
Reinforcement learning,
rule-based, or generative AI: a
comparison of model-free Wi-Fi
slicing approaches

Rafael Rosales1* and Dave Cavalcanti2

1Intel Labs, Intel Corporation, Munich, Germany, 2Intel CCG, Intel Corporation, Hillsboro, OR,
United States

Resource allocation techniques are key to providing Quality-of-Service
guarantees. Wi-Fi standards define features enabling the allocation of radio
resources across time, frequency, and link band. However, radio resource
slicing, as implemented in 5G cellular networks, is not native to Wi-Fi. A few
reinforcement learning (RL) approaches have been proposed for Wi-Fi resource
allocation and demonstrated using analytical models where the reward gradient
with respect to the model parameters is accessible—i.e., with a differentiable Wi-
Fi network model. In this work, we implement—and release under an Apache
2.0 license—a state-of-the-art, state-augmented constrained optimization
method using a policy-gradient RL algorithm that does not require a
differentiable model, to assess model-free RL-based slicing for Wi-Fi
frequency resource allocation. We compare this with six model-free baselines:
three RL algorithms (REINFORCE, A2C, PPO), two rule-based heuristics (Uniform,
Proportional), and a generative AI policy using a commercial foundational Large
LanguageModel (LLM). For rapid RL training, a simple, non-differentiable network
model was used. To evaluate the policies, we use an ns-3-basedWi-Fi 6 simulator
with a slice-aware MAC. Evaluations were conducted in two traffic scenarios: A) a
periodic pattern with one constant low-throughput slice and two high-
throughput slices toggled sequentially, and B) a random walk scenario for
realism. Results show that, on average—in terms of the trade-off between
total throughput and a packet-latency-based metric—the uniform split and
LLM-based policy perform best, appearing on the Pareto front in both
scenarios. The proportional policy only appears on the front in the periodic
case. Our state-augmented constrained approach based on REINFORCE (SAC-
RE) is on the second Pareto front for the randomwalk case, outperforming vanilla
REINFORCE. In the periodic scenario, vanilla REINFORCE achieves better
throughput—with a latency trade-off—and is co-located with SAC-RE on the
second front. Interestingly, the LLM-based policy—neither trained nor fine-tuned
on any custom data—consistently appears on the first Pareto front, offering
higher objective values at some latency cost. Unlike uniform slicing, its behavior is
dynamically adjustable via prompt engineering.

KEYWORDS

optimization, Wi-Fi, network slicing, reinforcement learning, generative AI, large
language model, LLM, state-augmented

OPEN ACCESS

EDITED BY

Dionysis Kalogerias,
Yale University, United States

REVIEWED BY

Ahmad Bazzi,
New York University Abu Dhabi, United Arab
Emirates
Miguel Calvo-Fullana,
Pompeu Fabra University, Spain
Sourajit Das,
University of Pennsylvania, United States

*CORRESPONDENCE

Rafael Rosales,
rafael.rosales@intel.com

RECEIVED 08 April 2025
ACCEPTED 13 May 2025
PUBLISHED 26 May 2025

CITATION

Rosales R and Cavalcanti D (2025)
Reinforcement learning, rule-based, or
generative AI: a comparison of model-free Wi-
Fi slicing approaches.
Front. Signal Process. 5:1608347.
doi: 10.3389/frsip.2025.1608347

COPYRIGHT

© 2025 Rosales and Cavalcanti. This is an open-
access article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Signal Processing frontiersin.org01

TYPE Original Research
PUBLISHED 26 May 2025
DOI 10.3389/frsip.2025.1608347

https://www.frontiersin.org/articles/10.3389/frsip.2025.1608347/full
https://www.frontiersin.org/articles/10.3389/frsip.2025.1608347/full
https://www.frontiersin.org/articles/10.3389/frsip.2025.1608347/full
https://www.frontiersin.org/articles/10.3389/frsip.2025.1608347/full
https://crossmark.crossref.org/dialog/?doi=10.3389/frsip.2025.1608347&domain=pdf&date_stamp=2025-05-26
mailto:rafael.rosales@intel.com
mailto:rafael.rosales@intel.com
https://doi.org/10.3389/frsip.2025.1608347
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org/journals/signal-processing#editorial-board
https://www.frontiersin.org/journals/signal-processing#editorial-board
https://doi.org/10.3389/frsip.2025.1608347

1 Introduction

Network slicing is a technique used to guarantee Quality-of-
Service (QoS) by allocating resources in a way that allows the
network to meet traffic flow requirements. Slicing can be
implemented in wireless networks through various mechanisms
that leverage the features available in a given technology domain.
The CSMA channel access mechanism of Wi-Fi was designed as a
solution that provides fairness to all devices, albeit with no
guarantees. Slicing allows for the design of a network that trades
off this fairness but can provide guarantees in Quality of Service if
required. A challenge that arises is that if the slicing policy is not well
optimized, it can lead to inefficiencies and waste of resources.

In cellular networks, such as 5G, the 3GPP standards define the
capability to schedule channel communication resources in both
time and frequency. This capability has been exploited to implement
slicing of the radio channel (Zhang, 2019).

Wi-Fi, on the other hand, has employed a contention-based
approach for channel access since its inception, making it more
challenging to guarantee QoS. Over time, Wi-Fi standards, defined
by the IEEE 802.11 working group, have evolved to offer greater
control over channel access, enabling the deployment of centrally
managed networks via an Access Point (AP), where deterministic
policies can be implemented. However, limited work exists on the
implementation of slicing concepts inWi-Fi. SinceWi-Fi 6, frequency
resources can be allocated by the AP to different users. In contrast to
5G cellular standards—where Physical Resource Blocks (PRBs) are
allocated in both time and frequency domains—the AP can only
allocate the resources of within a Physical Layer Protocol Unit
(PPDU) once it starts a transmission opportunity (TXOP) after
gaining channel access; see Figure 1.

Zangooei et al. (2023), Yang et al. (2024), and Liu et al. (2020) are
examples of Artificial Intelligence (AI) approaches based on
Reinforcement Learning (RL) for optimizing resource allocation.

Work incorporating QoS constraints—such as Yang et al. (2024)
and Liu et al. (2020)— typically focuses on creating a single objective
function by combining multiple constraints and the main objective
into a weighted sum. Liu et al. (2021) explore constraint-aware
optimization through Lagrangian primal-dual methods. Calvo-

Fullana et al. (2023) proposed an improvement to these methods
using the concept of state-augmented RL, where the values of the
Lagrangianmultipliers are fed as input to the policy. This enables the
learning of different behaviors depending on the current
system state.

The state-augmented approach has been adopted by
NaderiAlizadeh et al. (2022) and Uslu et al. (2024) for radio
resource allocation of power transmission levels and frequency
resources, respectively. Their work applied state-augmented RL
using gradient-based direct optimization, which requires
computing the gradient of the Lagrangian w.r.t. the policy
parameters—i.e., a differentiable model of the system. However,
this limits applicability in real systems or simulation environments
such as ns-3 (Henderson et al., 2008), where analytical gradients are
not available.

Model-free RL approaches, such as policy-gradient Sutton and
Barto (1998) methods, estimate the gradients via sampling and
therefore do not require a differentiable model of the system.

In this work, we evaluate multiple model-free approaches (see
Figure 2), including a proposed adaptation of the state-augmented
method from Calvo-Fullana et al. (2023) to the problem of radio
frequency resource slicing, as in Uslu et al. (2024).

