75 9,426 17.08

Chi-sqr 7,443 39.12 7,912 26.07 8,342 32.86 8,877 31.41 9,414 16.18

F-dist 9,501 16.05 9,502 29.23 9,499 16.21 9,526 21.64 9,507 13.62

PTS2 10,000 0.00 10,000 0.00 10,000 0.00 10,000 0.00 10,000 0.00
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further averaged Tables 1–3. These combined results from
summarizing 15 Tables are displayed in Figure 2. It is clear that
Figures 1, 2 are very similar. Below are some observations:

1) AIC performs the worst and PTS2 is perfect.
2) BIC and GIC perform extremely similarly.
3) PTS2 performs better than F-distribution, which performs

better than BIC and GIC, which perform better than Chi-
square, which performs better than AICc, which performs
better than AIC.

4) AIC, AICc, and Chi-square get more accurate as the degree of a
polynomial increases.

5) For degree 1, the performance of Chi-square is similar to those
of AICc and better than AIC. Notably, the performance of Chi-
square gets more accurate more quickly as the degree of a
polynomial increases. For example, in the case of degree 5, the

performance of Chi-square is similar to those of BIC and GIC,
and significantly better than those of AIC and AICc.

6) Performances of PTS2 or F-distribution or BIC and GIC are
more stable as the degree of the polynomial increases.

3.3 Noise standard deviation estimation

For each type of noise distribution, we have generated
10,000 realisations for each combination of polynomial degrees
(1, 2, 3, 4, and 5) and five different strengths of additive noise
(standard deviations of 1, 2, 4, 7, and 10), where each realization has
101 data values. These have been used to estimate the noise standard
deviations added to a polynomial using seven model order selection
methods (AIC, AICc, GIC, BIC, Chi-square, F-distribution, and

TABLE 3 Polynomial degree estimates in additive Exponential noise averaged over all five noise standard deviations.

Deg = 1 Deg = 1 Deg = 2 Deg = 2 Deg = 3 Deg = 3 Deg = 4 Deg = 4 Deg = 5 Deg = 5

Mean RMS Mean RMS Mean RMS Mean RMS Mean RMS

AIC 7,030 21.25 7,119 45.67 7,217 36.63 7,510 53.93 8,160 44.09

AICc 7,606 20.01 7,767 50.82 7,934 42.47 8,192 49.98 8,662 41.16

BIC 9,328 16.40 9,291 9.74 9,272 8.46 9,282 41.76 9,397 12.97

GIC 9,365 15.57 9,334 6.72 9,318 11.51 9,317 41.22 9,428 11.85

Chi-sqr 7,615 53.33 7,974 26.02 8,396 31.48 8,874 34.82 9,415 12.92

F-dist 9,511 8.25 9,505 5.10 9,511 18.75 9,506 17.88 9,508 16.80

PTS2 10,000 0.00 10,000 0.00 10,000 0.00 10,000 0.00 10,000 0.00

FIGURE 1
Numbers of correct polynomial degree estimations averaged
over all five noise standard deviations in Exponential noise versus each
of the polynomial degrees. AIC, AICc, BIC, GIC, Chi-square,
F-distribution, and PTS2 results are depicted in “up triangle”,
“down triangle”, “plus”, “square”, “diamond”, “star”, and “open circle”
respectively. The black solid line represents the ideal values. AIC
performs the worst, while PTS2 is perfect.

FIGURE 2
Percentages of correct polynomial degree estimations averaged
over all five noise standard deviations as well as averaged over all three
noise types (Gaussian, Uniform, and Exponential noise) versus each of
the polynomial degrees. AIC, AICc, BIC, GIC, Chi-square,
F-distribution, and PTS2 results are depicted in “up triangle”, “down
triangle”, “plus”, “square”, “diamond”, “star”, and “open circle”
respectively. The black solid line represents the ideal values. AIC
performs the worst, while PTS2 is perfect.
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PTS2). The PTS2 accurately estimated the polynomial degree every
time, but none of the other six methods were anywhere near as
accurate and they themselves had different performances. For this
study, unlike in Section 3.2, we have helped the other six methods by
making available the correct polynomial degree in each case. Of
course, this has allowed their results to have been artificially
enhanced, but it allows us to compare with much better
outcomes. These have been organized in five Tables. Each Table
recorded the estimated noise and the standard deviation of the
estimated noise from each of the seven methods for each of the five
polynomial degrees.

