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Event cameras, often referred to as dynamic vision sensors, are groundbreaking
sensors capable of capturing changes in light intensity asynchronously, offering
exceptional temporal resolution and energy efficiency. These attributes make
them particularly suited for human-centered applications, as they capture both
the most intricate details of facial expressions and the complex motion dynamics
of the human body. Despite growing interest, research in human-centered
applications of event cameras remains scattered, with no comprehensive
overview encompassing both body and face tasks. This survey bridges that
gap by being the first to unify these domains, presenting an extensive review
of advancements, challenges, and opportunities. We also examine less-explored
areas, including event compression techniques and simulation frameworks,
which are essential for the broader adoption of event cameras. This survey is
designed to serve as a foundational reference that helps both new and
experienced researchers understand the current state of the field and identify
promising directions for future work in human-centered event camera
applications. A summary of this survey can be found at https://github.com/
nmirabeth/event_human.
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1 Introduction

Human-centered applications have long been at the forefront of computer vision,
driven by the need to understand and analyze human activities in diverse contexts. Such
applications span critical domains, including, among others, surveillance, where the
objective is to monitor human behavior in real-time for public safety; biometric
authentication, which can leverage unique individual features for secure identification;
interactive systems that enable seamless human-computer interactions through gesture or
expression recognition; and behavioral analysis, which provide insights into physical
activity and social behaviors.

Although this research area encompasses a wide range of tasks, it can be broadly divided
into two main directions of focus: body and face analysis. To this day, several traditional
computer vision techniques have been developed to address both categories (Viola and
Jones, 2001; Zhang et al., 2016; Ma et al., 2023; Sun et al., 2019; Yan et al., 2018). Such widely
recognized methods primarily rely on conventional RGB cameras and perform frame-based
analysis, without considering or incorporating any other data types. However, these
standard solutions are hindered by fundamental limitations. On the one hand, they are
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constrained by temporal resolution, meaning that they often fail to
capture fast and subtle movements that, for example, distinguish
micro-expressions (Becattini et al., 2025; Yan et al., 2013) or may
happen in rapid gait changes (Wang et al., 2019). On the other hand,
they are prone to motion blur in dynamic scenarios and struggle
with challenging lighting conditions, such as high contrast or low
illumination (Cazzato and Bono, 2024); finally, these approaches are
resource-intensive as they require significant memory and
processing power to handle high frame-rate video streams
(Gallego et al., 2022).

These challenges have recently fueled the interest in using
neuromorphic (often referred to as dynamic vision sensors or
event-based) cameras, which can offer a transformative solution.
Event cameras are often called neuromorphic or bio-inspired
sensors because they are modeled after the retina’s sensory
neurons, mimicking how photoreceptors respond to changes in
light intensity rather than capturing static frames. Like the retina,
event cameras operate asynchronously, with each pixel
independently detecting brightness changes, much like sensory
neurons and retinal ganglion cells in the visual system. This
design is inspired by the transient pathways in biological vision,
which specialize in detecting motion and dynamic changes in the
environment. Just as the retina has cells dedicated to processing
movement and contrast to help us perceive motion, event cameras
replicate this functionality by focusing only on changes in brightness
over time (Steffen et al., 2019; Posch et al., 2014). Unlike the
common belief that our eyes ‘see’ everything continuously, the
reality is that biological mechanisms such as microsaccades and
the transient pathway ensure continuous perception by creating
subtle changes in light input similar to the functioning of an event
camera. Without these mechanisms, our vision would fade.
Moreover, event cameras are also considered neuromorphic
because they integrate seamlessly into neuromorphic computing
frameworks, like spiking neural networks (SNNs), which mimic the
way biological neurons transmit information as spikes, allowing for
efficient, brain-like data processing. This design enables a series of
unique characteristics that make them particularly well-suited for
the aforementioned tasks.

This survey provides an overview of the current situation and
the progress made in using event-based cameras specifically for
human-centered applications, identifying key developments,
existing challenges, and potential research directions to guide
researchers at all levels. A preprint version of this work is
available as Adra et al. (2025).

1.1 Related surveys

Event-based cameras are being leveraged in a growing number
of applications. Given their impact on both academia and industry,
several surveys and reviews have been published in recent years,
playing an important role in research as they summarize the state of
the art, identify gaps, and propose directions for future investigation.
Some researchers have aimed at providing comprehensive overviews
of the emerging field of event-based vision, describing in detail the
physical sensor design and the technical specifications. In this
direction, one of the earliest papers is represented by Etienne-
Cummings and der Spiegel (1996), a survey published more than

2 decades ago, which traces the history of neuromorphic sensor
development. Since then, various surveys have been published over
the years (Kramer and Indiveri., 1998; Indiveri., 2008; Liu and
Delbruck., 2010), exploring topics such as hardware
developments and the design of very-large-scale integration
(VLSI) neuromorphic circuits for processing signals from event-
based cameras. A more recent and exhaustive review is given by
Gallego et al. (2022), which focused on event-based vision systems
operating principles, underlying algorithms, and a wide range of
applications addressed, mainly including robotics and perception.
Similarly, Chakravarthi et al. (2024) investigated the latest
innovations in event camera technology, examining models,
datasets, and diverse applications across various domains,
highlighting their impact on research and development. In
addition, Cazzato and Bono (2024) proposed an application-
driven survey, illustrating various outcomes across different
application fields and exploring the issue of dataset availability.

In a different line, other studies have mainly focused on a specific
topic, showing how event-based methods have evolved to tackle the
challenges within that particular field. For example, in the targeted
context of human-related analysis, Verschae and Bugueno-Cordova
(2023) focused on event-driven gesture and facial expression
recognition and compared different algorithms and benchmarks for
the purpose of performance evaluation. Becattini et al. (2025) discussed
neuromorphic solutions for face analysis, which included detection,
recognition, and emotion analysis and compared these with traditional
approaches. Eyemotion analysis with event cameras, and their potential
for applications such as gaze estimation or blink detection, were
explored by Iddrisu et al. (2024a).

1.2 Scope and value of our survey

The scope of this survey is specifically focused on human-
centered applications of event cameras. These include
applications addressing humans as a whole—such as gesture and
action recognition, human tracking, and pose estimation—as well as
applications focused on facial analysis, including face detection,
emotion recognition, and face recognition. Unlike existing surveys,
which often concentrate solely on face applications (Becattini et al.,
2025) or narrowly on a subset of human actions (Verschae and
Bugueno-Cordova, 2023), this survey aims to provide a
comprehensive overview of all human-centered event-based
applications. Our motivation stems from the evolution of event
camera research trends, which have expanded beyond traditional
robotics and high-speed tracking applications to demonstrate
significant advantages in downstream human-centered tasks as
highlighted in Figure 1. It is important to note that Figure 1 was
created based on a focused methodology based on papers with clear
and explicit relevance to robotics and human-centered applications.

What makes our survey particularly valuable is its uniqueness.
To the best of our knowledge, this is the first survey to thoroughly
target human-centered applications of event cameras, covering both
body- and face-oriented use cases in a unified framework. Secondly,
we want to emphasize the authors’ contribution to the publications
included in this survey, as our findings at Eurecom have contributed
to advances in the field of neuromorphic computation across various
human-centered applications for both body and face.
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1.3 Structure and coverage of our survey

This survey is organized as follows: in Section 2, we introduce
the foundational concepts of event cameras, briefly explaining how
they work, listing their main features and discussing the advantages
and disadvantages of using this type of sensor in the specific context
of human-centered applications; Section 3 explores the description
of various strategies for representing event data, underlining the
specificity that each of them has and for simulating event data
starting from RGB videos using popular methods in the literature.
The following part presents a discussion on state-of-the-art datasets
designed for experimental validation before highlighting some key
techniques for event compression that enable efficient data handling;
Section 4 provides an overview of the current state of the literature in
the field of human-centered event-based applications, categorizing
them into body- and face-related tasks; finally, in Section 5, we
conclude with an analysis of current trends and offer future
perspectives for the development and integration of event-based
vision systems in real-world applications.

We want to underline that, in this survey, we use the terms event
camera, neuromorphic vision sensor, and Dynamic Vision Sensor
(DVS) interchangeably for simplicity. Technically, neuromorphic
sensor denotes a broader class of bio-inspired devices, event camera
refers to a specific subset that emit per-pixel events based on changes
in brightness, and DVS identifies a specific family of such cameras
developed by iniVation. However, this interchangeable use is
common in the related literature and surveys, and we follow the
same convention here.

2 Foundations of event-based
vision systems

Event cameras are bio-inspired vision sensors that represent a
fundamental breakthrough compared to traditional frame-based

imaging. Rather than capturing entire frames at regular intervals,
these sensors operate in an asynchronous manner, meaning that
each pixel independently triggers an event only when a change in
brightness exceeds a specific threshold (Cazzato and Bono., 2024;
Gallego et al., 2022; Zheng et al., 2024). As a direct consequence, if
no changes are detected, no data is generated, significantly reducing
bandwidth usage.

