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Human experts scoring sleep according to the American Academy of Sleep

Medicine (AASM) rules are forced to select, for every 30-second epoch, one

out of five stages, even if the characteristics of the neurological signals are

ambiguous, a very common occurrence in clinical studies. Moreover, experts

cannot score sleep in studies where these signals have not been recorded, such as

in home sleep apnea testing (HSAT). In this topic review we describe how artificial

intelligence can provide consistent and reliable scoring of sleep stages based on

neurological signals recorded in polysomnography (PSG) and on cardiorespiratory

signals recorded in HSAT. We also show how estimates of sleep stage probabilities,

usually displayed as hypnodensity graph, can be used to quantify sleep stage

ambiguity and stability. As an example of the application of hypnodensity in the

characterization of sleep disordered breathing (SDB), we compared 49 patients

with sleep apnea to healthy controls and revealed a severity-depending increase in

ambiguity and decrease in stability during non-rapid eye movement (NREM) sleep.

Moreover, using autoscoring of cardiorespiratory signals, we show how HSAT-

derived apnea-hypopnea index and hypoxic burden are well correlated with the

PSG indices in 80 patients, showing how using this technology can truly enable

HSATs as alternatives to PSG to diagnose SDB.

KEYWORDS

hypnogram, hypnodensity, sleep stage ambiguity, sleep stage continuity, machine
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Introduction

Human sleep stage scoring was developed to summarize the information of

electroencephalogram (EEG), electrooculogram (EOG) and electromyogram (EMG)

correlates of normal sleep for healthy subjects (Rechtschaffen and Kales, 1968). These

neurological signals provide the basic information requisite for visually differentiating

sleep stages in 30-second epochs. Currently, the recommended rules are summarized in

the Manual for the Scoring of Sleep and Associated Events (Version 3) published by the

American Academy of SleepMedicine (Troester et al., 2023). In older subjects and in patients

with sleep disturbances, ambiguous epochs are created by intrusions, translocations, or

migrations of specific patterns (Keenan et al., 2013). Consequently, visual sleep scoring, even

by well-trained and experienced scorers, retains a degree of subjectivity. Limited interrater

Frontiers in Sleep 01 frontiersin.org

https://www.frontiersin.org/journals/sleep
https://www.frontiersin.org/journals/sleep#editorial-board
https://www.frontiersin.org/journals/sleep#editorial-board
https://www.frontiersin.org/journals/sleep#editorial-board
https://www.frontiersin.org/journals/sleep#editorial-board
https://doi.org/10.3389/frsle.2023.1163477
http://crossmark.crossref.org/dialog/?doi=10.3389/frsle.2023.1163477&domain=pdf&date_stamp=2023-04-17
mailto:peter.anderer@philips.com
https://doi.org/10.3389/frsle.2023.1163477
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frsle.2023.1163477/full
https://www.frontiersin.org/journals/sleep
https://www.frontiersin.org


Anderer et al. 10.3389/frsle.2023.1163477

reliability is well documented and repeatedly reported (Danker-

Hopfe et al., 2004, 2009; Penzel et al., 2013; Rosenberg and Van

Hout, 2013; Younes et al., 2016; Cesari et al., 2021; Lee et al., 2022).

Recently, we have shown in three different datasets scored by six,

nine, and twelve scorers, that sleep stage ambiguity is the rule rather

than the exception and that sleep stage probabilities calculated

with artificial intelligence (AI) provide an excellent estimate of this

ambiguity (Bakker et al., 2023). These sleep stage probabilities,

whether based on multiple manual scorings or on autoscoring

can be plotted in pseudo colors and have been referred to as

hypnodensity graph by Stephansen et al. (2018).

In this topic review we explore how modern AI-based

techniques can be used to describe human scoring ambiguity,

and how it can be further leveraged to characterize SDB and

to unlock the full potential of HSAT. In the first section,

we introduce the concept of hypnodensity as a technique to

represent the probabilities with which sleep experts assign the

5 sleep stages to each epoch. In the second section, we show

how the AI-determined hypnodensity is an excellent estimate of

the hypnodensity determined by multiple manual scorings, thus

providing an estimate of human ambiguity in sleep scoring. In the

third section we provide validation data for hypnodensity-derived

sleep staging, and further evaluate the potential benefits of using

hypnodensity-derived features to quantify sleep stage ambiguity

and stability in patients with sleep apnea. In the fourth section we

compare AI-determined sleep stage probabilities estimated from

cardiorespiratory signals such as those typically recorded in HSAT,

with hypnodensity based on multiple manual scorings. Finally,

in the fifth and last section, we show how AI-based scoring of

cardiorespiratory signals impacts the agreement between SDB-

related sleep parameters derived from reduced montage with those

derived from full PSG in patients with sleep disturbances.

Hypnodensity based on multiple
manual scorings

As discussed recently by Penzel (2022), error rates of 15%

or more are usually accepted for sleep stage scoring. The author

stated that an agreement between sleep stage scorers of 85% is

acceptable, and it gets worrying if the agreement drops below 70%.

However, these values only apply to the comparison between two

scorers. As three or more scorers are compared, the percentage

of complete agreement between the scorers continues to decrease

(Bakker et al., 2023). Figure 1 shows an example of a 30-second

epoch with ambiguity, which can be uncovered by independently

assessing the study by multiple scorers. The example shown in

Figure 1 was taken from a study with independent scorings by

12 human experts. Seven experts scored this epoch as N2, four

as N1 and one scorer scored the epoch as W. In the 50 epochs

during the sleep onset period, as indicated by the arrow in the

top panel of Figure 1, only 2 epochs were unequivocally scored

as W and 4 epochs unequivocally as N2. Thus, during this sleep

onset period, the 12 scorers agreed completely on only 12% of

the epochs (6 out of 50 epochs). The left part of Figure 2 shows

the 12 hypnograms for the study used in the example of Figure 1.

The hypnograms are sorted from scorer 1 to scorer 12, and epochs

where each scorer disagrees with at least one of the upper scorer(s)

are grayed out. As it can be seen, that while scorers 1 and 2 agree

for 75.6% of the epochs, the percentage of epochs with complete

agreement decreases continuously with each additional scorer. The

final set of twelve scorers only reach complete agreement for 36.9%

of the epochs (390 out of 1,057 epochs). The right part of Figure 2

presents the sleep stage probabilities as hypnodensity graphs based

on aggregated scorers: the first graph corresponds to the first scorer

(top graph with probabilities of 0 or 1), the second graph, to

the first and second scorers (with probabilities 0 or 1 for epochs

with agreement or 0.5 for epochs with disagreement) and so on,

until the second graph from the bottom, with the probabilities

based on all 12 manual scorings. Note that in this example, not

a single epoch of N1 and N3 was scored unequivocally by all 12

experts. Furthermore, only isolated epochs N2 have been scored

with complete agreement. Longer periods of complete agreement

are mostly found in epochs scored as wake or rapid-eye movement

(REM) sleep.

If multiple manual expert scorings are available for a study, it is

possible to determine a consensus scoring. In this case, consensus

is based on a majority vote. In the 30-second epoch example of

Figure 1, the consensus score would be N2 since 7 out of 12 scorers

assigned this epoch as N2. To avoid ties, one could weigh the

assessments of scorers with a higher agreement with the other

scorers (as measured by Cohen’s kappa) more than the assessments

of scorers with lower agreement (Stephansen et al., 2018). This

approach was used in the examples of Figures 2, 4, resulting in the

consensus scorings shown in the bottom left as hypnograms and in

the bottom right superimposed on the hypnodensity graphs.

Since the amount of agreement progressively displayed in

Figure 2 depends on the order of the scorers, we performed all

possible order permutations across the twelve scorers and averaged

the percentages of epochs with complete agreement. Figure 3 shows

the averaged percentages of complete agreement across scorers for

all 10 studies with 12 scorings, vs. the number of scorers compared.

The number of permutations which depends on the number of

scorers compared is shown in the table on the top. Interestingly,

the decline in agreement can be modeled almost perfectly by a

power function y = axb where y is the percentage of epochs with

complete agreement, x is the number of scorers, a is the coefficient

(in %), and b is the exponent. This model explained almost 100%

of the variance not only for PSG 1 (blue line, corresponds to the

study illustrated in Figure 2) but for each of the 10 PSGs (all R2

> 0.99) with a constant close to 100% and an exponent between

−0.31 and −0.74, depending on the study. The worst complete

agreement between the 12 scorers (16.7%) was found for PSG 5,

where like for PSG 3, the agreement already falls below 50% when

comparing three scorers. Figure 4 illustrates the study PSG 5 in the

same way as PSG 1 was illustrated in Figure 2. Note that there are

only a few isolated epochs of N2 and some epochs of W that have

been scored unequivocally by the 12 experts. In Bakker et al. (2023),

we described that the power functions were very similar also for

two other datasets with 70 PSGs scored by 6 scorers and 15 PSGs

scored by nine scorers, indicating a robust effect independent of

the dataset and the scorers. On average, the exponent of the power

function is close to −0.5 indicating that the scoring agreement

is approximately inversely proportional to the square root of the
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FIGURE 1

Example of an ambiguous sleep epoch during sleep onset (PSG1: OSAS patient, male, 76 years). Upper part (first hour): The trends from top to bottom

are: “Arousals”, arousal events; the hypnogram superimposed on the hypnodensity graph with the color codes W, gray; R, red; N1, cyan; N2, blue; N3,

green; “Resp. Events”, respiratory events; “Leg Movements”, leg movement events. Lower part (30-s window): The signals from top to bottom are:

“REOG” and “LEOG”, right and left EOG; “F4A1”, “F3A2”, “C4A1”, “C3A2”, “O2A1”, and “O1A2”, the six EEG channels; “CHIN”: chin EMG; “P-Flow”: nasal

pressure airflow. This epoch containing an arousal due to a hypopnea was scored as N2 by 7, as N1 by 4 and as W by one out of 12 scorers. Thus,

based on 12 manual scorings the sleep stage probabilities for this epoch are for W: 0.08, for N1: 0.33, for N2: 0.58, for N3: 0.0, and for R: 0.0.

FIGURE 2

A representative example of 12 manually scored hypnograms and the derived hypnodensities (PSG1: OSAS patient, male, 76 years). (A) The individual

hypnograms sorted from scorer 1 to scorer 12 (Manual-1 to Manual-12) where epochs with disagreement to the upper scorer(s) are grayed out. The

bottom hypnogram depicts the consensus scoring based on majority vote. (B) The corresponding hypnodensity graphs based on the sorted scorings

(Manual-1 to Manual-12). Thus, the first hypnodensity graph is based on Manual-1 scoring only, the second on Manual-1 and Manual-2 scorings,

etc. The (two) last hypnodensity graphs are based on all 12 manual scorings where the consensus hypnogram is superimposed on the last

hypnodensity. The color codes are W, gray; R, red; N1, cyan; N2, blue; N3, green. Note that while the agreement between the first two scorers is

75.6%, the agreement decreases continuously with each new scorer included in the comparison so that if 12 scorers are compared the percentage

of epochs with complete agreement is reduced to 36.9%.
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FIGURE 3

Percentage of all epochs with complete sleep staging agreement across 12 scorers in 10 PSGs. The number of scorers compared is shown on the

x-axis; the percentage of complete agreement across the compared scorers is shown on the y-axis. The mean of all possible permutations for

choosing x scorers out of the available scorers are shown for each PSG (colored filled circles) and for the mean of the 10 PSGs (black filled squares).