There are five such Tables for each type of additive noise. It
should be noted that, within each of these five Tables, seven methods

offer very similar results. As an example, this can be observed in
Table 4, which presents the results for the σ values of 1 and 10. Since,
all the ideal values in each of these five Tables are different (1 or 2 or
4 or 7 or 10) it does not make sense to aggregate them directly. Yet, a
close study of Table 4 indicates that, if one were to normalise the
individual five Tables by the corresponding true value of σ, all the
values from different methods and Tables are similar. Therefore, the
numbers in each of these five Tables have been normalized by the
corresponding true value of the additive noise, ensuring that all the
ideal values of noise in each of these five Tables are the same and it is
1. Finally, to avoid too many Tables and yet to aggregate all the
information, we have averaged five normalized Tables into one
Table. Table 5, Table 6, and Table 7 represent the summary results

TABLE 4 Noise standard deviation estimates of additive Gaussian noise.

σ � 1 Deg = 1 Deg = 1 Deg = 2 Deg = 2 Deg = 3 Deg = 3 Deg = 4 Deg = 4 Deg = 5 Deg = 5

Mean RMS Mean RMS Mean RMS Mean RMS Mean RMS

AIC 0.98 0.07 0.98 0.07 0.97 0.07 0.97 0.07 0.97 0.07

AICc 0.98 0.07 0.98 0.07 0.98 0.07 0.97 0.07 0.97 0.07

BIC 0.99 0.07 0.98 0.07 0.98 0.07 0.97 0.07 0.97 0.07

GIC 0.99 0.07 0.98 0.07 0.98 0.07 0.97 0.07 0.97 0.07

Chi-sqr 0.98 0.07 0.98 0.07 0.98 0.07 0.97 0.07 0.97 0.07

F-dist 0.99 0.07 0.98 0.07 0.98 0.07 0.97 0.07 0.97 0.07

PTS2 1.00 0.07 1.00 0.08 1.00 0.08 1.00 0.09 1.00 0.09

σ � 10 Deg = 1 Deg = 1 Deg = 2 Deg = 2 Deg = 3 Deg = 3 Deg = 4 Deg = 4 Deg = 5 Deg = 5

Mean RMS Mean RMS Mean RMS Mean RMS Mean RMS

AIC 9.83 0.72 9.79 0.71 9.75 0.70 9.70 0.71 9.66 0.70

AICc 9.84 0.72 9.80 0.71 9.76 0.70 9.71 0.71 9.66 0.70

BIC 9.86 0.72 9.81 0.71 9.77 0.70 9.72 0.71 9.67 0.70

GIC 9.86 0.72 9.81 0.71 9.77 0.70 9.72 0.71 9.67 0.70

Chi-sqr 9.83 0.72 9.79 0.71 9.76 0.70 9.71 0.71 9.67 0.70

F-dist 9.87 0.72 9.82 0.71 9.77 0.70 9.72 0.71 9.67 0.70

PTS2 10.01 0.74 10.00 0.82 9.98 0.84 9.98 0.90 9.99 0.94

TABLE 5 Normalised noise standard deviation estimates of additive Gaussian noise averaged over all five noise standard deviations.

Deg = 1 Deg = 1 Deg = 2 Deg = 2 Deg = 3 Deg = 3 Deg = 4 Deg = 4 Deg = 5 Deg = 5

Mean RMS Mean RMS Mean RMS Mean RMS Mean RMS

AIC 0.98 0.07 0.98 0.07 0.97 0.07 0.97 0.07 0.97 0.07

AICc 0.98 0.07 0.98 0.07 0.98 0.07 0.97 0.07 0.97 0.07

BIC 0.99 0.07 0.98 0.07 0.98 0.07 0.97 0.07 0.97 0.07

GIC 0.99 0.07 0.98 0.07 0.98 0.07 0.97 0.07 0.97 0.07

Chi-sqr 0.98 0.07 0.98 0.07 0.98 0.07 0.97 0.07 0.97 0.07

F-dist 0.99 0.07 0.98 0.07 0.98 0.07 0.97 0.07 0.97 0.07

PTS2 1.00 0.07 1.00 0.08 1.00 0.08 1.00 0.09 1.00 0.09
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on noise estimation in additive Gaussian noise, Uniform noise, and
Exponential noise respectively.