Alongside other RL and rule-based policies, we also evaluate a
Generative AI (GenAI) approach using a Large Language Model
(LLM) for RL. In this case, a commercial off-the-shelf (COTS)
foundational LLM is used to make slicing decisions. LLMs have
demonstrated wide applicability due to their emergent properties
developed through training on vast amounts of data. Peng et al.
(2023) propose using LLMs as RL policies, offering a natural
language interface to specify decisions. Zhou and Small (2021)
apply LLMs to learn policies tailored to specific tasks.

2 Network slicing in Wi-Fi

2.1 Wi-Fi radio resource allocation features

Wi-Fi provides some alternatives for slicing the communication
channel between different users.

FIGURE 1
Slicing of Wi-Fi OFDMA frequency resources. Since Wi-Fi 6, an AP can centrally schedule multi-user downlink and uplink transmissions. After
acquiring a transmission opportunity (TxOp), the AP can individually assign resource units (RUs) to different client stations (STAs) within a multi-user
Physical Protocol Data Unit (PPDU). In this work, we dynamically allocate multiple RUs to create slices in the frequency domain.

Frontiers in Signal Processing frontiersin.org02

Rosales and Cavalcanti 10.3389/frsip.2025.1608347

https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://doi.org/10.3389/frsip.2025.1608347

The simplest approach is to separate different flows across
different frequency bands or channels—for example, assigning
three different flows to the 2.4 GHz, 5 GHz, and 6 GHz bands,
respectively. However, this method is typically statically configured
a priori and can be inefficient and prone to Quality-of-Service (QoS)
degradation due to dynamic channel fluctuations. Furthermore, it is
only feasible in multi-radio devices supporting multiple
frequency bands.

At a more granular level, since Wi-Fi 6 it is possible to
dynamically assign different bandwidths to different flows by
splitting a single channel into multiple Resource Units (RUs)
in a multi-user PPDU, thereby distributing the available spectrum
more efficiently. For example, a 20 MHz channel can be divided
into nine RUs, each 2 MHz wide. The decision regarding the
number and size of RUs in both downlink and uplink
transmissions is dynamically made by the Wi-Fi Access Point
(AP). SinceWi-Fi 7, this includes support for aggregating multiple
RUs for a single user.

In addition to frequency-domain slicing (Uslu et al., 2024),
traffic flows can also be isolated in the time domain. Candell et al.
(2022) demonstrated an implementation of the TSN standard for
time-aware scheduling (802.1Qbv) in Wi-Fi. Time-domain
allocation must also be centrally managed by the AP. It is
important to note that, unlike cellular technologies defined by
3GPP, Wi-Fi does not incorporate the concept of Physical
Resource Blocks (PRBs), which enable simultaneous allocation in
both time and frequency domains. 3GPP cellular networks have
always used a centralized scheduling mechanism, allowing for
precise allocation of time slots and frequency bands to different
users as part of the protocol. Wi-Fi networks, on the other hand,
have been based on a decentralized, contention-based access
method. Recently, in Wi-Fi 6, the OFDMA scheduling
mechanism was introduced, allowing for the assignment of
frequency resources within a PPDU. This solution is not as
flexible as the 3GPP approach. In Wi-Fi, time-based resource
allocation must be done across multiple PPDUs, thus combining
it with the decentralized CSMAmechanism for resource contention.
To eliminate the contention overhead, a centrally managed Wi-Fi
network is assumed for the proposed Wi-Fi radio slicing; that is, all
client devices are centrally managed by the AP using OFDMA.

Under this assumption, most of the contention overhead due to
channel access is eliminated.

In this work, we explore dynamic slicing of Wi-Fi frequency
resources—i.e., at each transmission opportunity, the AP decides
how many frequency resources to allocate to each of the
required slices.

The modulation constellation is determined according to the
Wi-Fi standard and is dynamically adjusted based on the available
bandwidth of the allocated RUs. The network is configured to use a
channel bandwidth of 80 MHz, and the transmission power is set at
20 dBm. The propagation model used is the IEEE 802.11 D channel
model. Other potential physical layer features that were not explored
in our study include: a) spatial streams using MIMO, as we used a
single antenna for both transmission and reception; and b) preamble
puncturing, which was not explored.

2.2 Problem formulation

We formulate the slicing problem for Wi-Fi OFDMA frequency
resources as a constrained optimization problem:

The goal is to find a slicing decision policy π that takes an action
at based on the system state st: π(st) → at that maximizes the
expected value of a main objective function r(st, at), which is here
defined as the total amount of bytes received, and which is a function
of the system state st and the slicing decision at at each time step
t ∈ T. At the same time, the slicing policy should try to fulfill a set of
J constraints defined by a list of inequalities ej(st, at)≤ cj, where
ej(st, at) are the constraint functions, and cj are the constraint
specifications. The formal formulation is shown in Equation 1:

max
π

lim
T→∞

Es,a~π
1
T
∑T
t�0

r(st, at)⎡⎣ ⎤⎦
s.t. lim

T→∞
Es,a~π

1
T
∑T
t�0

ej(st, at)⎡⎣ ⎤⎦≤ cj, j � 1, 2, . . . , J

(1)

In this work, we define the system state s as a vector s ∈ NH×N.
This vector represents the traffic demand in terms of number of
packets ready to be transmitted at each slice (with a total ofN slices)
for the last last H steps.

FIGURE 2
General methodology: RL-based policies are first trained using a simple network simulator. These policies, together with other rule-based and
GenAI based policies are evaluated with a ns-3 Wi-Fi simulator.

Frontiers in Signal Processing frontiersin.org03

Rosales and Cavalcanti 10.3389/frsip.2025.1608347

https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://doi.org/10.3389/frsip.2025.1608347

The policy action a correspond to the slicing decisions, and is
defined as a vector a ∈ RN, such that ∑ia[i] � 1, i.e., it defines what
proportion of resources, in this case Wi-Fi RUs, are assigned to each
slice i at each time step t. In order to enable the finest granularity
possible, we select the smallest possible bandwidth for all RUs, and
then aggregate them according to the slicing decision. In contrast to
a real Wi-Fi implementation, where the bandwidths of the
aggregated RUs would be combined for better efficiency, our
simulation-based evaluation bundles multiple individual RUs of
the same smallest bandwidth. The proposed allocation of
multiple RUs for different users is already supported in the Wi-
Fi 7 standard (802.11be).

The underlying system dynamics are treated here as a black box,
as the explicit modeling of state transitions in the Wi-Fi network is
infeasible. This means that while we do not specify an explicit
transition model in our objective function, we implicitly rely on the
system’s ability to learn these transitions through interaction with
the environment. In addition, the problem formulation makes no
assumption about the stationarity of the transitions. Thus, only
solutions applying dynamic adaptation mechanisms would be
effective in a non-stationary environment.

As a constraint, we define a metric based on the average latency
of the received packets. The metric adds the individual latencies of
each packet as measured from the time of transmission until the
time of reception at the MAC layers. For each packet that was not
received at all, e.g., because no resource was allocated for the
corresponding slice, we include a penalty factor of 100. This
penalty is included in this metric to avoid encouraging seemingly
low average latency solutions that in reality are filling the
transmission queues.

2.3 Solution approaches

Several optimization approaches can be applied to solve
Equation 1. The works of Uslu et al. (2024) and NaderiAlizadeh
et al. (2022) represent two state-of-the-art RL-based methods that
address a closely related problem to slicing wireless communication
resources. Both approaches apply the concept of state-augmentation
proposed by Calvo-Fullana et al. (2023) to enable multi-modal
solutions, where the system may have more than one optimal
operating mode. However, these methods have been applied
using a differentiable model of the system in order to guide the
learning of the policy as dictated by the gradient of the Lagrangian
formulation of the optimization problem.