The table in the upper right corner describes the number of permutations for each combination of scorers. The reduction in complete agreement

alongside the increasing number of scorers follows an almost-perfect power function (dashed lines for each dataset). In addition to the coe�cients

and exponents, the explained variances (R2) are shown. Modeled together, the power function y = axb has a coe�cient aMEAN of 96 and an exponent

bMEAN of−0.45. This function explains more than 99% of the variance.

number of scorers included in the analysis. This means that on

average, the complete agreement drops to 50% when four or more

scorers are compared [100%/sqrt(4)= 50%].

To derive the AASM-recommended sleep parameters, one can

use the consensus hypnogram. Alternatively, all the parameters

could be determined from each of the 12 hypnograms and

subsequently averaged to achieve a more robust estimate of the

patients’ sleep characteristics. Table 1 compares the results for

both approaches for the example study shown in Figure 2 and

demonstrates once more the impact of between-scorer variability

on the derived sleep parameters. As shown in Table 1, the total

sleep time varies between 348 and 408min, the time spent in N1

varies between 23.5 and 134min, the time in N2 varies between

180 and 311.5min, the time in N3 varies between 0 and 67min

and the time in R varies between 22 and 42min, depending on

which expert scored this study. Averaged over the 10 studies with 12

scorers, total sleep time varied between 319 and 390min, the time

in N1 varies between 29 and 127min, the time in N2 varies between

125 and 250, the time in N3 varies between 7 and 56min, and the

time in R varies between 42 and 63min. Since each expert typically

interprets the rules consistently, paired samples t-tests comparing

the parameters based on the two extreme values are all significant

at p < 0.01. Moreover, significant differences in the total sleep time,

and the time spent in each of N1, N2, N3, and R were also found for

many of the 66 possible pairwise comparisons between two scorers.

For example, 15 scorer pairs differed significantly at p < 0.01 in

the scoring of total sleep time. The number of significant t-tests

were 25, 28, 27, and 9 for the time spent in N1, N2, N3, and R,

respectively. Only 5 out of the 66 scorer pairs showed no significant

difference in any of the 5 parameters (i.e., scorer 1 vs. scorer 2,

scorer 1 vs. scorer 6, scorer 2 vs. scorer 3, and scorer 6 vs. scorer 7).

Similar high inter-scorer ranges have been reported by

Magalang et al. (2013) averaged over 15 PSGs scored by 9 experts

(N1: 32 to 111min; N3: 25 to 73min) as well as by Younes et al.

(2018) averaged over 70 PSGs scored by 10 experts (N1: 16 to

155min; N3: 4 to 111min). The consequences of these different

interpretations are certainly significant. Younes et al. (2018) stated

that in nearly all the 70 PSGs, regardless of the average value

obtained from the 10 scorers, stage N1 sleep time could be reported

as well below normal or well above normal just depending on who
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FIGURE 4

Manually scored hypnograms and the derived hypnodensities for the study with the worst agreement between the 12 scorers (PSG5: Hypersomnia

with sleep apnea, male, 78 years). (A) The individual hypnograms sorted from scorer 1 to scorer 12 (Manual-1 to Manual-12) where epochs with

disagreement to the upper scorer(s) are grayed out. The bottom hypnogram depicts the consensus scoring based on majority vote. (B) The

corresponding hypnodensity graphs based on the sorted scorings (Manual-1 to Manual-12). Thus, the first hypnodensity graph is based on Manual-1

scoring only, the second on Manual-1 and Manual-2 scorings, etc. The (two) last hypnodensity graphs are based on all 12 manual scorings where the

consensus hypnogram is superimposed on the last hypnodensity. The color codes are W, gray; R, red; N1, cyan; N2, blue; N3, green. Note that while

the agreement between the first two scorers is 68.2%, the agreement decreases continuously with each new scorer included in the comparison so

that if 12 scorers are compared the percentage of epochs with complete agreement is reduced to 16.7%.

TABLE 1 Sleep parameters derived frommultiple manual scorings (OSAS patient, male, 76 years).

Scorer TST (min) N1 (min) N2 (min) N3 (min) R (min)

Manual-1 356.5 83 231.5 0 42

Manual-2 381.5 74.5 253 21 33

Manual-3 357.5 88 247 0 22.5

Manual-4 387 48 311.5 0 27.5

Manual-5 408 94.5 264 18.5 31

Manual-6 360 53.5 245.5 33.5 27.5

Manual-7 382 83.5 248 19.5 31

Manual-8 370.5 45 228.5 67 30

Manual-9 370.5 23.5 255.5 62.5 29

Manual-10 399 115.5 200 45 38.5

Manual-11 348 96 217 13 22

Manual-12 375.5 134 180 39 22.5

Manual-Mean=Manual-Hypnodensity 374.7 78.3 240.1 26.6 29.7

Manual-Consensus Hypnogram 372.5 62 259 20.5 31

Manual-1 to Manual-12: parameters derived from the twelve individual manual scorings. Manual-Mean: mean value of the 12 parameters, which is equal to parameters derived from the

hypnodensity based on the manual scorings. Manuel-Consensus Hypnogram: parameters derived from the manual consensus hypnogram. Light and dark ocher cells indicate per parameter the

lowest and highest value, respectively; gray cells indicate parameters based on multiple manual scorers.

scored the PSG. Similarly, reported stage N3 sleep time ranged from

zero to high values regardless of average stage N3 sleep time of

the PSG.

To avoid individual scorer bias in the estimation of sleep

parameters, one may make use of multiple expert scorings.

The averaged parameters are given in the penultimate row of

Table 1 (Manual-Mean). Alternatively, these averaged parameters

can be computed directly from the hypnodensity graph by

calculating the area under the sleep stage probability curves of

the respective stages (Manual-Hypnodensity). Note that these

mean parameters are not necessarily equal to the parameters

computed from a majority vote hypnogram. Based on the
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TABLE 2 Overview of sleep staging validation studies with algorithms outputting the hypnodensity graph.

Author, year,
algorithm name

Training dataset Feature extraction /

epoch encoder

Classifier/Sequence
encoder

Test dataset Cohen’s κ Hypnodensity

Stephansen et al. (2018)

Stanford-STAGES

Cohort: N= 2,784; 10 cohorts EEG, EOG, EMG: Cross-correlation

encoding+CNN

Unidirectional LSTM Cohort: N= 70; IS-RC, 6 scorers 0.75

Cesari et al. (2021)

Stanford-STAGES

Stanford-STAGES algorithm Cohort: N= 1,066; SHIP,

2 scorers

0.68

Vallat and Walker (2021)

YASA

Cohort: N= 3,163;

7 cohorts

EEG, EOG, EMG (time-domain

features and spectrogram)

LightGBM HC: N= 25; DOD-H, 5 scorers

PAT(OSA): N= 55; DOD-O,

5 scorers

0.80

0.77

Anderer et al. (2022b)

Somnolyzer

Cohort: N= 588; SIESTA (7

sleep centers)

2–6 scorers

EEG, EOG, EMG (Sleep/wake

related features)+MLP/CNN

bidirectional LSTM (→RandK)+

CNN+ unidirectional

LSTM (→AASM)

Cohort: N= 426; ABC, homePAP, MESA, 1

scorer

0.74

Bakker et al. (2023)

Somnolyzer

Somnolyzer algorithm Cohort: N= 70; IS-RC, 6 scorers

PAT: N= 15; SAGIC, 9 scorers

PAT: N= 10;Somnoval,12 scorers

0.78

0.75

0.76

ICC: 0.91

ICC: 0.91

ICC: 0.91

Cesari et al. (2022)

Stanford-STAGES

Stanford-STAGES algorithm PAT (Narcolepsy type1 and 2, idiopathic

hypersomnia, subjective EDS): N= 143,

1 scorer

0.75

Cesari et al. (2022)

YASA

YASA algorithm 0.76

Brandmayr et al. (2022)

ENGELBERT

HC: N= 20;Sleep-EDF-20

HC: N= 78;Sleep-EDF-SC

Cohort: N= 62;MASS-SS3

Single-channel EEG (raw signal)+

CNN

Local MHSA on overlapping

windows

HC: N= 20; Sleep-EDF-20 (CV)

HC: N= 78; Sleep-EDF-SC (CV)

Cohort: N= 62; MASS-SS3 (CV)

0.82

0.79

0.80

Fiorillo et al. (2023b)

DeepSleepNet-Light

Cohort: N= 70; IS-RC, 6

scorers

HC: N= 25; DOD-H, 5

scorers

PAT (OSA): N= 55; DOD-O,

5 scorers

Single-channel EEG (raw signal)+

CNN

Deep CNN (Soft consensus label

smoothing)

Cohort: IS-RC, 6 scorers (CV)

HC: DOD-H, 5 scorers (CV)

PAT (OSA): DOD-O,5 scorers (CV)

0.67

0.76

0.71

ACS: 0.85

ACS: 0.91

ACS: 0.89

Fiorillo et al. (2023b)

Simple Sleep Net

EEG, EOG, EMG (spectrogram)+

bidirectional GRU+ Attention

Layer

Bidirectional GRU (Soft consensus

label smoothing)

Cohort: IS-RC, 6 scorers (CV)

HC: DOD-H, 5 scorers (CV)

PAT (OSA): DOD-O,5 scorers (CV)

0.73

0.84

0.80

ACS: 0.82

ACS: 0.91

ACS: 0.91

Cohort, cohort study; HC, healthy controls; PAT, patients with sleep disturbance; OSA, patients with obstructive sleep apnea; PD, Parkinson’s Disease; IS-RC, Research study on sleep disordered breathing in women in midlife, University of Pennsylvania, Philadelphia;

SIESTA, SIESTA sleep database; Somnoval, Somnolyzer validation study dataset; Sleep-EDF, Sleep-EDF Database Expanded; DOD-H, Dreem Open Dataset – Healthy Volunteers; DOD-O, Dreem Open Dataset – Obstructive Sleep Apnea Patients; homePAP, Home

Positive Airway Pressure study; ABC, Apnea, Bariatric surgery, and CPAP study; SHIP, Study of Health in Pomerania; MESA, Multi-Ethnic Study of Atherosclerosis; SAGIC, Sleep Apnea Genetics International Consortium, The Ohio State University Medical Center,

Columbus; CNN, Convolutional neural network; LSTM, long short-term memory; MLP, multilayer perceptron; LightGBM, decision tree-based gradient-boosting machine; decision tree; MHSA, Multi-head self-attention.
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consensus hypnogram (last line in Table 1) the time in N1

is 62min, while the time in N1 is 78.3min (+16.3min)

if averaged across the times derived from each of the 12

hypnograms or if the N1 probabilities of the hypnodensity

curve are integrated. Specifically, the time in N1 is typically

underestimated if the parameters are derived from a consensus

scoring, since the epoch-by-epoch agreement for stage N1 is

generally low between manual scorers. Given the wide variability

in the interpretation of the recorded neurological signals by

manual experts, it is highly questionable to rely on a single

expert’s assessment. Furthermore, none of the 12 hypnograms

or the consensus hypnogram provide insights into this inter-

scorer variability. In contrast, the hypnodensity reflects sleep stage

ambiguity while retaining all the information contained in a

consensus hypnogram.