It should be remembered that for this study, unlike in Section
3.2, we have helped the six methods (AIC. AICc, BIC, GIC, Chi-
square, and F-distribution) by making available the correct
polynomial degree in each case. Below are some observations:

1) In Table 5, PTS2 is the best and the other six methods are
much the same.

2) In both Tables 6 and 7, PTS2 is the best and the other six
methods are much the same.

3) It is interesting to note that the normalized mean value
estimates of the additive noise in Tables 5–7 are very
similar for each method.

4) The RMS (root-mean-square) values of normalized mean
noise estimates from all methods for polynomial degrees of
1–5 are different in different types of noise. Typically, they are
0.05 in Uniform noise, 0.07 in Gaussian noise, and 0.13 in
Exponential noise.

As the performance of all the seven methods are very similar in
three different types of noise, we have further averaged Tables 5–7.
Using these combined results from summarizing 15 Tables, Figure 3
visualises the mean value of the normalized standard deviation of the
additive noise averaged over all five noise standard deviations and

TABLE 6 Normalised noise standard deviation estimates of additive Uniform noise averaged over all five noise standard deviations.

Deg = 1 Deg = 1 Deg = 2 Deg = 2 Deg = 3 Deg = 3 Deg = 4 Deg = 4 Deg = 5 Deg = 5

Mean RMS Mean RMS Mean RMS Mean RMS Mean RMS

AIC 0.98 0.05 0.98 0.05 0.98 0.05 0.97 0.05 0.97 0.05

AICc 0.99 0.05 0.98 0.05 0.98 0.05 0.97 0.05 0.97 0.05

BIC 0.99 0.05 0.98 0.05 0.98 0.05 0.97 0.05 0.97 0.05

GIC 0.99 0.05 0.98 0.05 0.98 0.05 0.97 0.05 0.97 0.05

Chi-sqr 0.98 0.05 0.98 0.05 0.98 0.05 0.97 0.05 0.97 0.05

F-dist 0.99 0.05 0.98 0.05 0.98 0.05 0.97 0.05 0.97 0.05

PTS2 1.00 0.05 1.00 0.06 1.00 0.06 1.00 0.07 1.00 0.07

TABLE 7 Normalised noise standard deviation estimates of additive Exponential noise averaged over all five noise standard deviations.

Deg = 1 Deg = 1 Deg = 2 Deg = 2 Deg = 3 Deg = 3 Deg = 4 Deg = 4 Deg = 5 Deg = 5

Mean RMS Mean RMS Mean RMS Mean RMS Mean RMS

AIC 0.98 0.14 0.97 0.14 0.97 0.13 0.97 0.13 0.96 0.13

AICc 0.98 0.14 0.98 0.14 0.97 0.13 0.97 0.13 0.96 0.13

BIC 0.98 0.14 0.98 0.14 0.97 0.13 0.97 0.13 0.96 0.13

GIC 0.98 0.14 0.98 0.14 0.97 0.13 0.97 0.13 0.96 0.13

Chi-sqr 0.98 0.14 0.97 0.14 0.97 0.13 0.97 0.13 0.96 0.13

F-dist 0.98 0.14 0.98 0.14 0.97 0.13 0.97 0.13 0.96 0.13

PTS2 0.99 0.14 0.99 0.14 0.99 0.15 0.99 0.15 0.99 0.16

FIGURE 3
Mean values of the normalized standard deviation of the additive
noise averaged over all five noise standard deviations and averaged over
all three noise types (Gaussian, Uniform, and Exponential noise) versus
each of the polynomial degrees. F-distribution (as a representative
of AIC, AICc, BIC, GIC, Chi-square, and F-distribution) and PTS2 results
are represented by ‘star’ and ‘open circle’ respectively. The black solid line
represents the ideal values. Although both PTS2 and F-distribution
performance are very good, PTS2 performances are better than the
performances of the other six methods.
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averaged over all three noise types (Gaussian, Uniform, and
Exponential noise). F-distribution (as a representative of AIC,
AICc, BIC, GIC, Chi-square, and F-distribution) and
PTS2 results are represented by ‘star’ and ‘open circle’
respectively. The black solid line represents the ideal values. One
can observe that both PTS2 and F-distribution performance are very
good. PTS2 performances are perfect some of the times and are near
perfect other times, but the ones from F-distribution and the other
five methods are never perfect. It is clear that the PTS2 performances
are better than the performances from the other six methods.