The properties of these cameras align with the dynamic and
unpredictable characteristics of human activities, making them
particularly suited for capturing fast and irregular actions, such
as facial expressions or body movements (Adra et al., 2024b; Eddine
and Dugelay., 2022). However, they also introduce unique
challenges that require a deep rethinking of conventional vision
methodologies.

In the following subsections, we provide the reader with a
general overview of the functioning of event cameras,
highlighting the advantages to be leveraged and the disadvantages
to be managed.

2.1 Operating principle and key features

A new event ek is triggered at a certain pixel u � (uk, vk)
whenever the change in brightness ΔL(u, tk), calculated between
the current time tk and the time of the last event tk−1, exceeds a
predefined contrast threshold T> 0. Each event encodes 1) the
pixel’s identity u � (uk, vk) that indicate the location of the
change, 2) a timestamp tk, capturing the precise time the event
occurred, and 3) the polarity pk ∈ {−1,+1}, specifying whether the
brightness increased or decreased; as a result, an event is represented
as a tuple, as shown in Equations 1, 2:

ek � u, tk, pk{ }, (1)
with ΔL u, tk( ) � L u, tk( ) − L u, tk−1( )≥pkT (2)

FIGURE 1
Evolution of research focus: Comparing the number of publications on robotics versus human-centered applications of event cameras.
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In this sense, what a neuromorphic camera produces is nothing
more than a spatio-temporally localized stream of events which can
be formally described as shown in Equation 3:

E � ek{ }Kk�1where k ∈ K, (3)

withK representing the total number of events occurring within
the entire recording time interval. This data-driven design makes the
output rate dependent on scene dynamics, since faster motion or
more significant brightness variations lead to a higher event rate.

Several key features distinguish these sensors: High Temporal
Resolution, since events are time-stamped with microsecond (μs)
precision and allow the detection of rapid actions or subtle gestures,
without motion blur (Gallego et al., 2022); this ability at sensing very
fast motion is invaluable for tasks requiring fine-grained temporal
analysis, such as gait analysis or blink detection.

Low Latency, as events are generated and transmitted as soon as
brightness changes occur ensuring real-time responsiveness without
the need to wait for a global frame exposure time; this is an essential
requirement for applications like human tracking. For example, the
DVS128 camera outputs events at a rate of 1 million events per
second (Meps) (Lichtsteiner et al., 2008) while the Samsung DVS-
Gen4 has a higher bandwidth of 1,066 Meps.

High Dynamic Range (HDR), since event cameras can capture
scenes with a vast range of lighting conditions, from dark
environments to bright daylight. These sensors boast a dynamic
range that reaches 140 dB, far surpassing the 60 dB typically seen in
high-quality frame-based cameras (Gallego et al., 2022). A range of
140 dB indicates the ability to handle brightness differences of up to
10,000,000:1, compared to only 1,000:1 for 60 dB. By minimizing
saturation and preserving fine details, event cameras support
applications like face detection or pose estimation under
challenging lighting conditions.

Low Power Consumption, as event cameras significantly reduce
the amount of data produced by only capturing changes in the scene,
rather than full images as conventional frame-based cameras do.
This feature makes event cameras ideal for long-term monitoring
systems or wearable devices where power constraints are critical. For
example, Barchid et al. (2023) demonstrated that Spiking-FER, when
combined with event data, is 47.42× to 65.39× more energy-efficient
than comparable artificial neural networks, highlighting the energy-
saving potential of event-based systems and their suitability for low-
power applications on edge devices.

2.2 Privacy preservation

Another important characteristic that has brought event
cameras to the spotlight is their potential for preserving user’s
privacy. Since they capture only dynamic scene changes, raw
event data are inherently challenging to interpret compared to
conventional RGB imagery. This feature adds a level of privacy
by design, making event streams less likely to reveal sensitive
identity information (Becattini et al., 2025; Al-Obaidi., 2020;
Delilovic and Salaj., 2021; Dong et al., 2023; Han et al., 2023).
However, the assumption that event data are inherently privacy-
preserving has been challenged by advancements in deep learning-
based event-to-image reconstruction techniques (Rebecq et al.,
2019), which can recover intensity map images from event

streams and expose personal identity information. This has led to
increased efforts to enhance the privacy of event-based data. In this
direction, Du et al. (2021) proposed a 2D chaotic mapping-based
algorithm that scrambles event positions and flips polarities,
combined with a dynamic key-updating mechanism, ensuring
data security while maintaining high efficiency on resource-
constrained devices. Similarly, Zhang et al. (2024a) introduced an
encryption framework to secure event streams during transmission,
effectively preventing a direct application of computer vision models
on the encrypted data. In the same line of research, Ahmad et al.
(2023), Ahmad et al. (2024) formulated an anonymization strategy
that randomizes event streams, making them unintelligible to
human observers and demonstrating strong resilience against
image reconstruction attacks, inversion, and adversarial learning
attempts, while still retaining the information necessary for
downstream tasks like person re-identification or human pose
estimation. Bendig et al. (2024) designed a novel pipeline for
anonymizing event camera data by employing a learnable data-
dependent noise prediction network combined with adversarial
training, which was able to remove personally identifiable
features to prevent re-identification.

When discussing privacy in the context of event cameras, it is
crucial to consider it from the machine’s perspective, as the primary
threat often arises from how machines interpret and utilize data. In
their natural form, event data are completely unreadable to humans,
appearing as sparse, asynchronous events that lack any recognizable
visual information. However, when these events are reconstructed
into frames, privacy concerns become more apparent for humans
but are significantly greater for machines (Du et al., 2021).
Reconstructed frames are typically grayscale and of low
resolution but retain substantial information due to their high
temporal resolution, often reconstructed at rates approaching
5000 FPS. From a human viewpoint, these frames may appear
inferior to traditional RGB images, especially in applications like
action recognition where facial details are unclear. Yet, for machines,
reconstructed frames hold significant value as they exploit motion
edges and spatiotemporal patterns rather than visual clarity,
leveraging the rich temporal data inherent in event-based
recordings. This distinction emphasizes the need to develop
privacy measures based on the machine’s capacity to extract
sensitive information, recognizing that what seems visually
obscure to humans may still be highly informative for
automated systems.

2.3 Challenges

Despite their advantages, event cameras also present distinct
challenges: while their spatially sparse and temporally asynchronous
output allows for more efficient data storage, it necessitates the
development of specialized algorithms to process and extract
meaningful information that can be used in order to successfully
downstream learning tasks. Handling events in an effective manner
requires either to employ specialized frameworks, i.e., spiking neural
networks (Ghosh-Dastidar and Adeli., 2009), or to represent the
event data with more conventional formats, typically in the form of
frames (see Section 3.2). Traditional computer vision techniques are
fundamentally designed for dense and synchronous images and

Frontiers in Signal Processing frontiersin.org04

Adra et al. 10.3389/frsip.2025.1585242

https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://doi.org/10.3389/frsip.2025.1585242


therefore are not directly compatible with this novel data format
(Gallego et al., 2022). When these methods, trained on RGB frames,
are tested with input data coming from event cameras, they
predictably struggle to perform well. The lack of a continuous
flow of frames leads to a discrepancy with the underlying
working assumptions that these methods are based on, resulting
in low confidence or inaccurate results, as demonstrated in the study
conducted by Becattini et al. (2025) in the specific context of face
detection and landmark prediction. Furthermore, event-based
sensors might exhibit inherent noise and non-idealities due to
hardware constraints or environmental conditions that obscures
data and complicates the interpretation. In this sense, the use of
robust preprocessing techniques is essential to ensure a reliable
performance.

3 Event camera design and processing

In this section, we provide a comprehensive overview of event
data, beginning with its representation techniques to facilitate
efficient processing and compatibility with existing architectures.
We then summarize and categorize the available datasets into real
and synthetic, as well as body- and face-focused datasets. To address
the scarcity of datasets, we further discuss event data simulators as a
vital tool for generating synthetic data. Finally, we introduce event
data compression, emphasizing its importance for real-time,
human-centered applications of event cameras.

3.1 Camera models and selection criteria

The first Dynamic Vision Sensor (DVS) was introduced in
2008 by iniVation as the DVS128, offering a resolution of 128 ×
128 pixels Lichtsteiner et al. (2008). Since then, several event camera
models have been developed, primarily by companies such as
iniVation1, Prophesee,20232, Samsung (Suh et al., 2020), and
CelePixel (Chen and Guo, 2019). IniVation’s DAVIS series, such
as the DAVIS240 and DAVIS346, combines event-based and frame-
based sensing, offering resolutions up to 346 × 260 pixels and
dynamic ranges of 120 dB, making them versatile for mixed
sensing tasks. Prophesee, (2023) Gen3 and Gen4 cameras, with
resolutions as high as 1,280 × 720 pixels and dynamic ranges
exceeding 120 dB, are well-suited for applications requiring high
spatial detail. CelePixel’s CeleX cameras provide features such as
grayscale output and IMU integration, while Samsung’s DVS-GEN3
and DVS-GEN4 stand out with bandwidth capacities up to
1,066 Meps (million events per second) for high-speed applications.