Hypnodensity based on autoscoring
using neurological signals

Autoscoring with artificial intelligence enables the direct

quantification of sleep stage ambiguity by determining sleep stage

probabilities for each epoch. Based on these probabilities, it is

possible to create a hypnodensity chart from autoscoring which

can be directly compared to the hypnodensity chart based on

multiple expert scorings. In Table 2 we summarize publications

using AI-algorithms for sleep staging and reporting autoscored

hypnodensity graphs (Stephansen et al., 2018; Cesari et al.,

2021, 2022; Vallat and Walker, 2021; Anderer et al., 2022b;

Brandmayr et al., 2022; Bakker et al., 2023; Fiorillo et al., 2023b).

In addition to information regarding the training datasets, the

epoch encoder including feature extraction, the sequence encoder

and classifier, and the test datasets, the Cohen’s kappa values

obtained in each study are given. Two publications describe

quantitative comparisons between the hypnodensity graph derived

from autoscoring vs. the hypnodensity graph derived from

multiple manual scorings. Bakker et al. (2023) computed the

intra-class correlation coefficient (ICC) for absolute agreement

between the probability curves from auto and manual scoring

per sleep stage as well as overall sleep stages for the entire

night, while Fiorillo et al. (2023b) computed the cosine similarity

between the probability values from auto and manual scoring

per 30-s epoch and averaged these values over the entire

night resulting in average cosine similarity (ACS) measures.

As can be seen in Table 2, both approaches indicate a high

agreement between the autoscored and the manually derived

hypnodensity graphs with an ICC of 0.91 and an ACS of up

to 0.91.

The Stanford-STAGES, YASA, Somnolyzer and Simple Sleep

Net algorithms use EEG, EOG and chin EMG channels as inputs,

while the ENGELBERT and DeepSleepNet-Light algorithms are

based on a single EEG channel only, offering sleep staging for

reduced montage recordings. The Somnolyzer autoscoring system

uses all recorded frontal, central and occipital EEG channels,

left and right EOG channels, as well as the chin EMG channel

for feature extraction. Somnolyzer feature extraction includes

identification of artifacts, detection of slow waves, k-complexes,

sleep spindles, and episodes with alpha waves, determination of

the EEG background activities (delta, theta, alpha, slow and fast

beta activities) based on the EEG channels. EOG channels were

used for detecting slow and rapid eye movements as well as eye-

blinks. The chin EMG channel was used to detect tonic and

transient EMG activities (Anderer et al., 2005, 2010). The original

Somnolyzer algorithm (Version 1.7; 2005) was developed according

to the criteria defined by Rechtschaffen and Kales (1968) (R&K)

and subsequently modified (Version 1.8; 2009) to comply with

the AASM 2007 criteria (Iber et al., 2007). For version 4.0 of

Somnolyzer released commercially in 2021, a supervised deep

learning algorithm was used to train a neural network where 472

PSGs from the SIESTA database (Klosch et al., 2001) were used

for parameter optimization, and the remaining 116 PSGs were used

for early-stopping to prevent the model from overfitting. Each PSG

was scored by two independent technologists and one consensus

scorer chosen from a pool of 30 scorers to obtain R&K sleep

stage probabilities as training targets. This corresponds to the soft

consensus labels smoothing approach using an alpha coefficient of 1

as presented by Fiorillo et al. (2023b). The categorical cross-entropy

between the sleep stage probabilities and the network output with

softmax activation was used as loss function during the training.

In a further step, arousals, sleep spindles, and k-complexes were

added to the feature set and a convolutional neural network (CNN)

followed by a bidirectional long short-term memory (LSTM) layer

was trained using data from 72 PSGs scored according to AASM

criteria to sub-classify NREM sleep stages.

The final Somnolyzer network output assigned AASM-related

sleep stage probabilities of W, N1, N2, N3, R to each 30-sec

epoch. Figures 5, 6 compare the hypnodensity derived from the

12 manual scorings with the hypnodensity determined by the

Somnolyzer autoscoring system for the two studies shown in

Figures 2, 4, respectively. As can be seen in the examples from this

independent test set, the sleep stage probabilities of Somnolyzer

match almost perfectly with the sleep stage probabilities based on

the 12 human scorings. The ICCs for absolute agreement between

the two probability curves are 0.97 for PSG 1 (Figure 5) and 0.89 for

PSG 5 (Figure 6). Also note the high similarity in the probability

curves for each sleep stage. In Figure 5, we highlighted 6 periods.

Box 1 comprises sleep onset with a change from W to a small

amount of N1 probability at the start, back to definite W, and

then with increasing N1 probability via sleep onset, which is the

first epoch with sleep probability higher than wake probability

(solid line), to definite sleep with N1+N2 probability above 0.95

with approximately equal amount of N1 and N2 probability at

the end of the box 1. Note that just before the end of box 1,

there are epochs which were assigned still as W by some scorers,

while others assigned these epochs already as N2 sleep. Boxes 2,

3, 4, and 6 indicate periods where at least two experts scored N3.

Note that the N3 probabilities derived from autoscoring follow the

N3 probabilities derived from the 12 manual scorings not only in

respect to the timing, but also in respect to the amount, with the

highest N3 probability reaching 0.75 (8 out of 12 scorers) in box

3 and the lowest at 0.17 (2 out of 12 scorers) in box 2. Finally,

also for the R probabilities (box 5) the manually- and autoscoring-

based curves match in terms of time and magnitude. Interestingly,

even for the study with the worst agreement between scorers, the

manually- and autoscoring-based probability curves match closely

(Figure 6).
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FIGURE 5

A representative example comparing the hypnodensities derived from 12 manual scorings (A) and from autoscoring (B) for the same PSG shown in

Figure 2 (PSG1: OSAS patient, male, 76 years). The color codes are W, gray; R, red; N1, cyan; N2, blue; N3, green. The time period depicted in box 1

highlights the sleep onset period with the actual sleep onset at Wprob <0.5 indicated as solid line; Boxes 2, 3, 4, and 6 indicate time periods where at

least 2 scorers have scored N3; Box 5 indicate the time period where at least one scorer has scored R. Note the similarity of the manually-derived

and the autoscoring-derived sleep stage probabilities.

As presented in Bakker et al. (2023) the ICCs for absolute

agreement between sleep stage probabilities derived from manual-

and Somnolyzer autoscoring were, on average 0.91 for all stages for

all three datasets with multiple scorers (Table 2). For the individual

sleep stages the ICCs were as follows: 0.93-0.94 for stage W; 0.72–

0.74 for stage N1; 0.88–0.89 for stage N2; 0.85–0.94 for stage N3;

and 0.96–0.97 for stage R. Thus, according to the thresholds defined

by Koo and Guideline (2016) the probability curves for all stages, as

well as for individual stages W and R show excellent agreement;

good agreement for stages N2 and N3; and, moderate agreement

even for stage N1.

The hypnodensity graph based on the manual scorers shown

in Figure 5 clearly indicates that although all experts follow the

well-established AASM rules for scoring PSGs, the interpretation

of the rules may, and often does vary substantially between scorers,

specifically for epochs or events with equivocal features (Rosenberg

and Van Hout, 2013; Younes et al., 2016, 2018). Experts, when

scoring these epochs, may be biased toward sensitivity or specificity,

probably depending on their internal representation of the features

(i.e., their personal feature template or prototype). As soon as the

features in the epoch are close enough to their subjective template,

the scorer will score this epoch accordingly. Consequently, if the

following epoch shows features that are similar or even closer to

their template, the scorers will continue to score the same sleep

stage. This also explains the gradual increase in epochs scored

as sleep (box 1) or in epochs scored as N3 (boxes 3 and 4). If

the features never match close enough their personal template of

slow wave sleep, scorers may never even start scoring N3 in the

entire recording, which is the case for scorers 1, 3, and 4 in the

recording shown in Figure 5 (see also Table 1). In contrast, scorers

8 and 9 have obviously a very sensitive template of slow wave

sleep resulting in 4 periods of slow wave sleep with a total time in

N3 of more than 1 h (Table 1). Younes et al. (2018) showed that

some technologists scored stage N3 sleep when delta wave duration

was well below 6 s whereas for others much greater durations

were required.
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FIGURE 6

Comparison between the hypnodensities derived from 12 manual scorings (A) and from autoscoring (B) for the PSG with the worst agreement

between manual scorers (PSG5: Hypersomnia with sleep apnea, male, 78 years). The color codes are W, gray; R, red; N1, cyan; N2, blue; N3, green.

Note the similarity of the manually-derived and the autoscoring-derived sleep stage probabilities.

Interestingly, by varying sensitivity settings, an autoscoring

can mimic these different interpretations. The Somnolyzer

autoscoring system has the option to select different sensitivities

for arousal, spindle/k-complex, slow wave, apnea and hypopnea

event detection. In Anderer et al. (2022b) we reported the effects

of changing these sensitivity settings in a study based on 10 PSGs

from 10 apnea patients (5 diagnostic-, 2 titration- and 3 split-

nights) each scored independently by 8 experts. Sleep parameters

derived from the manual scorings varied considerably between the

8 scorers (time in N1: 29–127min, time in N2: 125–209min, time

in N3: 19–56min, time in R: 42–63min). With the default (=

balanced) setting, Somnolyzer autoscoring was close to the mean

of the 8 manual scorings (time in N1: 82 and 85min, time in

N2: 184 and 176min, time in N3: 41 and 42min, time in R: 59

and 56min, for the Somnolyzer scoring and the mean of the 8

manual scorings, respectively). Moreover, by varying the sensitivity

settings in 5 steps (frommaximal precision to maximal sensitivity),

the autoscoring perfectly mimicked the variability observed in

the 8 manual scorers. Thus, by merely varying the sensitivity

settings, the inter-scorer variability observed in manual scorings

can be explained. Furthermore, the high agreement between the

hypnodensity based on the manual scorings and the autoscoring

indicates that the 30 scorers who participated in the scoring of

our training set covered the full spectrum from maximal sensitivity

to maximal precision. In a recent paper on interpretation and

further development of the hypnodensity, Huijben et al. (2023)

concluded based on theoretical analyses and empirical evidence

that the hypnodensity graph, predicted by a classifier that had

been trained in a supervised manner, resembles the inter-rater

disagreement across the scorers that annotated the PSGs of the

training set. Consequently, training sets used to develop classifiers

for sleep staging have to be scored by experts covering the

full spectrum from highly sensitive to highly precise within the

AASM scoring rules in a sufficiently large sample of subjects

of both sexes, including healthy controls and a wide range of

patients with different sleep disturbances, to ensure that the

hypnodensity output of the trained neural network reflects this

full spectrum.
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Hypnodensity-derived sleep stages
and parameters

Based on the hypnodensity, a sleep stage can be assigned as

the stage with the highest probability (argmax). The Somnolyzer

algorithm, however, uses a hierarchical approach to assure that for

instance epochs with a higher probability for sleep than for wake

are scored as sleep, even if the probability for wake is higher than

for any individual sleep stage. In the hierarchical approach a sleep

stage is assigned to each epoch as follows: if the wake-probability

was > 0.5, assign W; else if the REM-probability was higher than

the NREM probability (sum of the probabilities of N1, N2, and

N3), assign R; else if the N3-probability was higher than the sum of

the N1- and N2-probabilities, assign N3; else if the N2-probability

was higher than the N1-probability, assign N2; otherwise assign

N1. In an additional post-processing step, Somnolyzer enforces the

AASM smoothing rules for scoring R as well as N2, based on the

occurrence (start and duration) of arousals, sleep spindles and K

complexes (Troester et al., 2023).