3.4 Polynomial coefficient corresponding to
the highest degree estimation

For each type of noise distribution, we have generated
10,000 realisations for each combination of polynomial degrees
(1, 2, 3, 4, and 5) and five different strengths of additive noise
(standard deviations of 1, 2, 4, 7, and 10), where each realization has
101 data values. These have been used to estimate the highest degree
coefficient of polynomial using sevenmodel order selection methods
(AIC, AICc, GIC, BIC, Chi-square, F-distribution, and PTS2). For
this study, unlike in Section 3.2, the true value of the polynomial

degree has been used for AIC, AICc, BIC, GIC, Chi-square, and
F-distribution to obtain a more accurate estimate of the value of
the highest degree coefficient. While this has allowed their results
to have been artificially enhanced, it has allowed us to compare
with better outcomes. These have been organized in five Tables.
Each Table recorded the estimated value of the polynomial
coefficient corresponding to the highest degree and its standard
deviation from each of the seven methods for each of the five
polynomial degrees. There are five such Tables for one type of
additive noise. Remember that all the ideal values in each of these
five Tables are not the same (2 for degree 1 and 4 for degree 2 and
8 for degree 3 and 16 for degree 4 and 32 for degree 5). Yet, for each
degree the ideal value is the same in each of these five Tables.
Therefore, the numbers in each of these five Tables have been
averaged degree by degree, for each of the three different noise
types. Table 8, Table 9, and Table 10 represent the summary results
on estimated value of the polynomial coefficient corresponding to
the highest degree and its standard deviation in Gaussian noise,
Uniform noise, and Exponential noise respectively.

It should be remembered that for this study, unlike in Section
3.2, we have helped the six methods (AIC. AICc, BIC, GIC, Chi-
square, and F-distribution) with the knowledge of the correct
polynomial degree in each case. Below are some observations:

TABLE 8 Estimates of the polynomial coefficient corresponding to the highest degree in additive Gaussian noise averaged over all five noise standard
deviations.

Deg = 1 Deg = 1 Deg = 2 Deg = 2 Deg = 3 Deg = 3 Deg = 4 Deg = 4 Deg = 5 Deg = 5

Mean RMS Mean RMS Mean RMS Mean RMS Mean RMS

AIC 1.40 0.92 2.82 1.83 5.75 3.60 11.97 6.94 25.92 12.55

AICc 1.51 0.86 3.09 1.68 6.32 3.26 13.07 6.19 27.62 11.00

BIC 1.87 0.49 3.73 1.00 7.44 2.04 14.89 4.06 30.10 7.56

GIC 1.87 0.50 3.72 1.03 7.41 2.09 14.83 4.16 30.00 7.74

Chi-sqr 1.50 0.87 3.17 1.62 6.68 2.97 14.15 5.11 30.06 7.65

F-dist 1.90 0.43 3.80 0.87 7.60 1.75 15.19 3.51 30.36 7.07

PTS2 2.00 0.02 4.00 0.00 8.00 0.00 16.00 0.00 32.00 0.00

TABLE 9 Estimates of the polynomial coefficient corresponding to the highest degree in additive Uniform noise averaged over all five noise standard
deviations.

Deg = 1 Deg = 1 Deg = 2 Deg = 2 Deg = 3 Deg = 3 Deg = 4 Deg = 4 Deg = 5 Deg = 5

Mean RMS Mean RMS Mean RMS Mean RMS Mean RMS

AIC 1.40 0.92 2.82 1.82 5.71 3.61 12.03 6.91 26.11 12.40

AICc 1.52 0.86 3.10 1.67 6.30 3.27 13.09 6.17 27.75 10.86

BIC 1.87 0.49 3.74 0.99 7.46 2.02 14.94 3.97 30.16 7.45

GIC 1.87 0.50 3.72 1.02 7.42 2.07 14.88 4.09 30.08 7.61

Chi-sqr 1.49 0.87 3.16 1.63 6.67 2.97 14.20 5.05 30.13 7.51

F-dist 1.90 0.43 3.80 0.87 7.60 1.74 15.24 3.40 30.42 6.93

PTS2 2.00 0.02 4.00 0.00 8.00 0.00 16.00 0.00 32.00 0.00
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1) Considering the mean or the standard deviation estimates of
the highest degree coefficient of polynomial estimates, AIC
performs the worst and PTS2 is the best.