Gallego et al. (2022) provided a comprehensive comparison of
commercial and prototype event cameras serving as a critical
reference for researchers to match camera capabilities with their
specific application requirements. When selecting an event camera
for human-centered applications, specific criteria play a critical role
and depend heavily on the task. For action recognition and human

tracking, high temporal resolution and low latency (e.g., iniVation’s
DAVIS240 at 12µs) are critical to capture fast motion dynamics. For
facial analysis or anonymization, a higher spatial resolution is often
more important to capture fine-grained details, as seen in the CeleX-
IV (768 × 640 pixels) or Prophesee Gen4 CD (1,280 × 720 pixels).
Applications requiring operation in challenging lighting conditions,
such as outdoor crowd density estimation, benefit from models with
a high dynamic range (e.g., 120 dB in DAVIS346 or 143 dB in CeleX-
IV). Additionally, power consumption is significant for wearable or
mobile systems, where models like iniVation’s DAVIS240 (5-
14 mW) are advantageous.

3.2 Data representation

As presented in the previous section, event cameras operate
fundamentally differently from traditional frame-based cameras,
resulting in asynchronous event streams encoding changes in
intensity at each pixel with microsecond precision. These event
streams, while rich in spatiotemporal information, require
specialized processing techniques to extract meaningful features.
Over time, various representations have emerged, each tailored to
address specific challenges and applications. These representations
can be categorized into the following groups based on their
methodological approach and functional focus:

1. Foundational representations: These include the earlier
approaches such as Event Count (Zhu et al., 2018a), Event
Histogram, also referred to as event intensity frame, (Liu and
Delbrück., 2018), Temporal Binary Representation (Innocenti
et al., 2021), Time Surface (Lagorce et al., 2017), and Memory
Surface (Pradhan et al., 2019) which prioritize simplicity and
provide a quick way to interpret event data

2. Structural representations: These methods leverage advanced
processing techniques to represent the spatial and temporal
relationships of events. This includes the graph representation
first proposed by Bi et al. (2019) and Bi et al. (2020) and then
utilized as well by Schaefer et al. (2022) and Deng et al. (2022),
which leverages graph theory to process event data both
spatially and temporally. Similarly, Tavanaei et al. (2019)
proposed the Spiking tensor representation that tries to
mimic the brain neurons as much as possible and
represents event data as binary tensors. Moreover, Voxel
Grid Representation - first proposed in Zhu et al. (2018b) -
provides a more detailed approach by discretizing the event
stream into 3D spatiotemporal grids. This representation is
actually used to train complex networks such as video-based
transformers and image reconstruction models.

3. Reconstructed Frame Representations: In attempts to bridge
the gap between event-based and frame-based frameworks, it
also became popular in research to rely on representations like
E2VID Frames (Rebecq et al., 2019) which allow us to mimic
video frames and leverage the power of traditional
Convolutional Neural Networks (CNNs) and even achieve
better results in downstream applications compared to
directly using event data.

4. Fused representations: Recently proposed by Gao et al. (2023),
the Learnable Multi-Fused Representation (LMFR) integrates

1 https://inivation.com

2 https://www.prophesee.ai
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multiple event representations, such as Time Surface, Event
Frames, and Event Count, into a single embedding in a
learnable manner. By leveraging their complementary
features, LMFR enhances performance in complex tasks.

Many other representations exist, but the most commonly used
benchmarks are detailed in Table 1. Moreover, to provide a better
understanding and facilitate comparison, we visualize a selection of
these representations in Figure 2a-g using event data from the
Gait3 dataset, specifically for a person walking from left to right.
These visualizations highlight the diversity in how event data can be
processed and interpreted for different applications. Note that for
the graph representation in Figure 2f, while it is typically a 3D
structure (like a point cloud) with events as nodes, for visualization
purposes, we project it onto the temporal axis and represent it as a
2D structure.

While we have explored the different event data representations,
it is equally important to evaluate their respective advantages and
limitations to understand their suitability for various applications.
First, Foundational representations, such as Event Count and Time
Surface, are fast to compute and highly efficient, and can serve as
lightweight baselines; however, their simplicity often results in
significant loss of spatial information. In contrast, structural
representations, such as graph and spiking tensor approaches,
capture spatio-temporal relationships effectively. Graph
representations maintain connections between event nodes,
making them effective for spatially complex tasks, though they
can become computationally expensive in scenarios with dense
movements or high event rates, often requiring filtering (Adra
et al., 2024a). Spiking tensors, on the other hand, align naturally
with the neuromorphic nature of event cameras and are compatible
with Spiking Neural Networks. However, SNNs face challenges like
gradient optimization issues and remain less mature compared to

CNNs (Eshraghian et al., 2023). Similarly, reconstructed
representations, such as intensity frames from E2VID, leverage
the high temporal resolution of event cameras and leverage the
power of the use of well-established CNN architectures; however,
they often lose key spatial details due to their grayscale and low-
resolution frames. Moreover, these frames can reintroduce
redundancy through the huge amounts of frames generated and
the static background information, which contradicts one of the
main benefits of event-based systems. Finally, despite enhancing
performance across tasks, the fused representation which combines
multiple approaches is considered computationally intensive and
requires significant resources to optimize effectively (Fan et al.,
2025). Ultimately, the choice of representation depends on the
specific application requirements, balancing computational
efficiency, spatio-temporal complexity, and compatibility with
existing architectures.

3.3 Neural network architectures for
event data

In the literature, several prominent neural network architectures
are utilized to process event data and downstream learning tasks,
each utilizing unique paradigms. In this section, we outline the most
commonly used approaches, briefly describing the
foundational concepts.

(1) Spiking Neural Networks: Event data are naturally
compatible with SNNs, as they also operate based on an event-
driven strategy. SNNs use discrete spikes rather than continuous
activations, and performwell in handling spatio-temporal data while
offering remarkable energy efficiency. Several works demonstrated
how SNNs can better model the asynchronous nature of event data
(Liu et al., 2021; Barchid et al., 2023), while others further refined

TABLE 1 Event data representations and their details.

Name Details

Event count Event data is aggregated by counting the number of events that occur at each pixel within a fixed time interval. This approach provides
a straightforward summary of activity, often used as a baseline representation

Event histogram Similar to the event count, but instead of a single time interval, events are grouped and counted in temporal bins, creating a
distribution of event activity that captures variations with more levels of detail

Time surface/surface of active events Represents data as a continuous map where each pixel value corresponds to the most recent timestamp of an event at that location.
This highlights recent activity and is often used to track motion or identify edges

Memory surface Event data are represented as a temporal map where each pixel’s value indicates the time elapsed since the last event occurred at that
location within a fixed time window. This approach encodes temporal information by retaining a “memory” of inactivity, making it
useful for identifying patterns, and tracking regions with recent or ongoing motion

Voxel grid Event data is sliced temporally into small time intervals, creating a sequence of event slices. These slices are then stacked into a 3D
grid, where each voxel represents the activity in a spatial region during a specific time window. This allows for preserving both spatial
and temporal resolution

Spike tensor Represents data as binary tensors indicating the occurrence of spikes in specific spatiotemporal locations. The tensor is separated into
two channels for positive and negative polarities

Graph Represents data as a graph, where events are treated as nodes in a graph with polarity as the node feature. Then, edges are created
between nodes to represent spatiotemporal relationships, often used for tasks like pattern recognition

E2VID Frame Represents data as reconstructed frames by using neural networks to convert the sparse event stream into intensity frames. This allows
event data to be used with traditional frame-based computer vision methods

Temporal binary representation Events are first stacked together into intermediate binary representations where each pixel can be considered as a binary string. These
frames are then grouped into a single frame by applying binary to decimal conversion. Most popular in face analysis applications
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their application to real-world problems (Bulzomi et al., 2023;
Vicente-Sola et al., 2025). These networks are considered
neuromorphic because, like event cameras, they are inspired by
how the brain works. They are a good fit for processing event data
asynchronously and without requiring frame reconstruction or
heavy preprocessing. They are also energy efficient and suitable
for low-power applications like embedded systems. However,
training them is challenging due to the non-differentiable nature
of spikes, which complicates the use of standard backpropagation.
Surrogate gradient methods have been introduced to address this
issue, yet training remains less efficient and less mature compared to
traditional deep learning models. As a result, their performance
often lags behind state-of-the-art frame-based networks, and tools
for large-scale deployment are still limited.

(2) Graph Neural Networks (GNNs): GNNs are specialized
artificial neural networks designed to process and analyze input

data as graphs, i.e., structures that represent the relations (edges)
between a collection of entities (nodes). GNNs directly operate on
the spatio-temporal graph structure from the raw events, where the
nodes can represent the event pixels and the edges the spatio-
temporal dependencies between the nodes (Wang et al., 2021;
Gao et al., 2024). One advantage of these networks is that they
model event data as nodes and edges, making them well-suited for
tasks like pose estimation or action recognition. This allows GNNs
to capture complex spatio-temporal relationships and represent
irregular and sparse structures efficiently. However, graph
construction is often complex and computationally expensive,
and these models are harder to scale and optimize than CNNs.