A validation study of the Somnolyzer algorithm by Anderer

et al. (2022b) with 426 PSGs (224 PSGs from theMESA study (Chen

et al., 2015), 178 PSGs from theHomePAP study (Rosen et al., 2012)

and 24 PSGs from the ABC study (Bakker et al., 2018) scored by one

scorer resulted in a Cohen’s kappa between Somnolyzer autoscoring

and manual scoring of 0.739 (with a 95% confidence interval of

0.737 to 0.741), reflecting substantial agreement according to the

thresholds defined by Landis and Koch (1977). In agreement with

human inter-rater reliability studies, the highest kappa values were

observed for wake and REM detection (0.85 and 0.87) followed by

N2 and N3 detection (0.72 and 0.73), while the detection of N1

resulted in the lowest kappa value of 0.46.

Another Somnolyzer validation study based on the three

external datasets scored by six, nine, and twelve scorers,

demonstrated for each dataset that the agreement between

autoscoring and consensusmanual-scoring was significantly higher

than agreement between manual-scoring and consensus manual-

scoring (Bakker et al., 2023). In the dataset with 70 PSGs and 6

scorers, autoscoring achieved a Cohen’s kappa of 0.78, vs. 0.69

for manual scorings; for the dataset with 15 PSGs and 9 scorers,

autoscoring achieved 0.74 vs. 0.67 for manual scorings; and for the

dataset with 10 PSGs and 12 scorers, 0.75 vs. 0.67 (all p < 0.01).

As shown by the authors in supplementary tables, the percentage

of agreement between autoscoring and consensus scoring was 85,

83 and 83% for the three studies. Thus, in 15–17% of the epochs,

Somnolyzer disagreed with the consensus. However, in almost all

of these epochs at least one scorer disagreed with the consensus and

more importantly, autoscoring agreed in these cases with at least

one of the deviating scorers. By considering as a correct detection,

all epochs where autoscoring and at least one manual scorer agreed,

the percentage of agreement increases to 97.9, 98.3, and 99.1% for

the three datasets with 6, 9, and 12 scorers. In addition, the authors

showed that sleep staging derived from autoscoring was for each

individual PSG non-inferior to manual-scoring.

Many AI-based sleep scoring algorithms have been developed

and validated in the last few years. In Tables 3, 4 we summarize

publications using AI-algorithms for sleep staging based on

neurological signals that reported Cohen’s kappa for the 5-stage

comparison. Note the large difference in the size of the training

data (between 10 and more than 15,000 PSGs) as well as in the size

of the test data (between 8 and close to 3000). Table 3 summarizes

validation results of AI-algorithms that applied a hold-out or cross-

validation; i.e., an internal validation based on data from the same

dataset that has been used for training (Supratak et al., 2017; Sors

et al., 2018; Phan et al., 2019; Zhang et al., 2019; Abou Jaoude et al.,

2020; Guillot et al., 2020; Korkalainen et al., 2020; Sun et al., 2020a;

Alvarez-Estevez and Rijsman, 2021; Fiorillo et al., 2021, 2023b; Jia

et al., 2021; Nasiri and Clifford, 2021; Olesen et al., 2021; Pathak

et al., 2021; Vallat and Walker, 2021; Brandmayr et al., 2022; Cho

et al., 2022; Ji et al., 2022; Li C. et al., 2022; Li T. et al., 2022; Sharma

et al., 2022; Yubo et al., 2022). Table 4 summarizes the validation

results of AI-algorithms which have been validated in datasets

completely unseen by the model (Anderer et al., 2018, 2022b;

Biswal et al., 2018; Patanaik et al., 2018; Stephansen et al., 2018;

Zhang et al., 2019; Abou Jaoude et al., 2020; Alvarez-Estevez and

Rijsman, 2021; Cesari et al., 2021, 2022; Vallat and Walker, 2021;

Bakker et al., 2023). The reported Cohen’s kappa values ranged

between 0.60 [external validation in 70 patients with Parkinson’s

disease (Patanaik et al., 2018)] to 0.91 [internal 20-fold epoch-

wise cross validation in 8 healthy subjects (Li C. et al., 2022)].

Cohen’s kappa values reported for the 45 internal validation studies

using hold-out or cross-validation were significantly higher than

for the 19 studies using external test sets for validation (0.79 ±

0.04 vs. 0.72 ± 0.06; p < 0.001 independent samples t-test). In

all studies that reported Cohen’s kappa for both, an internal and

an external test set the kappa for the internal testing was always

higher than for the external testing (Zhang et al., 2019; Abou

Jaoude et al., 2020; Alvarez-Estevez and Rijsman, 2021; Vallat and

Walker, 2021). Moreover, in studies reporting Cohen’s kappa for

patients and for healthy controls, the kappa for controls was always

higher than for patients (Supratak et al., 2017; Guillot et al., 2020;

Korkalainen et al., 2020; Vallat and Walker, 2021; Ji et al., 2022;

Yubo et al., 2022). Accordingly, Korkalainen et al. (2020) reported a

decrease in Cohen’s kappa depending on OSA severity in a clinical

dataset of 891 patients, with a kappa of 0.79 for individuals without

OSA diagnostic (n = 152) to a kappa of 0.68 for patients with

severe OSA (n = 254). Consequently, performance measures of

sleep stage validation studies need to be interpreted depending on

the validation method used and the characteristics of the subjects

included in the test dataset.

Table 2 summarizes the kappa values for the 20 validation

studies of the 6 AI-based autoscoring algorithms outputting the

hypnodensity graph (Stephansen et al., 2018; Cesari et al., 2021,

2022; Vallat and Walker, 2021; Anderer et al., 2022b; Brandmayr

et al., 2022; Bakker et al., 2023; Fiorillo et al., 2023b). As can be

seen in Table 2, Cohen’s kappa for the 5-stage comparison was

comparable between the six algorithms. Stephansen et al. (2018),

Bakker et al. (2023) and Fiorillo et al. (2023b) validated their

algorithms in the same IS-RC cohort and reported, as compared

to the consensus of 6 scorers, kappa values between 0.67 and

0.78. Cesari et al. (2022) compared the Stanford-STAGES and

YASA algorithm in a dataset of patients with central disorders

of hypersomnolence and reported almost identical kappa values

for the two algorithms (0.747 and 0.755 for Stanford-STAGES

and YASA, respectively). These findings suggest that modern
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TABLE 3 Overview of sleep staging validation studies with AI-algorithms providing Cohen’s kappa based on internal validation.

Author, Year Name Training dataset Input signals Test dataset Cohen’s κ

Supratak et al. (2017)

DeepSleepNet

Cohort: N= 62; MASS

HC: N= 20; Sleep-EDF

Single-channel EEG Cohort: MASS (CV)

HC: Sleep-EDF (CV)

0.80

0.76

Sors et al. (2018) Cohort: N= 5,793; SHHS Single-channel EEG Cohort: N= 1738; SHHS

(HO)

0.81

Phan et al. (2019)

SeqSleepNet

Cohort: N= 200; MASS EEG, EOG, EMG Cohort: MASS (CV) 0.82

Zhang et al. (2019) Cohort: N= 5,213; SHHS EEG, EOG, EMG Cohort: N= 580; SHHS (HO) 0.82

Sun et al. (2020a) Cohort: N= 147; MASS EEG, EOG, EMG Cohort: MASS (CV) 0.80

Guillot et al. (2020)

SimpleSleepNet

HC: N= 25; DOD-H, 5 scorers

PAT (OSA): N= 55; DOD-O, 5

scorers

EEG, EOG, EMG HC: DOD-H, 5 scorers (CV)

PAT (OSA): DOD-O, 5

scorers (CV)

0.85

0.82

Korkalainen et al. (2020) HC: N= 153; Sleep-EDF

PAT (OSA): N= 891; Clinical

Dataset

Single-channel EEG (and

single-channel EOG)

HC: Sleep-EDF (CV)

PAT (OSA): Clinical datsaset

(CV)

0.78

0.78

Abou Jaoude et al. (2020) PAT: N= 6,341; MGH 4 EEG channels PAT: N= 791; MGH (HO) 0.74

Alvarez-Estevez and Rijsman

(2021)

Cohort: N= 443; 6 datasets EEG, EOG, EMG (raw signal)

+ CNN

Cohort: N= 88 (HO) 0.80

Olesen et al. (2021) Cohort: N= 15,684; 5 cohorts EEG, EOG, EMG Cohort: N= 1,584 (HO) 0.80

Vallat and Walker (2021)

YASA

Cohort: N= 3,163; 7 cohorts EEG, EOG, EMG Cohort: N= 585 (HO) 0.82

Nasiri and Clifford (2021) PAT: N= 994; PhysioNet 6 EEG channels PAT: PhysioNet (CV) 0.75

Fiorillo et al. (2021)

DeepSleepNet-Lite

HC: N= 39; Sleep-EDF 2013

HC: N= 153;Sleep-EDF 2018

Single-channel EEG HC: Sleep-EDF 2013 (CV)

HC: Sleep-EDF 2018 (CV)

0.78

0.73

Pathak et al. (2021) Cohort: N= 5,793; SHHS

PAT: N= 1418; Clinical

EEG, EOG, EMG Cohort: N= 579; SHHS (HO)

PAT: N= 142; Clinical (HO)

0.79

0.68

Jia et al. (2021) HC: N= 10; ISRUC-S3

HC: N= 62; MASS-SS3

EEG (6 channels ISRUC, 20

channels MASS)

HC: ISRUC (CV)

HC: MASS (CV)

0.77

0.84

Li T. et al. (2022) HC: N= 61; Sleep-EDF 2013

HC: N= 197;Sleep-EDF 2018

Single-channel EEG HC: Sleep-EDF 2013 (CV)

HC: Sleep-EDF 2018 (CV)

0.78

0.74

Ji et al. (2022) HC: N= 10; ISRUC-S3

PAT: N= 100; ISRUC-S1

EEG, EOG, EMG, ECG HC: ISRUC-S3 (CV)

PAT: ISRUC-S1 (CV)

0.78

0.77

Li C. et al. (2022)