In this work, we explore the implementation of state-
augmentation using a policy-gradient, model-free RL approach,
i.e., the system does not need to be a differentiable system model.
Policy-gradient methods estimate the gradient of the objective
function w.r.t. the policy parameters through sampling. While
this approach is less sample-efficient and typically results in
slower learning, it has the advantage of being applicable directly
to real world systems or high-fidelity simulators such as ns-3. On the
other hand, verifying the convergence of policy gradient methods in
complex environments such as Wi-Fi slicing poses significant
challenges due to non-stationarity, high dimensionality, delayed
rewards, and the risk of local optima. These environments require
algorithms capable of handling dynamic conditions and vast state-

action spaces while ensuring consistent policy improvement.
Addressing these theoretical challenges is crucial for effectively
deploying reinforcement learning solutions in real-world
applications like Wi-Fi slicing.

We also evaluate other common policy-gradient RL methods,
including the REINFORCE algorithm, along with simple rule-based
heuristics and a policy based on a recent large language model.
Figure 3 illustrates these approaches in a Venn-diagram, comparing
the methods evaluated in this work with the closest related state-of-
the-art.

In the next subsection, we describe each of the evaluated
approaches in more detail.

2.3.1 Policy-gradient based RL approaches
We evaluate three commonly adopted policy-gradient based RL

approaches:

2.3.1.1 REINFORCE algorithm
This method, originally proposed in Williams (1992) and

summarized in Algorithm 1, consists of two main phases: a) a
sampling phase, where a full episode is executed using the current
policy π to collectT samples of the system state s, the selected action a,
and corresponding system rewards r; and b) an evaluation phase,
where a loss is computed based on the negative log-probability of the
sampled actions, scaled by the observed rewards. The evaluation phase
encourages updates to the policy parameters such that unlikely
decisions with high positive rewards become more probable, while
decisions that resulted in negative rewards become less likely.

Require: A differentiable policy

parameterization π(a|s, θ)
Require: Parameters: learning step size α>0, reward

discount factor 0≤ γ≤1, total episode steps T ∈ N

1: Initialize policy parameters: θ ∈ Rd

2: for each episode do

3: Generate: s0 ,a0 ,r1, . . . ,sT−1 ,aT−1,rT , following π(·|·, θ)
4: for each episode step t � 0, . . . ,T − 1 do

5: Compute discounted returns: G ← ∑T
k�t+1γ

k−t−1rk

6: Update policy parameters: θ ← θ + αγt G∇ln π

(at|st , θ)
7: end for

8: end for

9: return s1 ,s2 , . . . ,sn

Algorithm 1. REINFORCE algorithm - Williams (1992).

2.3.1.2 Synchronous advantage Actor-critic (A2C)
One of the main challenges of RE, is selecting an appropriate

baseline to determine whether the observed reward should be
interpreted as positive or negative. The A2C approach - a
synchronous variant of Mnih et al. (2016) - implements a value-
based model (the critic) to estimate this baseline and uses the
difference between the actual reward and the predicted baseline,
known as the advantage, in the loss function. We use the Python
implementation provided by Stable-Baselines3 (2025b) for this
algorithm. The n_step hyperparameter was set to match the
update rate of the other RL algorithms. Other hyper-parameters
used the default values.

Frontiers in Signal Processing frontiersin.org04

Rosales and Cavalcanti 10.3389/frsip.2025.1608347

https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://doi.org/10.3389/frsip.2025.1608347

2.3.1.3 Proximal policy optimization
This approach (Schulman et al., 2017), uses a clipped surrogate

loss within a trust region to prevent drastic updates to the policy
parameters during training. We use the Python implementation
provided by Stable-Baselines3 (2025a) for this algorithm. Again, the
n_step hyperparameter was set to match the update rate of the other
RL algorithms. Other hyper-parameters used the default values.

2.3.2 Policy-gradient based, state-augmented
constrained RL

We implemented a state-augmented implementation of the
REINFORCE algorithm. In the remainder of this paper, we refer
to this implementation as SAC-RE. Below, we describe the approach
and model in detail.

2.3.2.1 State-augmented constrained REINFORCE
Calvo-Fullana et al. (2023) introduced the concept of state-

augmentation for constrained reinforcement learning. The core idea
is to make the policy model πθ a function not only of the system state
st, but also of the Lagrangian multipliers: πθ(st, λj,t) → at. The
Lagrangian multipliers λj,t where j denotes the index of the
associated constraint, are then used to integrate the J constraints
of the problem into a single objective function rλ:

rλ st, at() � r(st, at) +∑J
j�1

λj,t ej(st, at) − cj()
where r(st, at) is the original reward, ej(st, at) is the jth

constraint cost signal, and cj is the associated constraint threshold.
By doing so, the policy can learn different behaviors depending

on the current situation or mode, thereby enabling the learning of
optimal solutions under varying circumstances.

While REINFORCE, A2C, and PPO struggle to adapt swiftly to
abrupt traffic changes due to their update strategies that rely on
episodic or incremental updates, the state-augmented approach with
Lagrangian multipliers can enhance them. This modification allows
for dynamic adjustment and improved responsiveness as soon as a
constraint is violated, offering better adaptability in fast-changing
environments compared to the slower traditional methods. The
Lagrangian formulation of the reward objective allows to

dynamically adjust how much importance (or weight) is given to
each objective based on how well constraints are being met during
learning. Instead of using fixed weights for each objective, the RL
algorithm modifies these weights as necessary, aiming to find a
solution that minimizes constraint violations. This dynamic
adjustment introduces some uncertainty because the specific
tradeoff between objectives depends on how the neural network
was initialized and trained.

The state-augmented approach defines a training algorithm for
the policy, which can incorporate different reinforcement learning
methods, and an inference algorithm, that updates the Lagrangian
multipliers at runtime.

1: Sample (st , λj,t) from augmented space S × Λ
2: Construct augmented

rewards rλ(st ,at) � r(st ,at) + ∑J
j�1λj,t(ej(st ,at) − cj)

3: Use an RL algorithm to obtain policy θ � argmaxθ∈Rd

limT→∞Es,a~πθ[1T∑T
t�0rλ(st,at)]

Algorithm 2. State-augmented training algorithm - Calvo-Fullana

et al. (2023).

Require: Policy π(·|·, θ), step ηλ, requirements cj, epoch T0

1: Initialize: Given initial state s0, dual

variables λj,0 � 0

2: for k = 0,1, . . . ,K do

3: Rollout T0 steps with actions at ~ π(st , λj�1,k, . . . ,
λj�J,k)

4: Update dual variables λj,k+1 � [λj,k − ηλ
T0
∑(k+1)T0−1

t�kT0

(ej(st,at) −cj)]+
5: end for

Algorithm 3. State-augmented inference algorithm - Calvo-Fullana

et al. (2023).

We implemented Step 3 of the State-augmented Training
algorithm (Algorithm 2) using the REINFORCE algorithm
(Algorithm 1). The inference time algorithm (Algorithm 3) was
implemented as originally proposed. For REINFORCE, we adopted
a mean baseline - i.e., we subtracted the mean of the episode’s
rewards from each observed reward.

FIGURE 3
Classification of the approaches evaluated and of the closest related work.