(3) Convolutional Neural Networks: CNNs are particularly
suited for grid-structured data, i.e., images, and aim to perform
local feature extraction through convolution operations. To harness
the capabilities of CNNs for event data, these data are either encoded

FIGURE 2
Visualizations of various event data representations derived from the Gait3 dataset, specifically illustrating a man walking from left to right.From
2 (a–g), respectively: RGB reference frame, E2VID Reconstruction, Event Count, Memory Surface, Time Surface, Graph, Voxel Grid.
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into frame-based representations or processed by incorporating
spatio-temporal convolutional layer in the architecture. The
effectiveness of using CNNs in event data processing has been
well-established (Li et al., 2019; Banerjee et al., 2022; Becattini
et al., 2022), allowing future studies to build upon these
assumptions and further enhance event feature extraction
(Kanamaru et al., 2023; Goyal et al., 2023). Actually, using event
frame representations has allowed us to leverage all the
advancements in research dedicated towards building well-
established CNN architectures with pre-trained models trained
on benchmark datasets. However, this conversion from events to
frames might compromise some of the key advantages of event data
such as high temporal resolution and sparsity. Moreover, most
CNNs are inherently designed to process RGB data and might
reply on texture and color information, which may not be
present in event data. This might require heavy fine-tuning to
perform well on event data.

(4) Transformers: Transformers moved away from traditional
Recurrent Neural Networks (RNNs) and CNNs structures and
revolutionized sequence-based data processing with their self-
attention mechanism, which enables the allocation of higher weights
to more significant information in the data. Depending on the
tokenization strategy, events can be either processed in the form of
frames, or in their raw format. Transformers allow for enhanced
spatiotemporal feature extraction, effectively capturing the fine-
grained dynamics of these types of data (Cultrera et al. (2024); Zou
et al. (2023). These networks are one of the better performing as they
capture the spatiotemporal dependencies between raw event data using
attention mechanisms. They can directly operate on raw event streams
or voxel representations, making them suitable for capturing both local
and global patterns in human activity. This allows them to often achieve
state-of-the-art results specially in action recognition or motion
prediction tasks. However, they are very resource-intensive in terms
computational complexity, large memory usage, and long training
times, making them difficult to use in low-resource scenarios or in
real-time embedded systems.

Each one of these architectures offers specific advantages, and
the choice of which one to use is based on the specific characteristics

of the event data and the requirements of the application. Table 2
provides a comprehensive classification of key works that use these
architectures, showcasing the diversity of methodologies and their
applications.

3.4 Event simulators

As highlighted in Figure 1, event cameras are increasingly
adopted in new domains. Initially applied in driver monitoring
and robotics, their use has expanded to human motion analysis,
including gait and action recognition, and more recently to face
biometrics, capturing subtle facial movements. However, the
widespread adoption of event cameras is hindered by the lack
of publicly available datasets. This limitation has driven the
development of event camera simulators, which convert
conventional RGB video data into synthetic event streams by
replicating the characteristics of event data as accurately
as possible.

The first notable simulator, ESIM, was introduced by Rebecq
et al. (2018), providing a foundational framework for generating
synthetic event streams. Gehrig et al. (2020) build upon this work
and developed the Vid2E simulator by adding an upsampling step to
RGB videos, enhancing the accuracy and the ability of models
trained with synthetic data to generalize for real data. Hu et al.
(2021) later introduced V2E, a versatile simulator capable of
producing raw event streams alongside grayscale frames and
corresponding text files, broadening its applicability. Lin et al.
(2022) proposed the DVS-Voltmeter, which improves synthetic
event data quality by modeling the behavior of the DVS sensor
using a unified approach that incorporates its circuit properties.
Most recently, Zhang et al. (2024b) proposed the V2CE simulator,
which stands out as the most precise event data simulator to date.
Numerous other simulators have been developed (Prophesee, 2023);
Joubert et al. (2021); Han et al. (2024); Mueggler et al. (2017);
SimulatorC. (2023); however, to the best of our knowledge, the ones
discussed here are the most widely adopted and publicly available
tools in the research community for generating synthetic event data.

TABLE 2 Papers presented in this survey, classified by the type of AI architecture used for their models.

SNN Graph NN CNN Transformers Not AI-based

Liu et al. (2021)
Barchid et al. (2023)
Ren et al. (2023b)

Bulzomi et al. (2023)
Tao et al. (2024)

Vicente-Sola et al. (2025)

Wang et al. (2021)
Eisl et al. (2023)

Fu and Yan. (2023)
Gao et al. (2024)

Li et al. (2019)
Wang et al. (2019)

Sokolova and Konushin. (2019)
Ryan et al. (2021)

Banerjee et al. (2022)
Becattini et al. (2022)
Moreira et al. (2022)
Plizzari et al. (2022)
Ryan et al. (2023)
Gao et al. (2023)

Rios-Navarro et al. (2023)
Bissarinova et al. (2023)
Berlincioni et al. (2023)

Goyal et al. (2023)
Kanamaru et al. (2023)

Xiao et al. (2024)
Kohyama et al. (2024)
Adra et al. (2024b)
Iddrisu et al. (2024b)

Xu et al. (2020)
de Blegiers et al. (2023)

Zou et al. (2023)
Cultrera et al. (2024)

Barua et al. (2016)
Savran et al. (2018)
Lenz et al. (2020)
Chen et al. (2020b)

Angelopoulos et al. (2020)
Eddine and Dugelay. (2022)

Ren et al. (2023a)
Guo and Huang. (2023)

Savran (2023)
Himmi et al. (2024)
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The main advantage of event simulators is [removed repetition]
that they provide researchers with a means to bypass the need for
expensive hardware and complex data collection during early
experimentation for validating hypotheses, and also, to train
simple networks for preprocessing tasks, like detecting regions of
interest in real event data (Becattini et al., 2022; Barchid et al., 2023).
In addition, simulators overcome one of the main challenges of
working with real event data: synchronization between RGB and
event data, particularly in applications where the training data
requires both modality pairs (Berlincioni et al., 2023).

However, despite their advantages, event simulators have
notable drawbacks. First, they often fail to fully replicate the
complexity and noise of real-world event data, which makes it
harder for models trained on synthetic datasets to generalize
effectively to real-world scenarios (Gehrig et al., 2020; Bi et al.,
2020). Second, the quality of synthetic event streams heavily
depends on the input RGB videos; if the videos lack high
resolution and frame rate, the resulting event streams may
miss critical details and temporal accuracy. Most critically,
simulators inherently lose the high temporal resolution of
event cameras, as they convert frame-based video inputs into
events, reducing temporal precision from microseconds to
frames per second, which can significantly affect tasks
requiring fine-grained temporal information (Rebecq et al.,
2018; Hu et al., 2021).

3.5 Datasets

The development and evaluation of event-based systems for
human-centered applications heavily rely on publicly available
datasets. In this survey, we categorize the datasets into two main
groups based on their focus: body application datasets, which are
designed for tasks such as action recognition, gait analysis, and
human tracking, and face application datasets, which target
applications like face detection, facial expression recognition, and
anonymization. Each dataset is characterized by its unique
properties, which we summarize in Tables 3, 4.

3.6 Real datasets

Table 3 summarizes the human-centered real event datasets,
focusing on body and face applications respectively. Each section of
the table provides detailed information about the datasets, including
the year of publication, the dataset name, the number of videos, the
number of participants, and other information that could be relative
to the corresponding application.

For body applications, key datasets include Action Dataset
TUM for action recognition, DVS128 Gesture for gesture
recognition, and DVS128-Gait-Day for gait analysis. Table 3
also highlights newer datasets like DailyDVS-200 and THU-
MV-E-ACT-50, which include multimodal data and a large
number of classes. As for Face applications, notable datasets
include DVS-Lip for lip reading and NEFER for Micro-
Expression Recognition (MER). The more recent VETEX
dataset combines multimodal data, including RGB and event
streams, to enhance facial analysis tasks.

3.7 Simulated datasets

Building on the challenges associated with real datasets—such as
synchronization issues, noise, and limited diversity—we summarize
in Table 4 the available synthetic datasets, categorizing them by their
focus on body or face-related tasks. These datasets are generated in
controlled environments, offering precise annotations and diverse
scenarios that complement real-world data.

Unlike body applications, there are fewer publicly available
synthetic datasets for face analysis. The currently available
datasets are typically generated from the same benchmark RGB
datasets, such as e-CK+ and e-MMI, and have been simulated
multiple times by different researchers using tools like V2E, often
with different parameters (Verschae and Bugueno-Cordova, 2023;
Barchid et al., 2023). As a result, the generated event data cannot be
published as standalone datasets but are typically shared as
simulation code. In cases like NEFER dataset, Berlincioni et al.
(2023) utilized an unpublished simulated event dataset to train a face
detector for creating synchronized bounding boxes, enabling event-
based face detection on real data, even though the primary goal of
the work was micro-expression recognition where a real dataset was
collected. This has resulted in limited diversity in synthetic datasets
for face-related tasks compared to body applications.