EEGSNet

HC: N= 8; Sleep-EDF-8

HC: N= 39; Sleep-EDF-20

HC: N= 153; Sleep-EDF-78

Cohort: N= 329; SHHS

Single-channel EEG HC: Sleep-EDF-8 (CV)

HC: Sleep-EDF-20 (CV)

HC: Sleep-EDF-78 (CV)

Cohort: SHHS (CV)

0.91

0.82

0.77

0.79

Sharma et al. (2022) Cohort: N= 8,455; SHHS EEG, EOG, EEG Cohort: N= 580; SHHS1

(HO)

Cohort: N= 2651; SHHS2

(HO)

0.77

0.80

Cho et al. (2022)

StageNet

PAT: N= 530; Clinical dataset EEG, EOG, EMG PAT: N= 72, Clinical dataset

(HO)

0.84

Yubo et al. (2022)

MMASleepNet

HC: N= 39; Sleep-EDF-20

HC: N= 153; Sleep-EDF-78

HC: N= 10; ISRUC-Sleep3

PAT: N= 100; ISRUC-Sleep1

EEG, EOG, EMG HC: Sleep-EDF-20 (CV)

HC: Sleep-EDF-78 (CV)

HC: ISRUC-Sleep3 (CV)

PAT: ISRUC-Sleep1 (CV)

0.83

0.76

0.77

0.73

Brandmayr et al. (2022)

ENGELBERT

HC: N= 20; Sleep-EDF-20

HC: N= 78; Sleep-EDF-SC

Cohort: N= 62; MASS-SS3

Single-channel EEG HC: N= 20; Sleep-EDF-20

(CV)

HC: N= 78; Sleep-EDF-SC

(CV)

Cohort: N= 62; MASS-SS3

(CV)

0.82

0.79

0.80

(Continued)
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TABLE 3 (Continued)

Author, year Name Training dataset Input signals Test dataset Cohen’s κ

Fiorillo et al. (2023b)

DeepSleepNet-Light

Cohort: N= 70; IS-RC, 6 scorers

HC: N= 25; DOD-H, 5 scorers

PAT (OSA): N= 55; DOD-O, 5

scorers

Single-channel EEG Cohort: IS-RC, 6 scorers (CV)

HC: DOD-H, 5 scorers (CV)

PAT (OSA): DOD-O, 5

scorers (CV)

0.67

0.76

0.71

Fiorillo et al. (2023b)

Simple Sleep Net

Cohort: N= 70; IS-RC, 6 scorers

HC: N= 25; DOD-H, 5 scorers

PAT (OSA): N= 55; DOD-O, 5

scorers

EEG, EOG, EMG Cohort: IS-RC, 6 scorers (CV)

HC: DOD-H, 5 scorers (CV)

PAT (OSA): DOD-O, 5

scorers (CV)

0.73

0.84

0.80

N-studies 45

Cohen’s κ Mean± SD 0.79± 0.04

Min 0.67

Max 0.91

Internal validation, CV, cross-validation; HO, hold-out validation; Cohort, cohort study; HC, healthy controls; PAT, patients with sleep disturbance; OSA, patients with obstructive sleep apnea;

MASS, Montreal Archive of Sleep Studies; Sleep-EDF, Sleep-EDF Database Expanded; SHHS, Sleep Heart Health Study; MGH, Massachusetts General Hospital; IS-RC, Research study on sleep

disordered breathing in women in midlife, University of Pennsylvania, Philadelphia; DOD-H, Dreem Open Dataset – Healthy Volunteers; DOD-O, Dreem Open Dataset – Obstructive Sleep

Apnea Patients; PhysioNet, PhysioNet database resources; ISRUC, ISRUC-SLEEP Dataset.

AI-based autoscoring systems offer valid alternatives to manual

expert scoring and that the role of manual adjustment and expert

review of automatic scorings might no longer be required.

While the most obvious application of the hypnodensity

is the determination of the traditional sleep stages, additional

information may be derived from the sleep stage probabilities.

Stephansen et al. (2018) extracted features from the hypnodensity

in patients with narcolepsy by quantifying sleep stage

mixing/dissociation. Examples for these features are the time

taken before 5% of the sum of the product between W, N2, and

REM, calculated for every epoch, has accumulated, weighted

by the total amount of this sum or the time taken before

50% of the wakefulness in a rerecording has accumulated,

weighted by the total amount of wakefulness. In addition to

these hypnodensity-derived features describing unusual sleep

stage overlaps, the authors added features expected to predict

narcolepsy based on prior knowledge, such as REM sleep latency

and sleep stage sequencing parameters. By means of a Gaussian

predictor classifier they achieved a specificity of 96% and a

sensitivity of 91% for classifying narcolepsy type-1 as validated in

independent datasets. In a more recent study, Cesari et al. (2022)

investigated whether biomarkers describing sleep instability and

architecture derived from both manual hypnogram and automatic

hypnogram and hypnodensity graphs might differentiate between

distinct disorders of hypersomnolence, such as narcolepsy type-

1, narcolepsy type-2, idiopathic hypersomnia and subjective

excessive daytime sleepiness. They extracted features from

manual and automatic hypnograms, such as standard features,

transition features, bouts features, features describing stability and

fragmentation of sleep stages as well as the distribution of sleep

stages across the night, and REM sleep-specific features such as

the number of nightly sleep onset REM periods. In addition, they

extracted features from the hypnodensity, including the features

proposed by Stephansen et al. (2018) and features reflecting

certainty and amount of sleep stages per epoch and across the

night. Their results confirmed narcolepsy type-1 specific sleep

structure which made it possible to discriminate narcolepsy

type-1 from the other groups with high performance (88%

accuracy) and narcolepsy type-2 from idiopathic hypersomnia

with moderate performance (65% accuracy). Future studies

in larger cohorts are needed to improve the differentiation of

disorders of hypersomnolence, but these preliminary findings

already highlight the promise of hypnodensity in exploiting

sleep stage ambiguity and overlap as clinical hallmarks of certain

sleep disorders.

In a recent study using the Somnolyzer algorithm (Anderer

et al., 2022a), we compared the standard sleep parameters such as

total sleep time (TST), sleep latency (SL), REM latency (REML),

sleep efficiency (SEFF), wake after sleep onset (WASO), and

the time in N1, N2, N3, and R derived from the autoscored

hypnogram, to the standard sleep parameters derived from the

autoscored hypnodensity in young (20 – < 40 years), middle-

aged (40 – < 60 years) and older (60–95 years) healthy controls

from the Siesta database (n = 195, 93 males and 102 females

aged 20 to 95 years). Overall, the hypnogram-derived and the

hypnodensity-derived standard parameters showed very similar

age-related changes. However, the age-related changes based on the

hypnodensity-derived parameters were consistently slightly higher

than the coefficients derived traditionally from the hypnogram.

Moreover, we determined a quantitative measure of sleep

stage ambiguity in percent [100∗(1-p(i)MAX) where p(i)MAX is the

highest sleep stage probability for epoch i] and a measure of sleep

stage continuity in percent [100∗(1-abs(p(i)MAX - p(i+1)MAX)] if

epochs i and i+1 are from the same class. In the case of no

ambiguity, p(i)MAX is 1 and thus the ambiguity for that epoch

is 0%. As can be clearly seen in Figures 5, 6 for both manually-

determined and Somnolyzer-determined sleep stage probabilities,

the vast majority of epochs have a p(i)MAX < 1.0, indicating some

amount of ambiguity. In the case of only small changes in the

hypnodensity between two adjacent epochs the continuity measure

is close to 100%. If the change in the hypnodensity between two

adjacent epochs increases, the continuity measure will decrease

accordingly. Interestingly, sleep stage ambiguity and continuity

showed opposite changes with age for epochs scored as sleep as

compared to epochs scored as wake: in wake, ambiguity decreases

and continuity increases with age, while during sleep, ambiguity
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TABLE 4 Overview of sleep staging validation studies with AI-algorithms providing Cohen’s kappa based on external validation.

Author, Year

Name

Training Dataset Input Signals Test Dataset Cohen’s κ

Biswal et al. (2018) PAT: N= 9,000; MGH 2-6 EEG channels Cohort: N= 580; SHHS 0.73

Patanaik et al. (2018) HC: N= 1,330; Duke-NUS 2 EEG and 2 EOG channels PAT: N= 210; SDU

PAT(PD): N= 77; UCSD

0.74

0.60

Stephansen et al. (2018)

Stanford-STAGES

Cohort: N= 2,784; 10 cohorts EEG, EOG, EMG Cohort: N= 70; IS-RC, 6

scorers

0.75

Anderer et al. (2018)

Somnolyzer

Cohort: N= 588; SIESTA (7 sleep

centers) 2–6 scorers

EEG, EOG, EMG PAT (OSA): N= 97;

Somnoval, 4 scorers

0.79

Zhang et al. (2019) Cohort: N= 5,213; SHHS EEG, EOG, EMG Cohort: N= 461; SOF

Cohort: N= 2,907; MrOS

0.68

0.70

Abou Jaoude et al. (2020) PAT: N= 6,341; MGH 4 EEG channels PAT: N= 243; homePAP

PAT: N= 129; ABC

0.69

0.66

Alvarez-Estevez and Rijsman

(2021)

Cohort: N= 443; 6 datasets EEG, EOG, EMG Cohort: N= 20-154;

inter-cohort performance

0.63

Cesari et al. (2021)

Stanford-STAGES

Cohort: N= 2784; 10 cohorts EEG, EOG, EMG Cohort: N= 1,066; SHIP, 2

scorers

0.68

Vallat and Walker (2021)

YASA

Cohort: N= 3,163; 7 cohorts EEG, EOG, EMG HC: N= 25; DOD-H, 5

scorers

0.80

0.77

Anderer et al. (2022b)

Somnolyzer

Cohort: N= 588; SIESTA (7 sleep

centers) 2–6 scorers

EEG, EOG, EMG Cohort: N= 426; ABC,

homePAP, MESA

0.74

Bakker et al. (2023)

Somnolyzer

Cohort: N= 588; SIESTA (7 sleep

centers); 2–6 scorers

EEG, EOG, EMG Cohort: N= 70; IS-RC, 6

scorers

PAT: N= 15; SAGIC, 9

scorers

PAT: N= 10; Somnoval, 12

scorers

0.78

0.75

0.76

Cesari et al. (2022)

Stanford-STAGES

Cohort: N= 2,784; 10 cohorts EEG, EOG, EMG PAT (hypersomnia): N= 143 0.75

Cesari et al. (2022)

YASA

Cohort: N= 3,163; 7 cohorts EEG, EOG, EMG PAT (hypersomnia): N= 143 0.76

N-studies 19

Cohen’s κ Mean ± SD 0.72 ± 0.06

Min 0.60

Max 0.80

External validation, performance in datasets completely unseen by the model; Cohort, cohort study; HC, healthy controls; PAT, patients with sleep disturbance; OSA, patients with obstructive

sleep apnea; PD, Parkinson’s Disease; SHHS, Sleep Heart Health Study; MGH, Massachusetts General Hospital; Duke-NUS, Medical School, Singapore; SDU, Sleep Disorders Unit, Singapore

General Hospital; UCSD, University of California, San Diego School of Medicine; IS-RC, Research study on sleep disordered breathing in women in midlife, University of Pennsylvania,

Philadelphia; SIESTA, SIESTA sleep database; Somnoval, Somnolyzer validation study dataset; SOF, Study of Osteoporotic Fractures; MrOS, Osteoporotic Fractures in Men study; DOD-H,

DreemOpen Dataset – Healthy Volunteers; DOD-O, DreemOpen Dataset – Obstructive Sleep Apnea Patients; homePAP, Home Positive Airway Pressure study; ABC, Apnea, Bariatric surgery,

and CPAP study; SHIP, Study of Health in Pomerania; MESA, Multi-Ethnic Study of Atherosclerosis; SAGIC, Sleep Apnea Genetics International Consortium, The Ohio State University

Medical Center, Columbus.

increases, and continuity decreases with age. Together with the

significant increase in WASO with age, this means that with

increasing age subjects are awake longer, and these wake periods

are more definite and stable. On the other hand, during sleep,

ambiguity increased, and continuity decreased over age, indicating

more uncertainty and less sleep stability with increasing age. The

highest correlation with age was the increase in ambiguity of epochs

scored as sleep (with a Pearson correlation coefficient of r = 0.62;

p < 0.01) and the highest partial correlation with the arousal

index (controlling for the effect of age) was the decrease in sleep

continuity with increasing arousal index (r = −0.79; p < 0.01)

(Anderer et al., 2022a).