2) BIC and GIC perform extremely similarly. F-distribution
performs slightly better than BIC and GIC, as its mean is
always slightly nearer to the true value and its standard
deviation is always smaller.

3) PTS2 outperforms F-distribution, which performs better than
BIC and GIC, which perform better than AICc, which
performs better than AIC.

4) For degree 1, the performance of Chi-square is similar to those
of AIC and AICc. But the performance of Chi-square gets
more accurate as the degree of a polynomial increases. For

example, in the case of degree 5, the performance of Chi-
square is similar to those of BIC and GIC, and significantly
better than those of AIC and AICc.

5) Mean estimates of PTS2 are ideal with extremely small
standard deviations.

As the performance of all the seven methods are very similar in
three different types of noise, we have further averaged Tables 8–10.
Using these combined results from summarizing 15 Tables, Figure 4
presents the mean of the polynomial coefficient corresponding to
the highest degree estimates from all seven methods averaged over
all five noise standard deviations and averaged over all three noise
types (Gaussian, Uniform, and Exponential noise) versus each of the

TABLE 10 Estimates of the polynomial coefficient corresponding to the highest degree in additive Exponential noise averaged over all five noise standard
deviations.

Deg = 1 Deg = 1 Deg = 2 Deg = 2 Deg = 3 Deg = 3 Deg = 4 Deg = 4 Deg = 5 Deg = 5

Mean RMS Mean RMS Mean RMS Mean RMS Mean RMS

AIC 1.40 0.91 2.85 1.81 5.77 3.59 12.01 6.92 26.11 12.40

AICc 1.52 0.85 3.11 1.66 6.35 3.24 13.11 6.16 27.72 10.89

BIC 1.87 0.49 3.73 1.00 7.45 2.02 14.91 4.04 30.17 7.43

GIC 1.87 0.50 3.72 1.03 7.42 2.08 14.85 4.13 30.07 7.61

Chi-sqr 1.52 0.85 3.19 1.61 6.72 2.94 14.20 5.06 30.13 7.51

F-dist 1.90 0.43 3.80 0.87 7.61 1.72 15.21 3.46 30.43 6.92

PTS2 2.00 0.02 4.00 0.00 8.00 0.00 16.00 0.00 32.00 0.00

FIGURE 4
Mean values of estimates of the polynomial coefficient
corresponding to the highest degree from all sevenmethods averaged
over all five noise standard deviations and averaged over all three
additive noise types (Gaussian, Uniform, and Exponential noise)
versus each of the polynomial degrees. AIC, AICc, BIC, GIC, Chi-
square, F-distribution, and PTS2 results are depicted in “up triangle”,
“down triangle”, “plus”, “square”, “diamond”, “star”, and “open circle”
respectively. The black solid line indicates the ideal values. One can
observe that PTS2 performances are perfect and are very much better
than the remaining six methods.

FIGURE 5
Standard deviations of estimates of the polynomial coefficient
corresponding to the highest degree from all sevenmethods averaged
over all five noise standard deviations and averaged over all three
additive noise types (Gaussian, Uniform, and Exponential noise)
versus each of the polynomial degrees. AIC, AICc, BIC, GIC, Chi-
square, F-distribution, and PTS2 results are depicted in “up triangle”,
“down triangle“, “plus”, “square”, “diamond”, “star”, and “open circle”
respectively. The black solid line represents the ideal values. One can
observe that PTS2 performances are extremely accurate and are very
much better than the remaining six methods. AIC performs the worst.
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polynomial degrees. AIC, AICc, BIC, GIC, Chi-square,
F-distribution, and PTS2 results are depicted in ‘up triangle’,
‘down triangle’, ‘plus’, ‘square’, ‘diamond’, ‘star’, and “open
circle” respectively. The black solid line indicates the ideal values.
One can observe that PTS2 performances are perfect and are very
much better than the remaining six methods.