3.8 Data compression

Despite event cameras being energy efficient, one key challenge
is the significant data volume they generate, especially in real-time
applications like robotics and video surveillance, where embedded
systems require efficient storage and processing. While the
asynchronous nature of event data reduces redundancy compared
to traditional video streams, the sheer volume of events captured
during high-speed motion or complex scenes remains a bottleneck.
Several works have proposed compression techniques to address this
challenge, leveraging both traditional and deep-learning-based
methods (Sezavar et al., 2024; Wang et al., 2023).

Approaches to compress event data generally fall into multiple
categories. Traditional methods include transforming events into
frame-like representations for compatibility with standard video
coding techniques (Schiopu and Bilcu, 2022). Other methods, such
as Spike coding, directly leverages the sparse and asynchronous
nature of event streams to encode only significant changes,
effectively reducing data size while preserving critical temporal
information (Sengupta and Kasabov, 2017; Bi et al., 2018). More
recent research explores geometric-based structures as proposed by
Martini et al. (2022) where they introduce a point cloud-based
compression method capable of both lossy and lossless operations,
achieving efficient data reduction. Huang et al. (2023) worked on
point-cloud compression, further demonstrating that compression
at high ratios maintains performance for tasks such as object
detection and image reconstruction. They were able to achieve a
compression ratio of 5 with lossless point cloud coding and with zero
accuracy degradation on recognition tasks. Some large companies
such as Google also contributed to that domain. In particular,
Google designed Draco which further extended previous methods
by supporting additional attributes such as polarity, making it well-
suited for event point clouds and stands out for its faster processing
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compared to other methods. Recent advancements also explore
deep-learning-based solutions. Nguyen et al. (2021) proposed
VoxelDNN, a model that captures the geometric structure of
event data through convolutional networks, achieving both high
compression efficiency and preservation of critical information.

The growing importance of event data compression is further
highlighted by recent initiatives such as the JPEG XE standard,
developed by the JPEG committee (Brites and Ascenso., 2024). JPEG
XE focuses on creating a standardized framework for efficiently
representing event-based vision data, ensuring interoperability

TABLE 3 Real event-based datasets for human-centered applications.

Body datasets

Year Authors Name #
Videos

#
People

Modalities Application #
Classes

DVS
Resolution

2017 Amir et al. (2017) DVS Gesture 1,342 29 EV Action
Recognition

11 128 × 128

2019 Miao et al. (2019) Action
Dataset TUM

291 15 EV Action
Recognition

10 346 × 260

2019 Calabrese et al. (2019) DHP19 2,244 17 EV Pose Estimation - 346 × 260

2019 Wang et al. (2019) DVS128-Gait-Day 4,000 20 EV Gait Recognition - 128 × 128

2019 Wang et al. (2019) DVS128-Gait-
Night

4,000 20 EV Gait Recognition - 128 × 128

2021 Liu et al. (2021) DailyAction-DVS 1,440 15 EV Action
Recognition

12 346 × 260

2022 Eddine and Dugelay.
(2022)

Gait3 168 56 RGB - EV - TH Gait Recognition - 346 × 260

2023 Gao et al. (2023) THU-E-ACT-50 10,500 105 EV Action
Recognition

50 346 × 260

2023 Gao et al. (2023) THU-E-ACT-
50-CHL

2,330 18 EV Action
Recognition

50 346 × 260

2024 Gao et al. (2024) THU-MV-E-
ACT-50

31,500 105 EV Action
Recognition

50 346 × 260

2025 Wang et al. (2025) DailyDVS-200 22,000 46 RGB - EV Action
Recognition

200 320 × 240

Face datasets

Year Authors Name # Videos # People Modalities Application DVS Resolution

2016 Barua et al. (2016) - - 30 EV Face Detection 128 × 128

2019 Li et al. (2019) - 34,000 34 EV-audio Lip Reading 340 × 280

2020 Angelopoulos et al. (2020) - 24 24 EV Eye gaze tracking 346 × 260

2020 Chen et al. (2020a) EDDD 260 26 EV Drowsiness 346 × 260

2020 Lenz et al. (2020) - 48 10 EV Face Detection 304 × 240

2020 Chen et al. (2020b) NeuroBiometric 180 45 EV Authentication 346 × 260

2022 Banerjee et al. (2022) - 3,360 6 RGB - EV Eye gaze tracking 346 × 260

2022 Becattini et al. (2022) - 455 25 RGB - EV MER 640 × 480

2022 Tan et al. (2022) DVS-Lip 19,871 40 EV Lip Reading 346 × 260

2022 Moreira et al. (2022) NVSFD 436 40 EV Identity Recognition 1280 × 800

2023 Bissarinova et al. (2023) FES ~4,000 73 EV Face Detection 480 × 360

2023 Berlincioni et al. (2023) NEFER 609 29 RGB - EV MER 1280 × 720

2023 Kanamaru et al. (2023) - 1,500 20 EV Lip Reading 340 × 280

2024 Adra et al. (2024b) VETEX 2,506 30 RGB - EV - TH MER 346 × 260
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between sensing, storage, and processing systems. This initiative
reflects the increasing interest in event cameras within industry and
research, as standardization efforts like these are critical for
facilitating broader adoption. By targeting machine vision
applications, this initiative addresses the unique challenges of
event cameras, such as their sparse and asynchronous nature,
while emphasizing their potential for real-world application.

The techniques presented above, collectively enable event
cameras to manage large-scale data effectively, facilitating their
integration into real-time systems while maintaining the benefits
of event-based vision.

4 Applications

In this section, we discuss the human-centered state-of-the-art
applications of event data, divided into two macro areas: body and
face. Table 5 summarizes the applications addressed in the literature
using event cameras, referencing the corresponding state-of-the-art
works. It is important to note that some papers tackle more than one
application, and thus a reference may appear in multiple categories.
In each subsection, we provide a more in-depth analysis of these
research areas, explaining the relevant models for each application.

4.1 Body

In this subsection, we detail the applications of event-based data
that require information from the full body of a person: gait recognition,
action recognition, human tracking, and pose estimation.

4.2 Gait recognition

One of the first human-centered applications of event-based
camera, explored the feasibility of utilizing data obtained with this
new sensor to address the classic problem of gait recognition. Gait
recognition is a biometric technique aimed at identifying individuals
based on their unique walking patterns. By mainly capturing motion
with high temporal resolution and sparse data representation,
researchers could effectively analyze and distinguish walking
patterns to determine human identities.

The first work on event-based gait recognition was presented in
2019 by Wang et al. (2019). Due to the noisy and asynchronous
nature of events, traditional vision-based gait recognition algorithms
were unsuitable for such data. To address this challenge, they
proposed a novel approach called EV-Gait. This method
leverages motion consistency to effectively reduce noise in event
streams and employs a deep neural network to recognize gait
patterns from the asynchronous and sparse event data, making it
specifically tailored to the capabilities and challenges of this
technology.

Over time, various architectures have been proposed to tackle
the task of event-based gait recognition. An early work by Sokolova
and Konushin (2019) introduced a pipeline composed of five
consecutive steps: visualization of the event stream, human figure
detection, optical flow estimation, human pose estimation, and
finally, gait recognition based on neural features. This approach
achieved performance comparable to conventional methods using
color videos. Another approach by Tao et al. (2024) utilized SNNs to
process event data, introducing a domain-specific Locomotion-
Invariant Representation (LIR). LIR replaced the static Cartesian

TABLE 4 Synthetic datasets for human-centered applications.

Body datasets

Year Authors Name # Videos # People Application # Classes

2019 Wang et al. (2019) EV-CASIA-B 8,184 124 Gait Recognition -

2020 Bi et al. (2020) HMDB51-DVS 6,766 - Action Recognition 51

2020 Bi et al. (2020) UCF101-DVS 13,320 - Action Recognition 101

2022 Plizzari et al. (2022) N-EPIC-Kitchens 64 - Action Recognition 8

2023 Zou et al. (2023) SynEventHPD 9,197 47 Pose Estimation -

2023 Goyal et al. (2023) eH36m 748 7 Pose Estimation -

Face datasets

Year Authors Name # Videos # People Application

2022 Moreira et al. (2022) SynFED 6,536 30 Identity Recognition

2023 Barchid et al. (2023) ADFES 198 22 Face Expression Recognition

2023 Barchid et al. (2023) Oulu-CASIA 480 80 Face Expression Recognition

2023 Barchid et al. (2023), Verschae and Bugueno-Cordova. (2023) e-CK+ 327 93 Face Expression Recognition

2023 Barchid et al. (2023), Verschae and Bugueno-Cordova. (2023) e-MMI 2,900+ 75 Face Expression Recognition

2023 Ryan et al. (2023) - - 5 Multitask Facial Analysis

2024 Tan et al. (2024) DVS-LRW100 107,664 - Lip Reading
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coordinates of the raw event camera data with a floating polar
coordinate system centered on the motion axis, improving the
representation’s adaptability to dynamic scenarios. Further
innovations in Fu and Yan (2023) include the use of hypergraph
neural networks for gait recognition. This method employed an
event flow downsampling module to reduce data volume without
compromising discriminability, an event feature extraction module
to convert events into graph nodes, and a spatiotemporal
hypergraph convolution module to construct a hypergraph,
extract spatiotemporal features, and obtain pedestrian gait features.