Frontiers in Signal Processing frontiersin.org05

Rosales and Cavalcanti 10.3389/frsip.2025.1608347

https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://doi.org/10.3389/frsip.2025.1608347

The slicing policy model π is parameterized by the weights θ of a
multi-layer perceptron (MLP) composed of three linear layers, each
followed by a leaky ReLU activation function. The number of inputs
corresponds to the number of system state signals multiplied by a
factor H, as the network receives not only the current system state
but also the previous H states. The second linear layer has
dimensions 128 × 128, and the final linear layer has dimensions
128 × N, where N is the number of slices.

The output of the neural network is used as the set of alpha
parameters for a Dirichlet distribution. The Dirichlet distribution
parameterizes a probability distribution over components that sum
to one, making it suitable for representing resource slicing decisions.
Depending on the alpha values, the distribution may favor uniform
splits, skewed allocations, or evenly distributed probabilities across
possible combinations. A key benefit of using the Dirichlet
distribution is that it encourages exploration of diverse slicing
combinations - since the model predicts a probability distribution
rather than a fixed decision. A deterministic approach using a
Softmax function would produce more precise, single-point
predictions for resource allocation. While this might simplify
decision-making and reduce computational complexity, it could
also lead to less robust performance under varying network
conditions because it does not inherently capture uncertainty or
variability in the same way that a Dirichlet-based probabilistic model
does. In our experiments, the alpha parameters of the Dirichlet
distribution were constrained to values between 1 and 10,000,
allowing the distribution to be flat or moderately peaked, but
avoiding excessively sharp outputs.

We used the Adam optimizer (Kingma and Ba, 2015) to update
the neural network parameters, with a learning rate of α � 0.0001.

The source code of the SAC-RE implementation is publicly
available in Rosales (2025) under the Apache 2.0 License.

2.3.3 Rule-based approaches
Typical baselines for comparing RL approaches rely on static

heuristics, which aim to balance multiple objectives and constraints
using simple, rule-based strategies that require no training.

2.3.3.1 Uniform heuristic
This heuristic evenly divides the available resources among all

slices. For example, if three slices are defined, it always produces a
split of a � [0.33, 0.33, 0.33]. While this approach provides a basic
level of fairness - regardless of scenario complexity - it can be
inefficient and lead to resource under utilization in dynamic or
asymmetric traffic conditions.

a[i] � 1
N

(2)

where a[i] is the allocated amount of resources for slice i, N is
the total number of slices.

2.3.3.2 Proportional heuristic
This heuristics determines the slicing decision based on a signal

of interest - such as current traffic demand - and allocates resources
to each slice in proportion to its share of that signal.

a[i] � wi∑N
k�1wk

(3)

where a[i] is the allocated amount of resources for slice i, wi is
the signal of interest of slice i, and N is the total number of slices.

2.3.4 Generative AI approach
2.3.4.1 LLM heuristic

Large Language Models (LLMs) have recently gained significant
attention due to their emergent capabilities. An LLM is a neural
network trained at scale in a self-supervised manner on vast
amounts of text data, with the goal of predicting the most likely
next word in a sequence. These models can contain billions of
parameters, and despite their relatively simple training objective,
they are capable of generating highly plausible and contextually
appropriate text across a wide range of domains.

Recently, LLMs have begun to be integrated as decision-making
components within RL frameworks, such as Peng et al. (2023). In this
work, we evaluate the performance of a foundational LLM as a slicing
policy - i.e., an LLM that has not been fine-tuned or optimized for a
specific task, but rather used originally pre-trained. An LLM can be
instructed to solve a specific task by providing the necessary context in
the form of a prompt - the text input fed to the model. With a detailed
and well-crafted prompt, an LLM can be conditioned to produce
outputs in a desired format or domain. An entire area of research is
devoted to prompt engineering - designing optimal prompts to elicit
the best possible responses from an LLM. However, in this paper,
prompt optimization is out of scope. We focus on evaluating a single
LLM: GPT-4o, using a single detailed prompt template, denoted as
llm_policy (Box 1). This template is used each time a new slicing
decision is required, i.e., at every policy inference step, with the
placeholder {data} dynamically replaced by the current system
state. This means, that the system state is fed to the LLM prompt
in the {data} placeholder.

BOX 1 Slicing decision prompt: llm_policy.
“Prompt: You are an intelligent resource allocation agent responsible for

distributing frequency resources among three network slices. Your goal is to
optimize resource allocation dynamically based on traffic demand.

Input: A three-dimensional vector representing the current traffic demand
for the three slices. A history of the last five traffic demands, forming an input
state of size 18 (3 × 6).

Output: A three-dimensional vector representing the proportion of
available bandwidth allocated to each slice. The sum of the three
components must always equal 1 (i.e., the full bandwidth is allocated).

Decision Objective: Prioritize slices with higher traffic demand while
ensuring fairness and avoiding excessive fluctuations. Adapt dynamically to
historical trends in traffic to prevent congestion. Avoid under-utilization or
over-allocation of resources to any slice. Protect the time-critical slice #2 so that
packets in this slice can always be transmitted.

Constraints: Sum constraint: The three output values must sum to 1. Non-
negativity: Each output component must be > � 0. Responsiveness: The
allocation should react to changing demands rather than relying solely on
past data.

Example Input-Output Pair: Input: [0.5, 0.25, 0.25, 0.45, 0.3, 0.25, 0.4, 0.35,
0.25, 0.38, 0.32, 0.3, 0.4, 0.3, 0.3] (Flattened to a single 18-dimensional vector,
where the current demand vector is: [0.4, 0.3, 0.3]).

Expected Output: A valid allocation such as [0.42, 0.3, 0.28] (ensuring
sum = 1).

Provide the optimal allocation as a three-dimensional vector. Provide
context as needed, but the final answer must always be placed on a single
separate line at the very end inside square brackets (do not use code blocks).
Write nothing else after that!

Input: {data}”

Frontiers in Signal Processing frontiersin.org06

Rosales and Cavalcanti 10.3389/frsip.2025.1608347

https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://doi.org/10.3389/frsip.2025.1608347

The prompt provided to the LLM is designed to enforce that the
final answer appears at the end in a specific format. However, a
parser is still required to handle slight variations in the output - such
as the decision vector being followed by a period or enclosed within a
markdown code block. Once the string corresponding to the slicing
decision is extracted, it is cast into a tensor for integration into
the simulator.

2.4 Simulation-based evaluation

2.4.1 Simulator-based training
To evaluate the different slicing approaches, we implemented a

Wi-Fi 6 slice-aware MAC layer in the ns-3 simulator, serving as a
proxy for a real Wi-Fi system. Our implementation allows
configuration of the number of RUs allocated in the downlink
for each slice The AP transmits a packet only if the
corresponding flow belongs to a slice with available RUs for
transmission.

To accelerate the training of multiple epochs across different RL
algorithms, we also implemented a simplified network simulator in
Python, which does not implement any Wi-Fi protocol overhead.
This simplified simulator is still treated as a black-box model,
meaning that reward gradients w.r.t. the policy parameters are
not accessible.

2.4.2 Model selection
During training, snapshots of the model weights are stored to

allow selection of the best-performing model for inference once
training is complete. Model selection is based on the observed
reward and constraint values. Specifically, the selection heuristic
identifies the training step at which the reward function is
maximized while constraint violations are minimized. Since the
reward and constraints may be in a trade-off relationship, the
selected snapshot corresponds to the point where the reward
ceases to improve, or earlier if the constraint functions begin to
noticeably increase.