Figure 5 displays the standard deviation of the polynomial
coefficient corresponding to the highest degree estimates from
all seven methods averaged over all five noise standard
deviations and averaged over all three noise types (Gaussian,
Uniform, and Exponential noise) versus each of the polynomial
degrees. AIC, AICc, BIC, GIC, Chi-square, F-distribution, and
PTS2 results are depicted in “up triangle”, “down triangle”,
“plus”, “square”, “diamond”, “star”, and “open circle”
respectively. The black solid line represents the ideal values.
One can observe that PTS2 performances are extremely accurate
and are much better than the remaining six methods. AIC
performs the worst.

4 Conclusion

This study has explored time-series representations of
polynomials. The major contributions of this paper lie in the
original research offering novel theoretical and experimental
results. The theoretical results have included 1) an alternative
proof of the qth order AR time-series representation, with a
constant, of a polynomial of degree q, 2) an alternative proof of
the (q + 1)-th order AR time-series representation, without a
constant, of a polynomial of degree q, as well as 3) generalized
equations (valid for a polynomial of an arbitrary degree) for
reduced variance estimation of the polynomial coefficient
corresponding to the highest degree. The reported experimental
investigations are the most comprehensive so far, in that they have
used well over 35 times more realisations than before, have used a
wider variety of noisy data using zero-mean Gaussian, Uniform,
and Exponential noise, and have used a larger range of polynomial
degrees as well as of noise standard deviations than before.
Experimental results on estimations of the degree of a
polynomial, of the additive noise standard deviation, and of the
polynomial coefficient corresponding to the highest degree using
seven methods (AIC, AICc, BIC, GIC, Chi-square, F-distribution,
and PTS2) have been presented.

In the estimations of the degree of a polynomial, AIC performs
the worst while PTS2 is perfect. PTS2 performs better than
F-distribution, which performs better than BIC and GIC, which
perform better than AICc, which performs better than AIC. For
degree 1, the performance of Chi-square is similar to those of AICc
and better than AIC. Notably, the performance of Chi-square gets
more accurate more quickly as the degree of a polynomial increases.
For example, in the case of degree 5, the performance of Chi-square
is similar to those of BIC and GIC, and significantly better than those
of AIC and AICc.

In estimations of additive noise standard deviations, the
performance of PTS2 is the best and the other six methods (with
the exact knowledge of the degree) are much the same. The RMS
values of normalized mean noise estimates from all methods for
polynomial degrees of 1–5 are different in different types of noise.

Typically, they are 0.05 in Uniform noise, 0.07 in Gaussian noise,
and 0.13 in Exponential noise, In estimations of the polynomial
coefficient corresponding to the highest degree, AIC performs the
worst and PTS2 is the best. PTS2 outperforms F-distribution, which
performs better than BIC and GIC, which perform better than AICc,
which performs better than AIC. For degree 1, the performance of
Chi-square is similar to those of AIC and AICc. Notably, the
performance of Chi-square gets more accurate more quickly as
the degree of a polynomial increases. For example, in the case of
degree 5, the performance of Chi-square is similar to those of BIC
and GIC, and significantly better than those of AIC and AICc. Mean
estimates of PTS2 are ideal with extremely small standard
deviations.

The paradigm and techniques discussed here can be useful in
many diverse practical applications, e.g. (Fernandez-Jimenez
et al., 2012; Monin et al., 2014; Moskalev et al., 2011; Nandi
et al., 2020c; Sivaraman et al., 2024; Zhang et al., 2025), as well as
many others.

Data availability statement

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

Author contributions

AN: Conceptualization, Data curation, Formal Analysis,
Funding acquisition, Investigation, Methodology, Project
administration, Resources, Software, Supervision, Validation,
Visualization, Writing – original draft, Writing – review
and editing.

Funding

The author(s) declare that no financial support was received for
the research and/or publication of this article.

Acknowledgments

The author acknowledges Chao Liu for formatting the
manuscript to the journal style file.

Conflict of interest

The author declares that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the
creation of this manuscript.