Comparative works have also emerged in the literature. In 2022,
Eddine and Dugelay (2022) conducted experiments using a baseline
algorithm based on gait energy images adapted to event-camera
output. They compared this approach to results from RGB and
thermal videos using the same algorithm, demonstrating a distinct
advantage for event-based data. Wang et al. (2021) investigated
different representations of event streams for deep neural network
classifiers. They proposed novel event-based gait recognition
approaches using two distinct representations: graph-based and
image-like. These methods leveraged graph convolutional
networks and convolutional neural networks, respectively,
showcasing the versatility of event-based data for gait recognition.

4.3 Action recognition

Action recognition is a major research focus in computer vision
due to its importance in applications such as security and human-
computer interaction (Adra et al., 2024a). Research in this field has
advanced with the use of bio-inspired event sensors which capture
only the activity in their field of view and automatically differentiate
the foreground from the background, making them ideal for
recognizing human actions.

Liu et al. (2021) made an early attempt to apply motion
information to event-based action recognition by extracting
motion features from events, progressing from local to global
perception. On the other hand, Ren et al. (2023b) introduced
SpikePoint, a novel end-to-end point-based SNN architecture
that processes event data as cloud data and converts them into
spikes using rate coding. More recently, in 2025, Vicente-Sola et al.
(2025) demonstrated that spiking neurons can enable temporal
feature extraction in feed-forward neural networks without
requiring recurrent synapses, and how recurrent SNNs can
achieve performance comparable to LSTMs with fewer
parameters, validating their approach in action recognition.

Beyond SNNs, other architectures have been explored to create
more lightweight models. de Blegiers et al. (2023) proposed a video
transformer-based framework that acquires spatial embeddings per
event-frame and utilizes a temporal self-attention mechanism. This
approach separates spatial and temporal operations, making the
video transformer more computationally efficient than other video
transformers. Ren et al. (2023a) proposed a point cloud-based
method for action recognition using event data, featuring a
hierarchical structure that distinguishes local and global features.
Their model is lightweight, thanks to the application of tensor
decomposition to compress the data.

In more recent works, Gao et al. (2023) introduced EV-ACT, an
event-based action recognition framework that uses a slow-fast
network to fuse motion and appearance-related features. One of
their key contributions is the Learnable Multi-Fused Representation,
which integrates multiple event representations, such as time
surfaces, event frames, and event count, into a single embedding.
In an extension of their work, Gao et al. (2024) proposed HyperMV,
a multi-view event-based action recognition framework utilizing
hypergraphs and a hypergraph neural network to capture
relationships across viewpoint and temporal features.

TABLE 5 The table presents applications of event cameras for human data along with an exhaustive selection of relevant works for each category. The
applications are categorized into two main areas: face and body.

Body

Human tracking Gait recognition Action recognition Pose estimation

Eisl et al. (2023)
Xu et al. (2020)

Wang et al. (2019)
Sokolova and Konushin. (2019)

Wang et al. (2021)
Eddine and Dugelay. (2022)

Fu and Yan. (2023)
Tao et al. (2024)

Liu et al. (2021)
Plizzari et al. (2022)
Ren et al. (2023a)
Ren et al. (2023b)

de Blegiers et al. (2023)
Gao et al. (2023)
Gao et al. (2024)

Vicente-Sola et al. (2025)
Wang et al. (2025)

Sokolova and Konushin. (2019)
Zou et al. (2023)
Goyal et al. (2023)

Kohyama et al. (2024)

Face

Face detection Identity recognition Lip reading Eye blinking & gaze

Barua et al. (2016)
Lenz et al. (2020)
Ryan et al. (2021)

Bissarinova et al. (2023)
Ryan et al. (2023)
Himmi et al. (2024)
Iddrisu et al. (2024b)

Chen et al. (2020b)
Moreira et al. (2022)

Savran et al. (2018)
Li et al. (2019)

Rios-Navarro et al. (2023)
Savran (2023)

Kanamaru et al. (2023)
Bulzomi et al. (2023)

Lenz et al. (2020)
Chen et al. (2020b)

Angelopoulos et al. (2020)
Ryan et al. (2021)

Banerjee et al. (2022)
Ryan et al. (2023)

Iddrisu et al. (2024b)
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Additionally, Plizzari et al. (2022) proposed two new strategies;
directly processing event-camera data with traditional video-
processing architectures and using event data to extract optical
flow information. They also compared the performance of
different pairings of event, RGB, and optical flow. Another
comparative study was conducted by Wang et al. (2025), where
in addition to introducing their benchmark database,DailyDVS-200,
they evaluated it using 12 event-based architectures for action
recognition.

For this application in particular, we believe that there are
sufficient resources and a well-established benchmark dataset that
allows for a fair evaluation across the different network types
discussed in Section 3.3. Therefore, we trained each of these
networks on the DVS Gesture dataset (mentioned in Table 3)
and compared their performance in terms of accuracy, training
time, and number of parameters to assess both performance and
complexity. The results are shown in Table 6. Despite achieving the
best performance, event-based transformers are also the most
complex and require almost 30 times more training time than
the SNN or Graph CNN. The SNN model, on the other hand, is
the lightest model in terms of parameters and training time but
slightly less accurate than both the transformer and the 3D CNN.
Interestingly, the 3D CNN stands as a middle ground, offering high
accuracy with a level of complexity that is higher than SNNs but still
significantly lower than transformers. This highlights the
importance of selecting the right trade-off between performance
and complexity based on the specific requirements of our target
application.

4.4 Pose estimation

Human Pose Estimation refers to the identification of key body
joints in a human and plays a vital role in many human-centered
tasks (Rafi et al., 2020). In fields like robotics, IoT, and smart home
applications, pose estimation is the initial step that supports
subsequent processes such as action recognition, posture analysis,
and emotion and intent detection (Goyal et al., 2023).

In 2019, Sokolova and Konushin (2019) attempted the first pose
estimation using event-based human data. Although their primary
goal was human gait recognition, they also addressed several
auxiliary challenges, such as moving object detection and human
pose estimation in event-based video sequences. Their model
focused on detecting areas of interest and subsequently
computing optical flow to estimate the positions of key pose
points. In more recent approaches, Goyal et al. (2023) presented
a system for high-frequency 2D human pose estimation for a single
person. The core of their approach is the use of a lightweight, image-
like event representation that resolves the issue of static body parts
disappearing and allows pre-training on widely available frame-
based datasets with high-accuracy ground truth, followed by fine-
tuning on native event-camera datasets.

Zou et al. (2023) introduced the first end-to-end method for 3D
human pose tracking using only event data, leveraging Spiking
Neural Networks. In 2024, Kohyama et al. (2024) proposed a
method that exclusively uses event data to create 3D voxel
representations by moving an event camera around a stationary
body Kohyama et al. (2024). This method reconstructs human pose

and mesh through attenuated rays while fitting statistical body
models to preserve high-frequency details.

4.5 Human tracking

In recent years, Mitrokhin et al. (2018) and Ramesh et al. (2020)
have proposed several approaches for event-based object tracking,
primarily focusing on tracking objects with simple shapes. Building
on this, a new research direction has emerged, addressing the
relatively novel problem of tracking 3D human inputs solely
based on event streams from an event camera, thereby
completely eliminating the need for additional dense input
images. In 2023, Eisl et al. (2023) presented a novel framework
for tracking humans using a single event camera, comprising three
main components. First, a Graph Neural Network was trained to
identify a person within the stream of events. To preserve the sparse
nature of the event data and leverage its high temporal resolution,
batches of events are represented as spatio-temporal graphs. Next,
the person was localized in a weakly-supervised manner via Class
Activation Maps to their graph-based classification model,
eliminating the need for ground truth human positions during
training followed by a Kalman filter for tracking.

Existing works in pose tracking either require the presence of
additional grayscale images to establish a reliable initial pose as it is
the case in Xu et al. (2020) or disregard temporal dependencies
altogether by collapsing segments of event streams into static event
frames like in Rudnev et al. (2021). Zou et al. (2023) introduced a
dedicated end-to-end sparse deep learning approach for event-based
3D human pose tracking where the task is achieved without any
reliance on frame-based images. Their method is based on a Spiking
Neural Network, with the incorporation of a Spike-Element-Wise
ResNet and a novel Spiking Spatiotemporal Transformer.

4.6 Face

In this subsection, we analyze the use of event-based data for
tasks that involve solely the face of an individual. Those applications
are face detection, identity recognition, lip-reading, eye blinking and
gaze analysis and microexpression and emotion recognition.

4.7 Face detection

An early application of event-based facial data was face
detection, a task that involves identifying and locating human
faces within an image or video stream. Face detection serves as a
foundational step for various facial applications, including identity
recognition, soft biometric estimation, and behavior analysis.