Besides sleep duration, depth, and continuity, sleep restorative

properties depend on the capacity of the brain to create periods of

sustained stable sleep (Parrino et al., 2012). As discussed by Parrino

et al. (2022), NREM sleep is bimodal with stable and instable

periods, or alternatively conceptualized by the authors as effective

and ineffective. Thus, the stability domain has only 2 forms of

NREM sleep—stable and unstable where N3 is usually stable, N1 is

always unstable, but N2 may be stable or unstable. To characterize
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the differences between apnea patients and healthy controls, we

derived further features from the hypnodensity graph to cover

these aspects of sleep physiology: the percentage of ambiguous

NREM and REM epochs, where an epoch is defined as ambiguous

if p(i)MAX is ≤ 0.95; the percentage of stable NREM epochs,

where two adjacent NREM epochs are considered as stable if

(p(i)N2 + p(i)N3) > 0.95 and (p(i+1)N2 + p(i+1)N3) > 0.95; the

percentage of stable REM epochs, where two adjacent REM epochs

are considered as stable if p(i)R > 0.95 and p(i+1)R > 0.95; the

percentage of NREM sleep depth defined as a weighted average

of NREM probabilities: 100∗((p(i)N1 + 2∗p(i)N2 + 4∗p(i)N3))/4).

Table 5 provides the demographic data and the standard sleep

parameters derived from the hypnogram for the controls and the

apnea patients, as well as for the subgroup of mild to moderate

apnea patients (apnea-hypopnea index, AHI < 30) and severe

apnea patients (AHI ≥ 30). The four groups did not differ in age

and sex distribution.When compared to healthy controls the apnea

patients did not differ in total sleep time, sleep efficiency, wake

after sleep onset, sleep latency, REM latency and time in stage

R, but showed increased time in N1 and decreased time in N2

sleep, while the time in N3 sleep was reduced only in patients with

severe apnea.

Figure 7 summarizes the differences in the additional features

between the 3 groups of apnea patients and age- and sex-

matched healthy controls for the 5 NREM-features and the 4

REM-features derived from the hypnodensity graph. Concerning

the differences between mild-to-moderate apnea and controls, we

observed significant increases in the percentage of ambiguous

NREM epochs (67 vs. 53%) and in the amount of the mean

ambiguity (19 vs. 15%) as well as significant decreases in the

percentage of stable NREM epochs (58 vs. 68%). These findings

reflect the reduction of stable NREM sleep in patients with mild-to-

moderate apnea (see also the significant shift from N2 to N1 sleep

in Table 4). In contrast, REM sleep features are not significantly

different between mild-to-moderate apnea and controls. While

standard REM parameters such as REM latency and time and

percentage in stage R are, even in patients with severe apnea,

not significantly different to controls (Table 4), the hypnodensity-

derived REM sleep features show significant increases in ambiguity

and decreases in REM sleep stability in severe apnea (Figure 7).

Parameters not determinable from the classical hypnogram, such

as sleep stage ambiguity, reflecting the uncertainty of manual expert

scorers, as well as sleep stage continuity, reflecting epoch-to-epoch

changes of these uncertainties, may give valuable additional insights

in the effects of different disorders in sleep architecture. A possible

source of this ambiguity captured by the hypnodensity may be sleep

stage shifts occurring within one 30-s epoch. Korkalainen et al.

(2021a) used a deep learning approach based on the traditional

30-s epoch duration as well as based on shorter epoch durations

(15-, 5-, 1-, and 0.5-s) to evaluate differences in sleep architecture

between obstructive sleep apnea (OSA) severity groups. The

authors reported decreases in sleep continuity with increases in

OSA severity using Cox proportional hazards ratio or Kaplan–

Meier survival curves, and these group differences became larger

TABLE 5 Demographic and standard sleep parameters for apnea patients and controls.

Controls Apnea-All Apnea-AHI < 30 Apnea-AHI ≥ 30

N 49 49 18 31

Age (years) 47.4± 15.4 50.8± 9.6 52.6± 8.4 49.8± 10.1

Sex (f/m) 7/42 7/42 4/14 3/28

AHI (#/hr TST) 1.4± 1.3 46.9± 28.7∗ 18.5± 7.4∗ 63.4± 22.8∗

HB (%min/hr TST) 2.4± 3.9 187.6± 196.5∗ 49.4± 32.7∗ 267.9± 207.5∗

ArI (#/hr TST) 15.1± 5.8 39.4± 23.1∗ 21.3± 9.1∗ 50.0± 22.2∗

TST (min) 367.7± 54.9 382.0± 65.7 359.8± 84.3 394.8± 49.1

Sleep latency (min) 27.7± 23.5 25.6± 29.7 34.3± 44.5 20.5± 14.6

REM latency (min) 103.4± 44.2 199.9± 70.9 104.1± 47.3 127.2± 80.6

WASO (min) 80.8± 55.6 86.2± 55.4 102.4± 69.3 76.7± 44.0

Sleep efficiency (%) 77.4± 11.3 77.3± 12.8 72.2± 15.7 80.3± 10.0

N1 (min) 44.8± 22.3 121.7± 71.8∗ 70.6± 30.8∗ 151.3± 72.4∗

N2 (min) 205.4± 42.7 158.8± 63.3∗ 169.4± 62.4∗ 152.7± 65.5∗

N3 (min) 43.2± 30.4 29.4± 24.9 44.3± 22.5 20.7± 22.3∗

R (min) 74.3± 24.6 72.1± 26.7 75.4± 29.5 70.1± 25.2

N1 (% TST) 12.5± 6.5 32.1± 18.0∗ 20.3± 9.3∗ 38.9± 18.4∗

N2 (% TST) 55.8± 8.0 41.1± 13.5∗ 46.0± 9.7∗ 38.2± 14.7∗

N3 (% TST) 11.7± 8.3 8.3± 7.5 13.4± 7.9 5.3± 5.6∗

R (% TST) 20.0± 5.5 18.6± 6.4 20.3± 7.6 17.5± 5.4

∗p < 0.01 as compared to controls. AHI, apnea-hypopnea index; HB, hypoxic burden; ArI, arousal index; TST, total sleep time; WASO, wake after sleep onset.
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FIGURE 7

Di�erences in hypnodensity-derived features between patients with sleep apnea and age- and sex-matched healthy controls (n = 2 × 49). The left

part depicts hypnodensity-derived NREM-features and the right part REM-features for the controls and the three patient groups mild & moderate

apnea with AHI<30 (n = 18), all 49 apnea patients, and severe apnea with AHI≥30 (n = 31). *Indicates significant di�erences based on independent

samples t-tests between patients and controls at p < 0.01.

the shorter the epoch duration used was. The U-sleep model as

presented by Perslev et al. (2021) can evaluate sleep architecture

with even higher temporal resolution of up to 128Hz which

could provide additional diagnostic information and possible

new ways of analyzing sleep. Interestingly, as shown recently by

Fiorillo et al. (2023a) the U-sleep architecture successfully encoded

sleep patterns even from non-recommended electrode derivations

based on a large and heterogeneous dataset of 28,528 PSG

recordings from various sleep centers (Fiorillo et al., 2023a). The

authors wonder, given the criticisms of the AASM rules, the limited

interrater reliability of manual scoring according to these rules, and

the complexity of sleep, whether an unsupervised deep learning

sleep scoring algorithm (i.e., without using manual sleep scorings

as training targets) might be a better approach to describing

human sleep.

Future studies in larger samples of patients with sleep related

respiratory disturbance including measures of clinical outcome

will be necessary to assess the relevance of hypnodensity-derived

features for the development of physiological biomarkers. Of

course, such endeavor should not be limited to apnea patients.

Penzel et al. (2017) suggested that physiological biomarkers

might be appropriate to characterize functional characteristics,

as seen in the variety of sleep disorders. As stated above,

the first promising examples for the construction of narcolepsy

biomarkers including variables derived from hypnodensity have

been already published (Stephansen et al., 2018; Cesari et al.,

2022).

Hypnodensity based on autoscoring
using cardiorespiratory signals

HSAT studies are increasingly used as an alternative to PSG

studies to diagnose SDB (Rosen et al., 2018). While less rich

than the traditional PSG, HSATs are considerably less expensive

due to a reduced cost of equipment and lower setup effort,

enable increased access in remote or underserved areas, higher

patient turnover, are much more comfortable and thus, less

disruptive of sleep, and importantly, enable the opportunity to

monitor patients in conditions that are more representative of their

habitual sleep (Kim et al., 2015; Kundel and Shah, 2017; Rosen

et al., 2018). HSAT studies record as a minimum set of signals,

airflow, pulse oximetry, and respiratory effort for identification and

classification of apneas and hypopneas. Relying on this reduced
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signal montage has obvious drawbacks compared to PSG studies.

The absence of neurological signals required for manual sleep

staging means that the AHI cannot be determined based on

manual scoring. Instead, total sleep time is substituted by either

monitoring time or recording time for calculation of the respiratory

event index (REI) (Zhao et al., 2017). Reliance on the REI in

place of the AHI results in reduced SDB diagnostic sensitivity

that is not easily quantifiable, without knowing the amount of

wakefulness in the individual recording (Bianchi and Goparaju,

2017). Further, there is no ability to screen for REM-related OSA or

identify abnormalities in sleep architecture which may impact the

subsequent treatment plan or signify the need for further testing

(Kapur et al., 2017).