Frontiers in Signal Processing frontiersin.org12

Nandi 10.3389/frsip.2025.1582043

https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://doi.org/10.3389/frsip.2025.1582043


Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Abramowitz, M., and Stegun, I. A. (1972). Handbook of mathematical functions: with
formulas, graphs, and mathematical Tables. New York: Dover Publications.

Akaike, H. (1974). A new look at the statistical model identification. IEEE Trans.
Autom. Contr 19, 716–723. doi:10.1109/tac.1974.1100705

Akaike, H. (1978). On the likelihood of a time series model. Statistician 27, 217–235.
doi:10.2307/2988185

Bhansali, R. J., and Downham, D. Y. (1977). Some properties of the order of an
autoregressive model selected by a generalization of akaike’s EPF criterion. Biometrika
64, 547–551. doi:10.2307/2345331

Burnham, K. P., and Anderson, D. R. (2002). Model selection and multimodel
inference. New York: Springer.

Burnham, K. P., and Anderson, D. R. (2004). Multimodel inference: understanding
AIC and BIC in model selection. Sociol. Methods Res. 33, 261–304. doi:10.1177/
0049124104268644

Cavanaugh, J. E. (1997). Unifying the derivations for the Akaike and corrected Akaike
information criteria. Stat. Probab. Lett. 33, 201–208. doi:10.1016/S0167-7152(96)
00128-9

Claeskens, G., and Hjort, N. L. (2008). Model selection and model averaging.
Cambridge University Press.

Fernandez-Jimenez, N., Plaza-Izurieta, L., Lopez-Euba, T., Jauregi-Miguel, A., and
Ramon Bilbao, J. (2012). Cubic regression-based degree of correction predicts the
performance of whole bisulfitome amplified DNA methylation analysis. Epigenetics 7,
1349–1354. doi:10.4161/epi.22846

Kashyap, R. L. (1982). Optimal choice of AR and MA parts in autoregressive moving
average models. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-4, 99–104. doi:10.1109/
TPAMI.1982.4767213

Konishi, S., and Kitagawa, G. (2008). Information criteria and statistical modeling. 1st
Edn. Incorporated: Springer Publishing Company.

Linhart, H., and Zucchini, W. (1986). Model selection. Wiley.

Monin, P., Bosmans, H., Verdun, F. R., and Marshall, N. W. (2014). Comparison of
the polynomial model against explicit measurements of noise components for different
mammography systems. Phys. Med. Biol. 59, 5741–5761. doi:10.1088/0031-9155/59/19/
5741

Moskalev, E. A., Zavgorodnij, M. G., Majorova, S. P., Vorobjev, I. A., Jandaghi, P.,
Bure, I. V., et al. (2011). Correction of PCR-bias in quantitative DNA methylation
studies by means of cubic polynomial regression.Nucleic Acid. Res. 39, e77. doi:10.1093/
nar/gkr213

Nandi, A. K. (2020a). Data modeling with polynomial representations and
autoregressive time-series representations, and their connections. IEEE Access 8,
110412–110424. doi:10.1109/ACCESS.2020.3000860

Nandi, A. K. (2020b). Model order selection from noisy polynomial data without
using any polynomial coefficients. IEEE Access 8, 130417–130430. doi:10.1109/
ACCESS.2020.3008527

Nandi, A. K. (2021). Degree and noise power estimation from noisy polynomial data
via AR modelling. Digit. Signal Process 114, 103071. doi:10.1016/j.dsp.2021.103071

Nandi, A. K., Roberts, D. J., and Nandi, A. K. (2020c). Improved long-term time-series
predictions of total blood use data from England. Transfusion 60, 2307–2318. doi:10.
1111/trf.15966

Schwarz, G. (1978). Estimating the dimension of a model. Ann. Statistics 6, 461–464.
doi:10.1214/aos/1176344136

Sivaraman, D., Ongwattanakul, S., Pillai, B. M., and Suthakorn, J. (2024). Adaptive
polynomial Kalman filter for nonlinear state estimation in modified AR time series with
fixed coefficients. IET Control Theory and Appl. 18, 1806–1824. doi:10.1049/cth2.12727

Stoica, P., and Selen, Y. (2004). Model-order selection: a review of information
criterion rules. IEEE Signal Process Mag. 21, 36–47. doi:10.1109/MSP.2004.1311138