2.4.3 Synchronization between ns-3 simulator and
RL framework

To enable synchronization between the ns-3 simulator and the
slicing policy, we employed the ns3-ai framework (Yin et al., 2020).
ns3-ai provides a shared-memory mechanism for transferring
information between C++ and Python processes via a
Gymnasium (Brockman et al., 2016) RL interface. This allows the
Wi-Fi model to be wrapped as a Gym environment, enabling
seamless integration with Python-based RL workflows.

From the Gym perspective, an RL policy is executed step-by-step
within an episode. From the ns-3 perspective, a heartbeat process
was implemented to periodically monitor the required signals - such
as system state and constraints - and to read the slicing decisions. In
the simulation-based evaluation, we assume the ideal case where the
latency of each policy is negligible, as simulated time does not
advance during policy inference calls.

Before the first step can be performed, an initial setup period is
allowed to be simulated in ns-3. During this period, initialization
certain processes - such as the ARP protocol to map IP to MAC
addresses - are allowed to complete. After initialization, the

heartbeat interval is set to 100 milliseconds, meaning that
10 Gym steps correspond to one second of simulated time. For
each training epoch in the Gym environment, a complete episode is
simulated in ns-3. Each RL approach was trained for a total
of 2400 steps.

In SAC-RE, during inference, we used T0 � 4, which indicates
that the state augmented variables are updated every four
inference steps.

2.5 Test scenarios

This section describes the evaluated topology, application flows,
and traffic generation patterns.

The topology consists of a single Access Point (AP) with three
associated stationary client stations (STAs). Application flows are
defined as downlink streams from the AP to each of the three STAs.
Three slices are defined and mapped one-to-one to the STA links,
such that all traffic destined for a given STA corresponds to a
single slice.

2.5.1 Traffic generation
During the setup phase, some baseline flows - such as ARP - are

established to enable simulation of Wi-Fi OFDMA downlink
transmissions.

Two traffic generation scenarios are defined for the
application flows:

2.5.1.1 Periodic pattern
A simple, easily visualizable traffic pattern is first defined to

facilitate manual verification. One flow maintains a constant low
throughput, representing a low-latency slice. The other two flows
alternate periodically between generating high-throughput traffic
and minimal traffic. A visualization of this pattern is shown
in Figure 6.

2.5.1.2 Random walk pattern
The second scenario involves three flows, each starting with the

same initial throughput and evolving according to a random walk.
At each time step, the traffic of each flow increases or decreases by a
value sampled from a uniform distribution between −500 and
500 packets. The resulting traffic is constrained between a
minimum of 0 and a maximum of 4,000 packets per time step. A
visualization of this pattern is shown in Figure 7.

3 Results

This section presents the training andmodel selection procedure for
the implemented SAC-RE policy. We also present the inference results
for all reinforcement learning-based policies, including SAC-RE, along
with the results of the policies that do not require any training.

3.1 Training

As described in Section 2.3.2, Section 2.3.1, the training of the
reinforcement learning approaches was conducted using a simple

Frontiers in Signal Processing frontiersin.org07

Rosales and Cavalcanti 10.3389/frsip.2025.1608347

https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://doi.org/10.3389/frsip.2025.1608347

Python-based simulator, separately for the two traffic scenarios
outlined in Section 2.5. All models were trained on a machine
equipped with an 11th Gen Intel(R) Core(TM) i7-11850H @
2.50 GHz CPU and an NVIDIA RTX A3000 GPU.

The training times for each policy are summarized in Table 1.

3.1.1 SAC-RE learning convergence
Figure 4 illustrates the learning stability of the SAC-RE training

procedure by showing the statistic results of the objective function
across ten independent runs of the periodic traffic scenario, all using
the same set of hyper-parameters.

The training convergence plot indicates that SAC-RE
consistently learns an effective policy in the periodic scenario,
exhibiting a reward progression over time that aligns with the
underlying traffic pattern.

3.1.2 Selection of best model
During the training of all reinforcement learning policies,

snapshots of the model weights are periodically saved to allow
selection of the best model achieved so far. Figure 5 illustrates the
manual selection procedure described in Section 2.4, used to determine
which model snapshot to use for inference. As highlighted by the
orange dotted line in both plots, the selected training step corresponds
to a point where the objective function has plateaued, while the average

latency penalty has not yet started to increase. This choice avoids
selecting a model that excessively prioritizes the objective function at
the cost of violating system constraints.

3.2 Slicing evaluations with model-free
approaches in ns-3

In this section, the inference results of all evaluated policies are
presented. The inference times for each policy are shown
in Table 2.

Figures 6, 7 present the evaluation results of all seven policies
under the periodic traffic and random walk traffic scenarios,
respectively. In both figures, Column (A) shows the traffic
demand per slice, with each slice represented by a distinct color.
The x-axis corresponds to the episode step from the RL
environment’s perspective. As described in Section 2.4.3, each
step represents 0.1 s in the NS3 simulation. Two full episodes
(each consisting of 100 steps) are displayed. Column (B) shows
the slicing decisions made by the policy at each episode step,
visualized as a stacked plot. This represents the proportion of
radio resources (ranging from 0 to 1) allocated to each slice over
time. Column (C) displays the corresponding reward signal,
measured as the total amount of received bytes. Column (D)

TABLE 1 Training times for the different slicing policies under the periodic traffic pattern. Note that the rule-based and LLM-based policies were not trained
on any traffic pattern.

Slicing policy SAC-RE RE A2C PPO Uniform Proportional LLM

Training Time (hrs) 1.18 1.28 0.433 0.449 0 0 0

FIGURE 4
Training convergence of the SAC-RE policy across 10 independent training runs in the periodic traffic scenario. The x-axis represents the training
step (averaged over intervals of 1000 steps), and the y-axis shows the total number of received bytes. The observed pronounced spikes result from the
injected traffic pattern. The learning process of different instances begins with a higher variance in the reward signal. Over time, the averaged interquartile
range tends to shrink, maintaining a consistent appearance at points where the traffic pattern changes.

Frontiers in Signal Processing frontiersin.org08

Rosales and Cavalcanti 10.3389/frsip.2025.1608347

https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://doi.org/10.3389/frsip.2025.1608347

shows the average constraint penalty metric, which, as defined in
Section 2.2, penalizes all packets that were enqueued but not
successfully delivered to their destination.

3.2.1 Observations to inference results
When comparing the slicing decisions with the system state in

Figure 6, it can be observed that SAC-RE tends to allocate most
resources to the slice with the highest current demand. For
example, note the high percentage of resources allocated to the
low-traffic blue slice during the first 20 steps—reflecting the
absence of competing demand. In contrast, RE does not appear
to allocate significant resources to the low-throughput slice, even
when no other slice is active. This is evident in the limited
allocation to the red slice during the 20–40 step interval,
despite its being the only active flow.

The other RL approaches, PPO and A2C, failed to effectively
adapt to the periodic traffic pattern simulated in ns-3. A2C produced
saturated decisions, allocating all resources to a single slice—though
not consistently to the one with the highest demand. PPO, on the
other hand, consistently assigned all resources to the blue slice.
These outcomes suggest that both PPO and A2C may require
extensive hyperparameter tuning to perform well in this
environment.

The LLM-based policy closely mirrors the proportional
heuristic, with a notable bias toward slice 2 — consistent
with the prompt used. However, its relatively high inference
time, not accounted for in the simulation, limits its practicality
in real-time scenarios. In its current form, an unoptimized
commercial off-the-shelf LLM may only be suitable for
applications with time constraints on the order of seconds.
To make LLMs viable for real-world Wi-Fi slicing
applications operating on sub-second timescales, inference
latency would need to be significantly reduced using existing
optimization techniques.