This limitation of HSATs motivated attempts to leverage

the known expression of autonomic nervous system activity in

sleep by analyzing cardiorespiratory signals, which are in fact

routinely recorded with these polygraphic systems: the non-REM

progression from N1 to N3 is typically accompanied by an increase

in cardiovagal drive and parasympathetic activity, which translates

to a lower heart rate, more regular breathing, and an increased

respiratory mediation of heart rate variability (Eckert and Butler,

2016; Lanfranchi et al., 2016). REM sleep is characterized by a state

of autonomic instability where sympathetic and parasympathetic

nervous system activity fluctuate, producing abrupt changes in

heart rate, and irregular breathing. In the absence of neurological

signals, these algorithms are typically limited to the estimation

of the stages wake, light sleep (LS; comprising the combination

of N1 and N2), deep sleep (DS; corresponding to N3), and

REM sleep. The differentiation between N1 and N2 based on

neurological signals requires not only the timing of arousals but

also sleep spindles and k-complexes, neither of which are available

with cardiorespiratory inputs. These algorithms, of course, cannot

mimic human scoring, since there are no rules, nor is it feasible,

to visually relate changes in heart rate and respiration to sleep

stages. However, advanced AI methods can often leverage, and

go beyond what humans can possibly encode, to find relations

in the data based on patterns that span entire recordings,

while simultaneously analyzing numerous characteristics of the

various signals.

The AI-based Somnolyzer-CReSS algorithm uses as input

cardiorespiratory signals, and outputs sleep stage probabilities per

30-s epoch for stages Wake, LS, DS and REM sleep (Bakker

et al., 2021). The CReSS-derived probability curves can be directly

compared to the probabilities derived from multiple manual

scorings using neurological signals as input. Figures 8, 9 compare

the manually-derived sleep stage probabilities to the sleep stage

probability of the CReSS autoscoring for the two studies shown in

Figures 5, 6. Note that the probabilities for N1 and N2 are summed

up to a single LS probability. The ICCs for absolute agreement

between the two probability curves are 0.91 for PSG 1 (Figure 8)

and 0.84 for PSG 5 (Figure 9). While these correlation coefficients

are slightly lower than the coefficients between autoscoring based

on neurological signals and multiple manual scorings (0.97 for

PSG1 and 0.89 for PSG 5), they still indicate good agreement

between cardiorespiratory- and manually- determined sleep stage

probabilities. In Figure 8, we highlighted the same 6 periods as

in Figure 5. Box 1 comprises again sleep onset with increasing

LS probability via sleep onset, which is the first epoch with

sleep probability higher than wake probability (solid line), to

definite sleep with LS probability > 0.95 at the end of the

box 1. Boxes 2, 3, 4, and 6 indicate periods were at least

two experts scored N3. Note that the DS probabilities derived

from CReSS autoscoring closely resemble the N3 probabilities

derived from the 12 manual scorings. Finally, also for the R

probabilities (box 5) the manually- and autoscoring-based curves

match in terms of timing and magnitude. Interestingly, even

for the study with the worst agreement between scorers, the

manually- and autoscoring-based probability curves match closely

(Figure 9). The ICCs between manually-derived probabilities and

CReSS-derived probabilities range from 0.81 to 0.95 (mean: 0.88

± 0.05) for the 10 studies, indicating good agreement between the

probability curves.

Consequently, the CReSS-derived hypnodensity also reflects

a good estimate of the epoch-by-epoch ambiguity of manual

scorings. The fact that very similar probabilities are derived from

cardio-respiratory signals and neurological signals suggests that

many of these uncertainties between sleep stages manifest in

both, the central and the autonomic nervous system activity.

This supports the view that states in-between two sleep stages

are normal physiological states and that much of the uncertainty

observed in sleep scorings is of an aleatoric nature, limiting

the potential for further increases in inter-scorer agreement

by efforts in improving scoring rules, training, or models.

In a recently introduced framework to analyze uncertainty in

sleep staging, van Gorp et al. (2022) differentiate aleatoric

uncertainty, that arises from biological factors (such as age, drugs,

pathologies, or local sleep) or measurement factors (such as

placing of electrodes or interferences and artifacts), from epistemic

uncertainty that arises from a lack of knowledge about the data or

the optimal model.

Agreement between sleep parameters
derived from cardiorespiratory signals
with sleep parameters derived from
full PSG signals

Most of the early algorithms for cardiorespiratory sleep

staging relied on manually engineered features carefully crafted

to capture changes in autonomic nervous system activity during

sleep, leveraging domain knowledge of sleep and cardiorespiratory

physiology. In 2015, Fonseca et al. (2015) presented an algorithm to

estimate sleep based on cardiorespiratory signals using manually-

engineered features and a linear discriminant classifier, and

reported a Cohen’s kappa of 0.49 for the 4-stage comparison

validated in 48 healthy subjects. By incorporating time information

and replacing the classifier by conditional random fields, Cohen’s

kappa increased to 0.53 in 100 healthy subjects (Fonseca et al.,

2018). In 2017, Tataraidze et al. (2017) reported a kappa of 0.56

based on respiratory inductance plethysmography (RIP) signals

using an extreme gradient boosting classifier in 658 healthy subjects

and Beattie et al. (2017) reported a kappa of 0.52 based on

photoplethysmography (PPG) and actigraphy signals using a linear
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FIGURE 8

A representative example comparing the hypnodensities derived from 12 manual scorings (A) and from cardiorespiratory autoscoring (B) for the

same study shown in Figure 2 (PSG1: OSAS patient, male, 76 years). The color codes are WK, gray; REM, red; LS, blue; DS, green. The time period

depicted in box 1 highlights the sleep onset period with the actual sleep onset at Wprob <0.5 indicated as solid line; Boxes 2, 3, 4, and 6 indicate time

periods where at least 2 scorers have scored N3; Box 5 indicate the time period where at least one scorer has scored R. Note the similarity of the

manually-derived and the cardiorespiratory autoscoring-derived sleep stage probabilities.

discriminant classifier in 60 healthy controls. In recent years,

various machine learning approaches for scoring sleep based on

cardiorespiratory signals have been developed and validated in

internal and external datasets. Cohen’s kappa for the 4-stage

comparison (wake, light sleep, deep sleep, REM)were in the average

0.56± 0.12 for 11 datasets with internal testing (cross-validation or

hold-out validation) (Li et al., 2018; Radha et al., 2019; Wei et al.,

2019; Sridhar et al., 2020; Huttunen et al., 2021; Zhao and Sun, 2021;

Garcia-Molina and Jiang, 2022) and 0.47± 0.15 for 10 datasets with

external testing (Fonseca et al., 2020; Sridhar et al., 2020; Sun et al.,

2020b; Bakker et al., 2021; Garcia-Molina and Jiang, 2022).

The Somnolyzer-CReSS algorithm was validated in a test set

of 296 PSGs from the Multi-Ethnic Study of Atherosclerosis

[MESA (Chen et al., 2015)] and achieved a kappa value of 0.68

and in a second test set of 296 PSGs from the Sleep Heart

Health Study [SHHS (Quan et al., 1997; Redline et al., 1998)],

a kappa value of 0.64, which are the two highest kappa values

for external testing of cardiorespiratory sleep staging algorithms

reported to date (Bakker et al., 2021). Sensitivity and precision

for detecting wakefulness based on cardiorespiratory signals was

76.0 and 88.1%, respectively. This indicates good performance of

the cardiorespiratory sleep staging for discriminating wake and

sleep, which is important for determining total sleep time, and

consequently, indices relating the number of respiratory events or

the hypoxic burden (HB) to the hours of sleep. When compared to

indices computed based on the duration of recording ormonitoring

time, the indices related to CReSS-determined total sleep time show

a higher sensitivity, specifically in recordings with a significant

amount of wake periods. To demonstrate the clinical relevance

of CReSS, we determined the number of correctly diagnosed

patients by HSAT as compared to the gold standard AHI in

the 296 studies from the MESA dataset for a threshold of 15

events per hour. Using the CReSS-derived TST instead of the

recording time as denominator for the calculation of the indices

reduced the false negative diagnosis from 33 patients (11.1%) to

only 5 patients (1.7%). Moreover, sensitivity and precision for
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FIGURE 9

Comparison between the hypnodensities derived from 12 manual scorings (A) and from cardiorespiratory autoscoring (B) for the study with the

worst agreement between manual scorers (i.e., the same study as in Figure 4, PSG5: Hypersomnia with sleep apnea, male, 78 years). The color codes

are WK, gray; REM, red; LS, blue; N3, green. Note the similarity of the manually-derived and the cardiorespiratory autoscoring-derived sleep stage

probabilities.

detecting REM sleep based on cardiorespiratory signals was 85.3

and 79.6%, respectively (Anderer et al., 2022b). This indicates the

good performance of CReSS for discriminating REM sleep from

Wake and NREM sleep. Using the definition for REM-related OSA

by Mokhlesi and Punjabi (2012) (i.e., an AHINREM of fewer than

5 events/h and an AHIREM of at least 5 events/h with at least

30min of REM sleep), we achieved a sensitivity of 91% and a

specificity of 98% for detecting REM-related OSA by means of

CReSS as compared to gold standard PSG scoring. This suggests

that REM-relatedOSA can be detected based onCReSS-determined

REM sleep with a clinically acceptable accuracy (Anderer et al.,

2022b).

In addition to the AHI, which indicates the number of

respiratory events per hour of sleep, we determined the hypoxic

burden as proposed by Azarbarzin et al. (2019). The hypoxic

burden is determined by measuring the respiratory event-

associated area under the desaturation curve from pre-event

baseline. The authors showed, in a large sample from the Sleep

Disorder in Older Men study [MrOS (Orwoll et al., 2005)] and the

SHHS (Quan et al., 1997; Redline et al., 1998), that the hypoxic

burden strongly predicted cardiovascular disease-related mortality,

indicating that not only the frequency (as measured by the AHI),

but the depth and duration of the desaturations caused by sleep-

related upper airway obstructions (as measured by the hypoxic

burden), are important disease-characterizing features. Figure 10

shows based on Somnolyzer autoscoring, in the upper part, scatter

plots relating the AHI to the HB for TST as well as for NREM

and REM sleep. As can be seen, the HB for events occurring

during REM sleep is, in our dataset, ∼50% larger than for events

in NREM sleep. Note that patients with a relatively low overall

AHI may be experiencing severe OSA during REM, which is

particularly important given that events taking place during REM

are longer, and are associated with more pronounced hypoxemia,

higher sympathetic activation, and greater surges in blood pressure

and heart rate (Findley et al., 1985; Peppard et al., 2009; Lechat

et al., 2022a,b). This characteristic of the disease may very well help
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explain the link between REM-related OSA and its association with

adverse cardiovascular, metabolic, and neurocognitive outcomes

(Varga and Mokhlesi, 2019).

In their comprehensive review on the hypoxic burden in

obstructive sleep apnea , Martinez-Garcia et al. (2023) suggested

a threshold HB > 60% min/h (i.e., 15min of 4% desaturation

every hour) to identify patients who are at increased risk of

cardiovascular morbidity and mortality. In the lower part of

Figure 10, we enlarged a portion of the scatterplot of AHI vs. HB

and marked the values for two studies with approximately the

same AHI close to 15, but with very different HB values (20.4%

min/h and 78.2% min/h). In addition, we show for both studies the

averaged oxygen saturation curves, time-aligned by the termination

of the respiratory events, which are used to determine the subject-

specific search window. While the number of respiratory events

(100 and 106) and the duration of the search window (54s and

55s) are almost identical, the averaged desaturation is much deeper

in subject M0037, reflecting the large difference between the

two studies.