In 2016, Barua et al. (2016) developed a pioneering face
detection model based on translating event streams into large-
scale images using a patch-based approach. Their method
involved learning a sparse dictionary of patches to reconstruct
both simulated and real event data, even in noisy conditions.
Their event-based face detection framework achieved results
comparable to the traditional Viola-Jones face detector (Viola
and Jones, 2001). Bissarinova et al. (2023) proposed an
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architecture that utilizes events accumulated over time and
incorporates past event information for effective face detection.
They presented 12 models trained on their dataset to predict
bounding boxes and facial landmark coordinates. Additionally,
they showcased real-time face detection capabilities using event-
based cameras and their models. More recently, Himmi et al. (2024)
defined the concept of multispectral events, capturing data across
multiple spectral bands to enhance event-based face detection. They
demonstrated that multispectral events significantly improve face
detection performance compared to monochromatic grayscale
events, surpassing even conventional multispectral image
performance.

As face detection often precedes other facial processing tasks,
several studies have combined face detection with additional
applications. In 2020, Lenz et al. (2020) introduced the first
purely event-based method for face detection, relying on eye-
blink detection. They analyzed the temporal signature of eye
blinks and employed a Gaussian tracker to statistically measure
pixel activity in the event stream. In 2021, Ryan et al. (2021)
proposed GR-YOLO, a novel neural network for face and eye
detection using event cameras, specifically in driver monitoring
systems. Their architecture, based on YOLOv3-tiny, incorporated
a fully convolutional gated recurrent unit layer. By 2023, Ryan et al.
(2023) extended this work by introducing a two-stage event-based
multi-task facial analytics framework. The first stage used a CNN to
locate and track faces and eyes, while the second stage employed
another CNN to estimate head pose, eye gaze, and occlusions within
a multi-task learning setup. Building on previous work, Iddrisu et al.
(2024b) utilized a Temporal Binary Representation of event data and
trained a GR-YOLO model, comparing its performance to
YOLOv8 for face and eye detection tasks.

4.8 Identity recognition

Identity recognition via face images is a biometric technology
that identifies or verifies individuals based on their distinct facial
features. This task is critical for numerous applications requiring
reliable verification or identification, as the face is a unique and
easily accessible trait crucial for enhancing security systems. So far in
the literature, identity recognition from event data has been
performed with the help of other auxiliary tasks such as eye
blink characterization or facial dynamics derived from speech.

In 2021, Chen et al. (2020b) proposed the first neuromorphic,
event-based biometric authentication system. Their method for
identity recognition relied on eye blink characterization. They
defined a set of biometric features describing the motion, speed,

energy, and frequency signals of eye blinks, leveraging the
microsecond temporal resolution of event densities. Using these
features, they trained both an ensemble model and a non-ensemble
model with their NeuroBiometric dataset for biometric
authentication. In a subsequent work, Moreira et al. (2022)
explored the potential of event sensors for identity recognition
through a novel facial characteristic: facial dynamics derived
from speech. They also validated the contribution of facial
motion to human face identity categorization. Their approach
involved aggregating events into frames, normalizing them, and
grouping them into so-called “face tokens,” which were then
processed by a spatio-temporal 3D CNN to extract insights about
the individual’s identity.

4.9 Lip reading

Voice Activity Detection (VAD) is a technique used to identify
and isolate segments of speech within an audio stream. Event
cameras, with their high temporal resolution and ability to
capture micro-movements, are particularly beneficial for this task.
By accurately detecting subtle mouth movements, event data can
enhance the precision of VAD, as well as related applications like lip-
reading, where understanding spoken language relies on analyzing
lip motions.

Savran et al. (2018) explored for the first time voice activity
detection (VAD) using event data. In their VAD pipeline, they
leveraged event-based facial data by adding an initial module in their
pipeline where lip activity was filtered spatio-temporally and then
detected jointly through probabilistic estimation. In a later work,
Savran (2023) continued their research proposing an event
intensity-based method for VAD by designing a fully
convolutional network to segment vocally active durations
efficiently. In their approach, the raw event sequence was first
processed to ensure that voice-related temporal information was
preserved in a low-dimensional representation. Subsequently, a fully
convolutional VAD network was constructed to carry out the
detection task. In 2023, Kanamaru et al. (2023) presented an
event camera-based lip-reading method for isolated single-sound
recognition. Their pipeline included imaging from event data, face
and facial feature detection, and recognition using a Temporal
Convolutional Network (TCN). Their findings demonstrated that
event-based cameras achieved higher lip-reading accuracy than
traditional frame-based cameras. Furthermore, the authors
showed that combining two modalities, the frame-based camera
and the event-based camera, yielded higher accuracy than using
either modality alone. In the same year, Bulzomi et al. (2023)

TABLE 6 Action recognition performance comparison on the DvsGesture dataset.

Model Authors Accuracy Training time # Parameters

Graph CNN Wang et al. (2021) 81.94% 36.8 min 7.6M params

Spiking Neural Network Fang et al. (2021) 93.4% 24.1 min 130.4K params

Event-based Transformer de Blegiers et al. (2023) 97.91% 785 min 113.4M params

3D CNN (using reconstructed frames) Tran et al. (2015) 95.26% 270 min 78.04M params

Bold values indicate the best results in each column, i.e., the highest accuracy and the lowest training time.
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proposed the first SNN model for event-based lip reading, achieving
competitive results compared to state-of-the-art artificial
neural networks.

An innovative approach by Li et al. (2019) combined video and
audio data for the first time. The authors introduced a lip-reading
deep neural network that fused the asynchronous spiking outputs of
two bio-inspired silicon multimodal sensors: the Dynamic Vision
Sensor and the Dynamic Audio Sensor. Their classification process,
based on event-based features generated from the spikes of these
sensors, was tested on the GRID visual-audio lipreading dataset.
Similarly, Rios-Navarro et al. (2023). Utilized CNNs to process
visual and auditory information in their self-collected dataset, which
involved participants speaking a set of words. The visual
information was derived from lip movements captured by event
cameras as the subjects articulated words. The event activity was
converted into histograms, which a CNN further processed.

4.10 Eye blinking and gaze analysis

Eye movement has been extensively studied in the biometrics
community due to its potential for applications in authentication,
gaze tracking, and behavioral analysis. Indeed, when addressing eye-
blinking characterization from event-based data, researchers often
solve this problem as an auxiliary task for other major objectives.
Lenz et al. (2020) implemented a low-power human eye-blink
detection method designed to exploit the high temporal precision
provided by event-based cameras. Similarly, Chen et al. (2020b)
developed an authentication system based on eye blinks captured
with an event camera, achieving high accuracy with computationally
simple processes.

A different area of focus is gaze and eye tracking. In 2022,
Angelopoulos et al. (2020), defined a pipeline for gaze tracking
that combined frames recorded at a fixed sampling rate with
asynchronous events capturing eye motion at high speed. Their
method outputs a gaze point derived from an estimate of the
pupil, forming an almost continuous tubular structure that
outlined the pupil’s movement. Banerjee et al. (2022)
proposed a novel event-encoding technique that converted
motion event logs into six-channel images. They then
designed a CNN to predict gaze using the encoded events
from the event camera. In another study, Iddrisu et al.
(2024b) employed an event simulator to convert RGB videos
into event-based data. Their approach involved accumulating
events into binary frames and aggregating these frames into a
single one to enhance the density and quality of the simulated
data. They subsequently compared the performance of different
state-of-the-art models using the generated event data.

In 2021, Ryan et al. (2021) leveraged event-based data to create a
low-energy consumption model for simultaneously detecting and
tracking faces and eyes, specifically for driver monitoring
applications. They developed a customized fully convolutional
neural network for this purpose. Later, in 2023, Ryan et al.
(2023) extended their work for the same application by designing
a multitask neural network for real-time facial analysis. This new
model simultaneously estimated head pose, eye gaze, and facial
occlusions. It was trained on synthetic data and evaluated in real-
world scenarios.

4.11 Micro-expressions

Facial Emotion Recognition (FER) is a technology that analyzes
facial expressions from static images and videos to infer a person’s
emotional state. Recent advancements in the FER domain have
focused on estimating microexpressions, subtle and rapid facial
movements often performed involuntarily, due to their strong
connection with emotions as defined by the Facial Action
Coding System.

Becattini et al. (2022) pioneered the application of event
cameras for FER using synthetic event data. Leveraging an
event-camera simulator, they generated synthetic event
streams and transferred face bounding boxes onto the data.
Cropped face sequences were then processed by a CNN,
followed by a long short-term memory network to account for
the temporal dimension. In 2023, Barchid et al. (2023)
introduced “Spiking-FER,” a deep convolutional SNN inspired
by ResNet18, achieving superior performance compared to
traditional visible-domain methods. Berlincioni et al. (2023)
classified microexpressions into three categories neutral,
positive, and negative using a baseline 3D-CNN. Similarly,
Guo and Huang (2023) proposed a lightweight approach
utilizing a global-local event feature fusion network, which
merged local count images with global dense optical flow to
extract deeper features for FER.