3.3 Policy comparison

To facilitate a clearer comparison of the different policies,
Figures 8, 9 summarize the reward and constraint metrics over
time as a single average value per traffic scenario.

The ideal solution is located in the lower-right region of each
Figure, representing both high reward and low constraint penalty.
Since it is often not possible to simultaneously optimize both
objectives in challenging scenarios, a common approach is to
visualize the Pareto front to compare the performance of
competing solutions. In multi-objective optimization, the
Pareto front represents a set of non-dominated solutions—that
is, no other solution is strictly better in all objectives. A solution is
said to dominate another if it improves at least one objective
without worsening any other. However, solutions on the Pareto
front cannot be ranked relative to each other, as they reflect trade-
offs between competing goals. In Figures 8, 9, multiple Pareto
fronts are plotted sequentially to visualize the performance tiers of
each policy.

3.3.1 Periodic traffic scenario
Figure 8 shows that the uniform, Proportional, and LLM-based

policies lie on the first Pareto front, identifying them as dominating
solutions. They are followed by SAC-RE and RE on the second
Pareto front, and finally by A2C and PPO. In this scenario, the LLM-
based policy is positioned at a favorable trade-off point between
reward and constraint satisfaction. Note that the y-axis uses a
logarithmic scale, which emphasizes that even small horizontal
shifts (i.e., in reward) can correspond to substantial changes in
the constraint penalty.

3.3.2 Random walk traffic scenario
In the random walk traffic scenario, shown in Figure 9, the

uniform and LLM-based policies again dominate, appearing on the

FIGURE 5
Model selection - This figure shows the objective function (left) and system constraints (right) of the RE policy during the training procedure. The
x-axis represents training steps (downsampled by ×100 for visualization). The orange dotted line indicates the manually selected model snapshot used
for inference.

TABLE 2 Inference time statistics for slicing decision across different policies. Note that response time of the commercial LLM is in the order of seconds, with
high variability depending on current service demand.

Slicing policy SAC-RE RE A2C PPO Uniform Proportional LLM

Mean inference time (ms) μ 2.568 4.700 2.568 2.276 0.038 0.092 4,501

Standard deviation σ 4.489 0.977 4.488 3.476 0.011 0.109 4,248

Frontiers in Signal Processing frontiersin.org09

Rosales and Cavalcanti 10.3389/frsip.2025.1608347

https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://doi.org/10.3389/frsip.2025.1608347

first Pareto front. This time, the SAC-RE policy represents the entire
second Pareto front, demonstrating stronger relative performance
compared to other RL approaches. The RE and Proportional policies

fall to the third front, followed by A2C, and finally PPO. Unlike in
the period scenario, the Proportional policy no longer qualifies as a
Pareto-optimal solution.

FIGURE 6
Comparison of different slicing policies (row-wise) in the periodic traffic scenario. Shown are only the first 200 inference time steps of in the x-axis.
Columns: (Traffic demand) Input system state, (Slicing decisions) Policy actions, (Rewards) Total received bytes, and (Average latency penalty) RL
Constraint.

Frontiers in Signal Processing frontiersin.org10

Rosales and Cavalcanti 10.3389/frsip.2025.1608347

https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://doi.org/10.3389/frsip.2025.1608347

3.4 Inspection of a sample LLM response

In this section, we examine the behavior of the LLM-based
policy for a single inference instance to better understand the
“reasoning” behind its slicing decision. The sampled system state

vector s, used as input to the data placeholder in the llm_policy
prompt template, is given by:

s � 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5357.0, 535.0, 6.0, 5357.0, 536.0,[
5.0, 5357.0, 536.0, 6.0, 5357.0, 535.0, 5.0]

FIGURE 7
Comparison of different slicing policies (row-wise) in the random walk traffic scenario. Only the first 200 inference time steps are shown on the
x-axis. Columns: (Traffic demand) Input system state, (Slicing decisions) Policy actions, (Rewards) Total received bytes, and (Average latency penalty)
RL Constraint.

Frontiers in Signal Processing frontiersin.org11

Rosales and Cavalcanti 10.3389/frsip.2025.1608347

https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://doi.org/10.3389/frsip.2025.1608347

The corresponding full response generated by the LLM for this
prompt is shown in Box 2:

BOX 2 LLM response.
To determine the optimal allocation of resources among the three network

slices, let’s analyze the given input data, which includes the current traffic
demand and the historical traffic demand for the last five intervals.

Input: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5357.0, 535.0, 6.0, 5357.0, 536.0, 5.0, 5357.0,
536.0, 6.0, 5357.0, 535.0, 5.0].

1. The current demand vector is [5357.0, 535.0, 5.0]. 2. The historical
demands show a consistent pattern where slice #1 has the highest demand,
followed by slice #2, and slice #3 has minimal demand.

Given the decision objective, we need to prioritize slice #2 to ensure it can
always transmit packets, and we should allocate resources based on demand
while maintaining fairness and avoiding excessive fluctuations.

Considering the historical trend and current demand:
- Slice #1 (demand: 5357.0) has the highest demand.
- Slice #2 (demand: 535.0) must be protected for time-critical packets.
- Slice #3 (demand: 5.0) has the lowest demand.
We will allocate bandwidth proportionally to the demand, ensuring slice

#2 gets sufficient resources, and then distribute the remaining bandwidth
between slices #1 and #3.

Let’s calculate the allocation:
- Total demand: 5357.0 + 535.0 + 5.0 = 5897.0.
- Allocate a base of 0.3 to slice #2 (time-critical protection).
- Remaining proportion: 1.0–0.3 = 0.7.
Allocation based on demand:
- Slice #1: (5357.0/5897.0) * 0.7 ≈ 0.636.
- Slice #2: 0.3 (protected).
- Slice #3: (5.0/5897.0) * 0.7 ≈ 0.001.
Final allocation:
- Slice #1: 0.636.
- Slice #2: 0.3.
- Slice #3: 0.064 (adjusting for the remaining sum to 1).
The final allocation vector is: [0.636, 0.3, 0.064].

From this response, the parser extracted the following vector as
the slicing decision:

a � 0.6360, 0.3000, 0.0640[]
The prompt template used enabled the LLM to “reason” step

by step through the task. This approach helps reduce
hallucinations, as prompting for an immediate direct answer
may cause the LLM to rely too heavily on memorized patterns
from its training data, rather than drawing on higher-level
reasoning processes—which are likely more robust and
broadly represented in its training corpus. As observed in this
instance, the heuristic followed by the LLM begins by allocating a
fixed base of 30% to slice 2 to ensure a minimum level of
resources. The remaining budget is then distributed
proportionally across the other slices, based on patterns
inferred from the historical system state. However, the LLM
proposed an erroneous split of the 70% remainder, as it
normalized against the total demand (5897) instead of using
only the sum of the demand for slice 1 and slice 3. The model
ultimately corrected the flawed formula by allocating more
resources to slice 3 to ensure that the sum adds up to 1.

4 Discussions

4.1 Best slicing policies

Our results in Figures 8, 9 show that, when averaging across an
entire inference scenario—in terms of total throughput versus
average latency penalty—the uniform, proportional, and the
LLM-based policies dominate the others in the periodic traffic

FIGURE 8
Comparison of slicing policies for the periodic traffic pattern. The lower-right region represents the ideal trade-off between high reward and low
constraint penalty. Multiple Pareto fronts are plotted using dotted lines, with the first front representing the set of non-dominated solutions and
subsequent fronts indicating decreasing levels of optimality.