Figure 11 compares standard sleep parameters based on

Somnolyzer autoscoring derived from full PSG signals vs. the

same parameters derived from HSAT signals in patients with sleep

disturbance from the SIESTA database. Hypopneas were scored

in the PSG studies using the 3% oxygen desaturation and/or

arousal rule, and in the HSAT studies using 3% desaturation

and/or autonomic response (heart rate increase ≥ 5bpm) to enable

a direct comparison between the PSG- and the HSAT-derived

indices. In addition to the 49 apnea patients, we also included the

26 patients with insomnia related to generalized anxiety disorder

or depression, and the 5 patients with periodic limb movement

disorder in the analysis to cover the full spectrum from no to

severe SDB. In addition to the scatter plots for TST, AHI and

HB per hour total sleep time, the scatter plots for NREM and

REM are shown. The CReSS algorithm estimated TST as well as

time in NREM and REM sleep with high accuracy. The ICC for

absolute agreement are for TST 0.92 (95%–CI 0.83 to 0.95) for

time in NREM 0.88 (95%–CI 0.75 to 0.93), and for time in REM

0.88 (95%–CI 0.82 to 0.92). Consequently, the indices per hour

sleep also show almost perfect agreement between the analysis

based on PSG signals and the analysis based on the reduced HSAT

montage (all ICCs ≥ 0.98 with a 95%–CI from 0.97 to 0.99).

Thus, analyses based on signals recorded typically in HSAT by

means of CReSS are a valid alternative to full PSG studies in

patients with suspected OSA for determining the severity based on

the AHI and HB per hour sleep and for diagnosing REM-related

OSA.

Conclusions and future directions

There is convincing evidence that manual sleep staging, even

when performed by experienced, well trained, and motivated

scorers without the usual time constraints of clinical routine,

results in significant interrater differences. We have shown in three

independent datasets scored by six to twelve experienced scorers

that sleep stage ambiguity is the rule rather than the exception

(Bakker et al., 2023). Recent papers investigating reasons for this

ambiguity discuss scorers’ uncertainty in applying the rules as well

as contradictory patterns within one epoch as possible explanations

(van Gorp et al., 2022; Huijben et al., 2023). van Gorp et al.

(2022) introduced a theoretical framework to analyze uncertainty

in sleep staging, differentiating aleatoric uncertainty that arises

from biological factors (such as age, drugs, pathologies, or local

sleep) or measurement factors (such as placing of electrodes or

interferences and artifacts) and epistemic uncertainty that arises

from a lack of knowledge about the data or the optimal model.

In standard sleep staging, scorers are forced to decide based

on the information obtained in the EEG, EOG, and chin EMG

signals. This process involves matching the pattern observed in

an epoch with a template or prototype and putting them into the

context with patterns from previous epochs. Depending on the

scorers’ personal template, this may result in significantly different

sleep parameters derived from the manually-scored hypnogram

as shown in Table 1 for one PSG. In autoscoring systems these

different interpretations can be modeled by varying the sensitivity

settings for the detection of sleep/wake related features such

as sleep spindles, k-complexes, slow waves or arousals without

changing the scoring rules. This provides evidence that large parts

of the inter-scorer differences in the derived sleep parameters are

not due to violations of the scoring rules by one or the other

scorer, but rather due to the room for interpretation left open

by the visual identification of these sleep/wake related patterns.

These interpretations range from high sensitivity to high precision

sometimes resulting in extreme differences where one expert

scores 67min of N3 (high sensitivity for slow wave detection)

while another expert scores no N3 sleep at all (high precision

in slow wave detection) in the same study, despite following the

same rule (≥20% of the epoch consisting of slow wave activity).

This means that a decision for an epoch does not only affect

this one epoch but can have consequences for a whole series of

subsequent epochs resulting in the observed large differences in

sleep parameters.

When we compared sleep parameters averaged over 10 PSGs

between all 66 possible pairs of 12 scorers, we found in 61 of these

pairs a significant t-value at p < 0.01 in at least one of 5 tested

parameters (TST, time in N1, N2, N3, and R), most frequently

in the time spent in N3 sleep. This implies that when comparing

two conditions (patients vs. controls, baseline vs. therapy, etc.)

that were scored by different (groups of) scorers, it cannot be

distinguished whether significant results describe a difference

between the conditions or a bias of the scorers. Possible solutions to

this problem include having all PSGs from a study (at least all PSGs

from one subject, in case of repeated measurements) scored by the

same expert, having all PSGs scored by multiple manual scorers, or

by using a clinically validated autoscoring algorithm.

In future research, it is therefore strongly recommended

that the performance of sleep scoring algorithms should be

independently validated in datasets which were completely unseen

by the models both during training and internal validation, that

are representative of the population to be tested, and ideally,

that are collected in different centers and scored by different

(pools of) human experts. In fact, the AASM has announced such

an AI/Autoscoring Pilot Certification program at their website.

The program intends to test the various scoring solutions to

one and the same external dataset with representative recordings

vs. multiple manual expert scorers. This will allow a direct
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FIGURE 10

Correlation between apnea-hypopnea index (AHI) and hypoxic burden (HB) in patients with sleep disturbance (n = 80; 49 apnea patients, 26

insomnia patients, 5 PLMD patients). Upper part: scatter plots relating the AHI to the HB for TST (A) as well as for NREM sleep (B) and REM sleep (C).

Lower part: enlarged scatterplot of AHI vs. HB with red marks for two studies with approximately the same AHI of 15, but with significantly di�erent

HB values (D–F) show the averaged oxygen saturation curves, time-aligned by the termination of the respiratory events (time = 0), which are used to

determine the subject-specific search window for the two studies marked in red in (D).

comparison of the performance of the published algorithms and

will give the sleep centers an objective measure for deciding which

algorithm to use. Since multiple human expert scorings will be

available in this project, the hypnodensity graphs provided by

the different algorithms could be compared to the hypnodensity

graph based on human scorings so that the hypnodensity from

certified algorithms may be established as standard representation

of sleep into the clinic. In this context, it will be an interesting

topic of future research to determine and establish well-accepted

metrics for assessing the quality of hypnodensity graphs. While the

overall agreement on the traditional five-stage hypnogram is often

measured using the Cohen’s kappa coefficient, the F1 score or class-

wise metrics like the Mathews correlation coefficient, no metric for

comparing sleep stage probabilities has been widely adopted by the

field of sleep medicine, yet. Possible metrics include the ICC to

compare probabilities for individual stages, their average (macro

average), their average weighted by the sum of the probabilities

per stage (weighted macro average) or the ICC based on the

concatenated probability curves over all five stages (micro average),

as well as the ACS to compare sleep stage probability distributions

(Bakker et al., 2023; Fiorillo et al., 2023b). In fact, both metrics

yield very similar results and others such as cross-entropy or

Kullback–Leibler divergence might become relevant for measuring

the difference between the sleep stage probability distributions

based on multiple manual scorings and autoscoring.

We presented examples of potential valuable hypnodensity-

derived features such as sleep stage ambiguity, continuity, depth,

and stability for describing differences between patients with

sleep apnea and healthy controls. Stephansen et al. (2018) and

Cesari et al. (2022) derived up to 1000 features of sleep structure,

transitions, and instability from the hypnodensity to train a

classifier for diagnosing narcoleptic patients. Further examples for

hypnodensity-derived features including pre-softmax features as

well as features obtained from unsupervised learning are also being

researched (Huijben et al., 2023). Future research should evaluate

and test these features for their usefulness in biomarker research.

Concerning HSATs, AI-based cardiorespiratory sleep staging

offers reliable estimates of total sleep time, as well as time spent

in light, deep, and REM sleep (Li et al., 2018; Radha et al., 2019;

Wei et al., 2019; Sridhar et al., 2020; Sun et al., 2020b; Bakker et al.,

2021; Huttunen et al., 2021; Zhao and Sun, 2021; Garcia-Molina

and Jiang, 2022; Pini et al., 2022). This allows for determining

indices of SDB severity per hour of sleep as well as per hour of

NREM and REM. In contrast with the classical recommendations

for HSATs which do not measure sleep but instead rely on the total

monitoring/recording time, the accurate estimates of sleep time can

be used to increase the sensitivity of these tests, making the indices

immune to the duration of wakefulness in these unsupervised

studies. In addition, they allow the identification of patients with

REM-related obstructive sleep apnea, the computation of hypoxic

burden as a function of the total sleep time as well as the times in

NREM and REM.

With the recent advances in autoscoring in general, and the

development of hypnodensity in particular, it is increasingly clear
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FIGURE 11

Correlation between neurological signal-based and cardiorespiratory signal-based sleep parameters in patients with sleep disturbance (n = 80; 49

apnea patients, 26 insomnia patients, 5 PLMD patients). Upper part: scatter plots relating TST (A), time in NREM (B) and time in REM (C) based on the

analysis using PSG signals with the values obtained from the analysis using HSAT signals only. Middle part: scatter plots relating AHI (D), AHI in NREM

sleep (E) and AHI in REM sleep (F) based on the analysis using PSG signals with the values obtained from the analysis using HSAT signals only. Lower

part: scatter plots relating HB (G), HB in NREM sleep (H) and HB in REM sleep (I) based on the analysis using PSG signals with the values obtained

from the analysis using HSAT signals only.

that AI may have a defining role in future sleep research, and

eventual clinical applications. The development of new biomarkers

may help us understand pathophysiological mechanisms that were

until now simply not accessible from hypnograms scored by

individual human experts. On the other hand, this technology

shows promise in the routine home testing and diagnosis of

SDB. By enabling an estimate of TST with HSATs, AHI and

HB across total sleep time and during REM can be estimated,

until now an exclusive of the more inconvenient and expensive

PSG studies. To further improve the estimation of these indices,

several attempts to determine autonomic arousals as surrogate

of cortical arousals for the confirmation of hypopneas have been

published (Pillar et al., 2002; Olsen et al., 2018; Li et al., 2020).

Taranto-Montemurro et al. (2023) recently reviewed challenges and

progress in the development of a combination of noradrenergic

and antimuscarinic drugs for the treatment of OSA. The authors

concluded that there are still hurdles in quantifying presence and

severity of OSA to fully understand the impact of treatment.

The authors concluded that the usage of alternative measures

to the standard AHI, such as the HB might better represent

treatment effects on the ventilatory deficit associated with upper

airway obstruction. In a recent review, Korkalainen et al. (2021b)

discussed self-applied home sleep recordings including wearable

sensing solutions and AI-based scoring for screening and long-

termmonitoring of sleep disorders. Besides the obvious advantages

in clinical practice, the larger scale and higher throughput of AI-

enabled HSATs may also facilitate larger population-wide research

studies that help us understand the link between SDB and other

health conditions and outcomes.
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