In 2024, three studies further advanced the use of event data
for microexpression estimation. Xiao et al. (2024) developed a
system with two key components: the Event-Enhanced Motion
Extractor, which amplified subtle movements, and the Event-
Guided Attention module, which focused on crucial facial
regions for microexpression analysis. Cultrera et al. (2024)
introduced the first video transformer model for action unit
classification from event streams, significantly improving
accuracy. Finally, Adra et al. (2024b) conducted experiments
on their novel dataset revealing that thermal and event-based
modalities outperformed visible-spectrum cameras for
microexpression recognition. Although thermal images
provided the best performance under varying illumination
conditions, event data also demonstrated strong capabilities, as
its high temporal resolution proved more effective at capturing
small facial movements than traditional RGB cameras.

4.12 Discussion

In this section, we have extensively reviewed the various
applications of data obtained from neuromorphic cameras in
human-centered contexts. Neuromorphic human analysis is a
relatively new field of research. Nonetheless, several studies have
highlighted the effectiveness of neuromorphic cameras for a variety
of applications related to both the human body and face, offering
notable advantages compared to traditional computer vision
techniques. For instance, as demonstrated in Table 7,
neuromorphic cameras show significant improvements in tasks
such as action and microexpression on recognition when
compared to RGB-based methods. However, for other tasks, the
reported improvements are marginal or even negligible. For
example, in gait recognition, the observed gains are minimal, and
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for applications like face detection and lip reading, the performances
of neuromorphic cameras are often comparable to those achieved
with RGB-based approaches. This suggests that, while event data
holds promise, its benefits are not yet universally realized across all
applications. Additionally, a critical limitation in the current state of
research is the lack of standardized benchmark datasets. There is a
tendency for researchers to report results on newly created
databases, often without direct comparison to existing datasets,
making it challenging to objectively evaluate and compare
progress across studies.

Moreover, over the past decade, computer vision has made
remarkable advancements in their AI-based architectures such as
CNNs and vision transformers. These models are highly optimized
to extract detailed and meaningful information from RGB data,
resulting in state-of-the-art performances across a wide range of
tasks while other modalities such as event data have not received

the same level of attention in model development. Current neural
networks are not inherently designed to fully leverage the unique
characteristics of these modalities, which limits their potential. While
event-based sensors may provide additional, task-specific information
that could bemore useful than RGB data in certain scenarios, the lack of
tailored architectures results in RGB data often outperforming these
modalities. This is evident in the treatment of event data, where, as
noted in Table 2, processing frequently involves converting event
streams into representations that mimic the structure of RGB frames
to enable their use with pre-existing CNN architectures.

5 Conclusion and future perspectives

Human-centered applications are one of the foundations of
computer vision research, addressing challenges and

TABLE 7 This table presents a summary of the works included in this survey that compare their event-based networks with RGB-trained models. Works are
classified by their target application and the authors, year, and any reported improvement of event-based methods over RGB, if applicable are reported.

Authors Findings Improvements of event

Gait recognition Wang et al. (2019) For viewing angles 72, 90 and 108
EV-Gait performs better than RGB based approaches

3% increase in accuracy

Sokolova and Konushin.
(2019)

Similar perfomances reported for
Event-based and RGB approaches

-

Wang et al. (2021) For viewing angle 90°

EV-Gait-Graph performs better than RGB based
approaches

0.5% increase in accuracy

Eddine and Dugelay. (2022) Advantage of event data over RGB and thermal for
gait recognition

2% increase in accuracy

Tao et al. (2024) They report the advantage of event over RGB
across all different rotation angles for gait recognition

Up to 14% increase in accuracy

Action recognition Plizzari et al. (2022) Event data can surpass RGB for action recognition
in unseen scenarios on test data

4% increase in accuracy

de Blegiers et al. (2023) Event surpass RGB action recognition models
in different setups

Up to 14% increase in accuracy

Pose estimation Goyal et al. (2023) Pose estimation from event data surpasses RGB data Up to 5% increase in accuracy

Kohyama et al. (2024) Event does not suffer from motion blur as RGB does
for 3D-based pose estimation

Error (in mm) is divided by 5
in certain scenarios

Face detection Barua et al. (2016) Comparable results to Viola-Jones face detector -

Ryan et al. (2023) Traditional RGB models perform better on RGB images
than on their simulated event data counterpart

-

Lip reading Kanamaru et al. (2023) They combined event and RGB modalities for lip reading -

Microexpression and emotion
recognition

Becattini et al. (2022) Event data overperforms RGB for detecting three
types of expressions: Positive, Neutral, Negative

Up to 9% increase in accuracy

Berlincioni et al. (2023) Event overperforms RGB in the prediction of
seven different emotions

Up to 15% increase in accuracy

Xiao et al. (2024) Event and RGB are merged as input to the network 1% increase in accuracy

Cultrera et al. (2024) For the estimation of some action units event data
delivers better performance

For 6 out of 24 action units
event data is more accurate

Adra et al. (2024b) Event data gives more information than RGB
for microexpression recognition

Up to 13% increase in accuracy
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opportunities in diverse areas such as surveillance, biometric
authentication, autonomous driving, and behavioral analysis.
While traditional frame-based methods using RGB cameras have
achieved remarkable advancements, their limitations in temporal
resolution, motion blur, and low-light conditions have increased the
interest in neuromorphic cameras. These sensors represent a
paradigm shift, capturing asynchronous pixel intensity changes
that provide high temporal resolution, robustness in challenging
environments, and reduced computational demands.

This survey offers a comprehensive overview of the progress and
potential of event-based cameras for human-centered applications.
By categorizing advancements in human body- and face-related
tasks, we highlight the progress made in recent years, emphasizing
the strengths and innovations of architectures leveraging event-
based data. Presenting the current state of the art, identifying
challenges, and suggesting future directions, this survey aims to
guide researchers in exploiting the potential of event-based cameras
for human-centered applications.

By analyzing the properties of event data, we observed how it
is uniquely suited for machines due to characteristics such as high
temporal resolution and low latency. These attributes provide AI
models with richer and more precise information compared to
traditional RGB data. However, event data is less intuitive and
interpretable for humans, making it better aligned with AI
capabilities than with human understanding. Moreover, in our
state-of-the-art review, we identified a significant drawback in
many of the models presented: researchers often focus on
demonstrating the suitability of event data for specific
applications and few works conduct thorough comparisons
with RGB-based methods. This lack of direct performance
comparisons highlights the early developmental stage of event-
based models, which in some cases have yet to reach the maturity
required for widespread adoption. Additionally, we want to
remark that the future of acquisition sensors remains
uncertain, particularly as generative AI continues to advance
enabling the creation of highly accurate synthetic images that can
be used to train high-precision networks without compromising
individual privacy. Such synthetic datasets have the potential to
complement or even replace real-world event-based data in
certain scenarios.

However, looking ahead, different promising directions for
future research emerge. So far, one of the most critical limitations
is the lack of a standardized event-based datasets, particularly
those that capture real-world conditions in diverse human-
centered scenarios. Several studies in the area of face or body
analysis rely on custom or unpublished datasets, making it
difficult to benchmark proposed event-based methods. To
support fair comparison and reproducibility across studies,
future efforts should focus on releasing publicly available
datasets, potentially across multiple and synchronized
modalities and covering a wide range of possible scenarios. A
critical challenge in this direction is the temporal alignment
between event data and other sensor streams. Since events are
fundamentally asynchronous, precise synchronization is not
trivial, and many existing datasets either lack synchronized
modalities or provide only vaguely aligned data.

Another key limitation is how event data is currently
processed since the majority of existing approaches tend to

convert the asynchronous event stream into frame-like
representations, primarily to make it compatible with
conventional CNN architectures. While this strategy can
simplify the usage of the data to downstream learning tasks, it
comes at the cost of not fully exploiting the intrinsic properties of
event data. Future research should therefore aim to improve
event representation and processing methods, along with
architectures that natively operate on raw events (e.g., spiking
neural networks, graph-based models)

One other interesting point that deserves deeper investigation is
the role of privacy in event-based vision. Recent works have
demonstrated that it is possible to reconstruct intensity maps
from events, potentially revealing sensitive information, including
facial identity. This is considered as a privacy attack against event
data known as a reconstruction attack. Several studies in the
literature have already proposed strategies for anonymizing or
encrypting event streams, but we are far from seamlessly
integrating them in the majority of learning pipelines. Research
efforts should also aim to design privacy-preserving architectures,
especially in surveillance-related applications.

Finally, while some studies already tried to explore the
combination of event data with other sensory inputs (e.g.,
integrating events and RGB frames), systematic approaches
to multimodal sensor fusion are still rare. Developing
systems that integrate event-based and conventional
modalities offer greater potential, as these systems could
exploit the complementary strengths of event cameras and
other mainstream sensors, enhancing the overall
performance. In this context, attention-based fusion
strategies or encoder-decoder architectures with shared latent
spaces are promising options to be explored.
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