Frontiers in Signal Processing frontiersin.org12

Rosales and Cavalcanti 10.3389/frsip.2025.1608347

https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://doi.org/10.3389/frsip.2025.1608347

pattern scenario, with the LLM policy effectively balancing both the
reward and latency constraint. In the random walk scenario, the
proportional policy is no longer part of the first Pareto front, being
surpassed by the SAC-RE RL policy as well. This indicates that the
RL based policies were not able to predict the traffic patterns as
effectively. Among them, the state-augmented version of
REINFORCE SAC-RE performed best. This can be attributed to
its ability to model multiple modes of operation and achieve better
performance, even without extensive hyper-parameter tuning,
thanks to the use of the state augmentation.

The LLM policy on the other hand—which was not re-trained
nor fine-tuned on any data—appears at the first Pareto front in both
scenarios, providing a higher value of the objective function at some
cost to the latency constraint. Unlike the uniform slicing approach,
the LLM policy’s behavior can be adjusted via prompt alone. Thus,
the LLM policy thus provides a flexible and easy-to-setup slicing
approach, as it can leverage the knowledge encoded in the
foundational LLM to decide which action to take without
requiring an extensive training. The main cost of this approach
lies in the expensive inference calls, both in terms of compute
resources and inference latency. However, recent progress in
knowledge distillation (Acharya et al., 2024) and model pruning
of LLMs into smaller models (Ma et al., 2023) has made promising
steps towards mitigating high latency in LLMs. In terms of inference
latency, the main limiting factor arises from the long prompt and
model response that must be processed sequentially. The good news
is that this too can be mitigated, through fast fine-tuning techniques
(Han et al., 2024) which allow a foundational LLM to be modified
such that smaller prompts yield the same output.

In terms of scalability regarding the number of slices, as the
number of slices increases, the effectiveness of learning-based

policies would be affected because both the state space and the
action space increase accordingly. This leads to longer training
periods and convergence issues. The maximum number of slices
would be limited by the available Resource Units (RUs) in the
deployed system. In Wi-Fi 6 (802.11ax), the theoretical maximum
number of RUs available in a 160 MHz channel is 996. However,
typical deployments often use smaller channel bandwidths due to
regulatory constraints and spectrum availability. For a 20 MHz
channel, there are up to 9 RUs available. On the technical
implementation side, if the User Priority (UP) field of Wi-Fi is
used to map packets to slices, the number of slices would be limited
to 8. For the LLM policy, as the Wi-Fi network scales in complexity,
e.g., with more slices, the prompt fed to the LLM would have an
impact on the latency of the response, as the ”reasoning” of the LLM
would describe more computations or consequences for each of the
managed resources. The exact scaling factor will depend on the
conditioning prompt.

4.2 Impact of state augmentation
in REINFORCE

In addition, it is worth noting that the results show a more
significant improvement from integrating the state-augmented
approach into the REINFORCE algorithm (SAC-RE) in the
more challenging scenario. As shown in Figure 9, SAC-RE
appears on the second Pareto front in the random walk
scenario, dominating the vanilla RE approach without state-
augmentation. In contrast, in the periodic scenario (Figure 8),
RE is co-located with SAC-RE on the second Pareto front, albeit
with a significant trade-off in latency.

FIGURE 9
Comparison of slicing policies for the random walk traffic pattern. The lower-right region represents the ideal trade-off between high reward and
low constraint penalty. Multiple Pareto fronts are plotted using dotted lines, with the first front representing the set of non-dominated solutions and
subsequent fronts indicating decreasing levels of optimality.

Frontiers in Signal Processing frontiersin.org13

Rosales and Cavalcanti 10.3389/frsip.2025.1608347

https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://doi.org/10.3389/frsip.2025.1608347

4.3 Conclusion

In conclusion, we confirmed the benefit of adding state
augmentation to reinforcement learning solutions for systems
exhibiting multi-modality, as the implemented SAC-RE solution
outperformed the other RL approaches under a similarly low-cost,
manually tuned hyper-parameter settings. The most promising
result is the performance of the LLM-based policy, which
required no training or optimization and, out-of-the-box,
provided a dominating solution that can be further guided
through prompt design. As LLM optimization techniques
continue to evolve, it should become increasingly feasible to
deploy LLM-based policies in low-cost scenarios as well.

Data availability statement

Publicly available source code was analyzed in this study. This
data can be found here: https://gitlab.netcom.it.uc3m.es/predict-6g/
AI-based_Wi-Fi_Slicing.

Author contributions

RR: Conceptualization, Investigation, Methodology,
Visualization, Writing – original draft, Writing – review and
editing. DC: Funding acquisition, Supervision, Writing – review
and editing.

Funding

The author(s) declare that financial support was received for the
research and/or publication of this article. This work has been
partially funded by the European Commission Horizon Europe
SNS JU PREDICT-6G (GA 101095890) Project.

Conflict of interest

Authors RR and DC were employed by Intel Corporation.

Generative AI statement

The author(s) declare that Generative AI was used in the
creation of this manuscript. Generative AI was used to correct
grammar of human writing.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Acharya, K., Velasquez, A., and Song, H. H. (2024). A survey on symbolic knowledge
distillation of large language models. IEEE Trans. Artif. Intell. 5, 5928–5948. doi:10.
1109/TAI.2024.3428519

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., et al.
(2016). Openai gym. arXiv preprint arXiv:1606.01540

Calvo-Fullana, M., Paternain, S., Chamon, L. F. O., and Ribeiro, A. (2023). State
augmented constrained reinforcement learning: overcoming the limitations of learning
with rewards.

Candell, R., Montgomery, K., Hany, M. K., Sudhakaran, S., Albrecht, J., and
Cavalcanti, D. (2022). “Operational impacts of IEEE 802.1qbv scheduling on a
collaborative robotic scenario,” in Iecon 2022 - 48th annual Conference of the IEEE
industrial electronics society (Brussels, Belgium: IEEE), 1–7. doi:10.1109/IECON49645.
2022.9968494

Han, Z., Gao, C., Liu, J., Zhang, J., and Zhang, S. Q. (2024). Parameter-efficient fine-
tuning for large models: a comprehensive survey. Corr. abs/2403, 14608. doi:10.48550/
ARXIV.2403.14608

Henderson, T. R., Lacage, M., Riley, G. F., Dowell, C., and Kopena, J. (2008). Network
simulations with the ns-3 simulator. SIGCOMM Demonstr. 14, 527.

Kingma, D. P., and Ba, J. (2015). “Adam: a method for stochastic optimization,” in 3rd
international conference on learning representations, ICLR 2015. Editors Y. Bengio and
Y. LeCun (San Diego, CA: Conference Track Proceedings).

Liu, Q., Choi, N., and Han, T. (2021). “Onslicing: online end-to-end network slicing
with reinforcement learning,” in Proceedings of the 17th international conference on
emerging networking EXperiments and technologies (New York, NY, USA: Association
for Computing Machinery), 21, 141–153. doi:10.1145/3485983.3494850

Liu, Y., Ding, J., and Liu, X. (2020). “A constrained reinforcement learning based
approach for network slicing,” in 2020 IEEE 28th international conference on network
protocols (ICNP), 1–6. doi:10.1109/ICNP49622.2020.9259378

Ma, X., Fang, G., and Wang, X. (2023). “Llm-pruner: on the structural pruning of
large language models,” in Advances in neural information processing systems 36:
annual conference on neural information processing systems 2023. Editors A. Oh,
T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (New Orleans, LA:
NeurIPS).