Sugiura, N. (1978). Further analysis of the data by Akaike’s information criterion and
the finite corrections. Commun. Stat. Theory Methods 7, 13–26. doi:10.1080/
03610927808827599

Vrieze, S. I. (2012). Model selection and psychological theory: a discussion of the
differences between the Akaike information criterion (AIC) and the Bayesian
information criterion (BIC). Psychol. Methods 17, 228–243. doi:10.1037/a0027127

Wikipedia (2025a). Chi-squared test. Available online at: https://en.wikipedia.org/
wiki/Chi-squared_test.

Wikipedia (2025b). F-test. Available online at: https://en.wikipedia.org/wiki/
F-test#Regression_problems.

Yang, Y. (2005). Can the strengths of AIC and BIC Be shared? A conflict between
model identification and regression estimation. Biometrika 92, 937–950. doi:10.1093/
biomet/92.4.937

You, P., Ding, Z., Qian, L., Li, M., Zhou, X., Liu, W., et al. (2019). A motion parameter
estimation method for radar maneuvering target in Gaussian clutter. IEEE Trans. Signal
Process. 67, 5433–5446. doi:10.1109/TSP.2019.2939082

Zhang, J., Zeng, C., Tao, H., Zhang, Y., Zhao, S., and Wu, Q. (2025). A broken-track
association method for robust multi-target tracking adopting multi-view Doppler
measurement information. Signal Process. 230, 109815. doi:10.1016/j.sigpro.2024.109815

Frontiers in Signal Processing frontiersin.org13

Nandi 10.3389/frsip.2025.1582043

https://doi.org/10.1109/tac.1974.1100705
https://doi.org/10.2307/2988185
https://doi.org/10.2307/2345331
https://doi.org/10.1177/0049124104268644
https://doi.org/10.1177/0049124104268644
https://doi.org/10.1016/S0167-7152(96)00128-9
https://doi.org/10.1016/S0167-7152(96)00128-9
https://doi.org/10.4161/epi.22846
https://doi.org/10.1109/TPAMI.1982.4767213
https://doi.org/10.1109/TPAMI.1982.4767213
https://doi.org/10.1088/0031-9155/59/19/5741
https://doi.org/10.1088/0031-9155/59/19/5741
https://doi.org/10.1093/nar/gkr213
https://doi.org/10.1093/nar/gkr213
https://doi.org/10.1109/ACCESS.2020.3000860
https://doi.org/10.1109/ACCESS.2020.3008527
https://doi.org/10.1109/ACCESS.2020.3008527
https://doi.org/10.1016/j.dsp.2021.103071
https://doi.org/10.1111/trf.15966
https://doi.org/10.1111/trf.15966
https://doi.org/10.1214/aos/1176344136
https://doi.org/10.1049/cth2.12727
https://doi.org/10.1109/MSP.2004.1311138
https://doi.org/10.1080/03610927808827599
https://doi.org/10.1080/03610927808827599
https://doi.org/10.1037/a0027127
https://en.wikipedia.org/wiki/Chi-squared_test
https://en.wikipedia.org/wiki/Chi-squared_test
https://en.wikipedia.org/wiki/F-test#Regression_problems
https://en.wikipedia.org/wiki/F-test#Regression_problems
https://doi.org/10.1093/biomet/92.4.937
https://doi.org/10.1093/biomet/92.4.937
https://doi.org/10.1109/TSP.2019.2939082
https://doi.org/10.1016/j.sigpro.2024.109815
https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://doi.org/10.3389/frsip.2025.1582043

	Theoretical and experimental results on time-series representations of polynomials
	1 Introduction
	2 Theoretical results
	2.1 An alternative proof of the time-series representation with a constant term
	2.2 An alternative time-series representation without a constant term
	2.3 Reduced variance estimation of the polynomial coefficient corresponding to the highest degree
	2.3.1 An example for a polynomial of degree 3
	2.3.2 Generalizations for polynomials of any degree


	3 Experimental results
	3.1 This study
	3.2 Polynomial degree estimation
	3.3 Noise standard deviation estimation
	3.4 Polynomial coefficient corresponding to the highest degree estimation

	4 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References