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T. P., Harley, T., et al. (2016).
“Asynchronous methods for deep reinforcement learning,” in Proceedings of the 33nd
international conference on machine learning, ICML 2016. Editors M. Balcan and
K. Q. Weinberger (New York City, NY: JMLR.org), 48, 1928–1937.

NaderiAlizadeh, N., Eisen, M., and Ribeiro, A. (2022). State-augmented learnable
algorithms for resource management in wireless networks. IEEE Trans. Signal Process.
70, 5898–5912. doi:10.1109/TSP.2022.3229948

Peng, S., Hu, X., Zhang, R., Guo, J., Yi, Q., Chen, R., et al. (2023). Conceptual
reinforcement learning for language-conditioned tasks. Proc. AAAI Conf. Artif. Intell.
37, 9426–9434. doi:10.1609/aaai.v37i8.26129

Rosales, R. (2025). Python implementation of SAC-RE algorithm. Available online at:
https://gitlab.netcom.it.uc3m.es/predict-6g/AI-based_Wi-Fi_Slicing (Accessed March
14, 2025).

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017). Proximal
policy optimization algorithms. Corr. abs/1707, 06347.

Stable-Baselines3 (2025a). Proximal policy optimization algorithm. Available online
at: https://stable-baselines3.readthedocs.io/en/master/modules/ppo.html (Accessed
March 14, 2025).

Stable-Baselines3 (2025b). Synchronous, deterministic variant of asynchronous
advantage actor critic (A3C). Available online at: https://stable-baselines3.
readthedocs.io/en/master/modules/a2c.html (Accessed March 14, 2025).

Sutton, R. S., and Barto, A. G. (1998). Reinforcement learning: an introduction, 1. MIT
press Cambridge.

Frontiers in Signal Processing frontiersin.org14

Rosales and Cavalcanti 10.3389/frsip.2025.1608347

https://gitlab.netcom.it.uc3m.es/predict-6g/AI-based_Wi-Fi_Slicing
https://gitlab.netcom.it.uc3m.es/predict-6g/AI-based_Wi-Fi_Slicing
https://doi.org/10.1109/TAI.2024.3428519
https://doi.org/10.1109/TAI.2024.3428519
https://doi.org/10.1109/IECON49645.2022.9968494
https://doi.org/10.1109/IECON49645.2022.9968494
https://doi.org/10.48550/ARXIV.2403.14608
https://doi.org/10.48550/ARXIV.2403.14608
https://doi.org/10.1145/3485983.3494850
https://doi.org/10.1109/ICNP49622.2020.9259378
https://doi.org/10.1109/TSP.2022.3229948
https://doi.org/10.1609/aaai.v37i8.26129
https://gitlab.netcom.it.uc3m.es/predict-6g/AI-based_Wi-Fi_Slicing
https://stable-baselines3.readthedocs.io/en/master/modules/ppo.html
https://stable-baselines3.readthedocs.io/en/master/modules/a2c.html
https://stable-baselines3.readthedocs.io/en/master/modules/a2c.html
https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://doi.org/10.3389/frsip.2025.1608347

Uslu, Y. B., Doostnejad, R., Ribeiro, A., and NaderiAlizadeh, N. (2024). “Learning to
slice wi-fi networks: a state-augmented primal-dual approach,” in Globecom 2024 -
2024 IEEE global communications conference, 4521–4527. doi:10.1109/
GLOBECOM52923.2024.10901174

Williams, R. J. (1992). Simple statistical gradient-following algorithms for
connectionist reinforcement learning. Mach. Learn. 8, 229–256. doi:10.1007/
BF00992696

Yang, K., Yeh, S.-P., Zhang, M., Sydir, J., Yang, J., and Shen, C. (2024). “Advancing ran
slicing with offline reinforcement learning,” in 2024 IEEE international symposium on
dynamic spectrum access networks (DySPAN), 331–338. doi:10.1109/DySPAN60163.
2024.10632750

Yin, H., Liu, P., Liu, K., Cao, L., Zhang, L., Gao, Y., et al. (2020). “ns3-ai: fostering
artificial intelligence algorithms for networking research,” in Proceedings of the
2020 workshop on ns-3, WNS3 2020. Editors R. Rouil, S. Avallone, M. Coudron, and
E. Gamess (Gaithersburg, MD: ACM), 57–64. doi:10.1145/3389400.3389404

Zangooei, M., Saha, N., Golkarifard, M., and Boutaba, R. (2023). Reinforcement
learning for radio resource management in ran slicing: a survey. IEEE Commun. Mag.
61, 118–124. doi:10.1109/MCOM.004.2200532

Zhang, S. (2019). An overview of network slicing for 5g. IEEE Wirel. Commun. 26,
111–117. doi:10.1109/mwc.2019.1800234

Zhou, L., and Small, K. (2021). Inverse reinforcement learning with natural language
goals. Proc. AAAI Conf. Artif. Intell. 35, 11116–11124. doi:10.1609/aaai.v35i12.17326

Frontiers in Signal Processing frontiersin.org15

Rosales and Cavalcanti 10.3389/frsip.2025.1608347

https://doi.org/10.1109/GLOBECOM52923.2024.10901174
https://doi.org/10.1109/GLOBECOM52923.2024.10901174
https://doi.org/10.1007/BF00992696
https://doi.org/10.1007/BF00992696
https://doi.org/10.1109/DySPAN60163.2024.10632750
https://doi.org/10.1109/DySPAN60163.2024.10632750
https://doi.org/10.1145/3389400.3389404
https://doi.org/10.1109/MCOM.004.2200532
https://doi.org/10.1109/mwc.2019.1800234
https://doi.org/10.1609/aaai.v35i12.17326
https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://doi.org/10.3389/frsip.2025.1608347

	Reinforcement learning, rule-based, or generative AI: a comparison of model-free Wi-Fi slicing approaches
	1 Introduction
	2 Network slicing in Wi-Fi
	2.1 Wi-Fi radio resource allocation features
	2.2 Problem formulation
	2.3 Solution approaches
	2.3.1.1 REINFORCE algorithm
	2.3.1.2 Synchronous advantage Actor-critic (A2C)
	2.3.1.3 Proximal policy optimization
	2.3.2 Policy-gradient based, state-augmented constrained RL
	2.3.2.1 State-augmented constrained REINFORCE
	2.3.3 Rule-based approaches
	2.3.3.1 Uniform heuristic
	2.3.3.2 Proportional heuristic
	2.3.4 Generative AI approach
	2.3.4.1 LLM heuristic

	2.4 Simulation-based evaluation
	2.4.1 Simulator-based training
	2.4.2 Model selection
	2.4.3 Synchronization between ns-3 simulator and RL framework

	2.5 Test scenarios
	2.5.1.1 Periodic pattern
	2.5.1.2 Random walk pattern

	3 Results
	3.1 Training
	3.1.1 SAC-RE learning convergence
	3.1.2 Selection of best model

	3.2 Slicing evaluations with model-free approaches in ns-3
	3.2.1 Observations to inference results

	3.3 Policy comparison
	3.3.1 Periodic traffic scenario
	3.3.2 Random walk traffic scenario

	3.4 Inspection of a sample LLM response

	4 Discussions
	4.1 Best slicing policies
	4.2 Impact of state augmentation in REINFORCE
	4.3 Conclusion

	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References

