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Background/objective: The serotoninergic nervous system is known to play a

role in the maintenance of rapid eye movement (REM) sleep. Serotoninergic

projections are known to be vulnerable in synucleinopathies. To date, positron

emission tomography (PET) studies using serotonin-specific tracers have not

been reported in isolated REM sleep behavior disorder (iRBD).

Methods: We conducted a cross-sectional imaging study using serotonin

transporter (SERT) 11C-3-amino-4-(2-dimethylaminomethyl-phenylsulfaryl)-

benzonitrile (DASB) PET to identify di�erences in serotonin system integrity

between 11 participants with iRBD and 16 older healthy controls.

Results: Participants with iRBD showed lower DASB distribution volume ratios

(DVRs) in the total neocortical mantle [1.13 (SD: 0.07) vs. 1.19 (SD: 0.06); t= 2.33,

p = 0.028)], putamen [2.07 (SD: 0.19) vs. 2.25 (SD: 0.18); t = 2.55, p = 0.017],

and insula [1.26 (SD: 0.11) vs. 1.39 (SD: 0.09); t = 3.58, p = 0.001]. Paradoxical

increases relative to controls were seen in cerebellar hemispheres [0.98 (SD: 0.04)

vs. 0.95 (SD: 0.02); t = 2.93, p = 0.007)]. No intergroup di�erences were seen in

caudate, substantia nigra, or other brainstem regions with the exception of the

dorsal mesencephalic raphe [3.08 (SD: 0.53) vs. 3.47 (SD: 0.48); t = 2.00, p =

0.056] that showed a non-significant trend toward lower values in iRBD.

Conclusions: Insular, neocortical, and striatal serotoninergic terminal loss may

be common in prodromal synucleinopathies before the onset of parkinsonism

or dementia. Given our small sample size, these results should be interpreted as

hypothesis-generating/exploratory in nature.
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Introduction

Isolated Rapid eye movement (REM) sleep behavior disorder (iRBD) is an increasingly

studied neurological disorder of aging that confers a high risk of conversion to a manifest

neurodegenerative alpha-synucleinopathy such as Parkinson’s disease (PD), Dementia with

Lewy Bodies (DLB), or Multiple System Atrophy (MSA) (Zhang et al., 2022). With that

said, not all individuals with iRBD will go on to progress to these conditions (Postuma

et al., 2019). Developing biomarkers in iRBD that can either (1) identify patients with early

manifest synucleinopathies or (2) predict phenoconversion risk to PD/DLB/MSA are of

high interest to patients and clinical researchers studying sleep medicine, geriatrics, and

neurodegenerative diseases.
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The brain serotoninergic projection system arises from an

interconnected group of raphe nuclei distributed throughout

the brainstem which project rostrally to the cortex and other

subcortical structures, caudally to the spinal cord, and provide

autoregulatory feedback to other serotoninergic nuclei within

the brainstem and cerebellum (Albert et al., 2011; Kulkarni

et al., 2022). Serotoninergic neurons are known to play a role

in regulating muscle tone in REM sleep. Serotoninergic drugs

including selective serotonin reuptake inhibitors (SSRIs) and

serotonin norepinephrine reuptake inhibitors (SNRIs) are also

known risk factors for the development of REM sleep without

atonia (RSWA) (Lee et al., 2016), a key component of the broader

iRBD syndrome (McCarter et al., 2017).

In vivo nuclear medicine imaging studies of iRBD to

date have used dopamine transporter ligand binding, measured

within the predominantly serotoninergic raphe nuclei complex,

to understand serotoninergic changes in iRBD (Arnaldi et al.,

2015). Studies using a serotonin-specific tracer would offer

the chance to assess serotoninergic integrity in downstream

targets of the brainstem projection system. 11C-3-amino-4-(2-

dimethylaminomethyl-phenylsulfaryl)-benzonitrile (DASB) binds

to the serotonin transporter (SERT), typically present at synaptic

junctions and in this way, can characterize the regional density of

serotoninergic terminals (Meyer, 2007). We used DASB positron

emission tomography (PET) to study serotoninergic differences

between participants with iRBD and older controls.

Methods

We conducted a cross-sectional PET imaging study of

participants with iRBD. iRBD participants were identified through

a retrospective chart review of potentially eligible patients with

an iRBD clinical diagnosis documented in the electronic medical

record system of our medical center. Each participant’s chart

and polysomnography (PSG) findings were then screened by a

board-certified Sleep Neurologist (M.G.) to confirm the diagnosis

of iRBD was consistent with the International Classification of

Sleep Disorders, 3rd edition (ICSD-3) (American Academy of

Sleep Medicine, 2014). In all cases, PSGs were performed for

clinical indications. The average time period between PSG and

the time of study visit varied across the cohort (mean days

between PSG and initial study visit: 1,183.5 days, SD: 1,251.8).

Eligible potential participants were then contacted by the study

team to gauge their interest in participating in this observational

imaging study. All participants had a face-to-face visit with

the study team including a detailed neurological examination

by a Movement Disorders Neurologist (V.K.) at the time of

enrollment that confirmed they did not meet criteria for the

diagnosis of PD, DLB, or MSA. Exclusion criteria included

the following: participants with a contraindication to magnetic

resonance imaging (MRI) or PET, participants with evidence of

a large artery stroke or mass lesion on MRI, and participants

on neuroleptic or serotoninergic drugs including SSRIs, SNRIs,

tricyclic antidepressants (TCAs), bupropion, St. John’s Wort (also

known as Hypericum perforatum—an herbal compound with

serotonin reuptake inhibitor properties), and buspirone in the 2

months preceding study enrollment. We collected and analyzed

DASB PET data from a group of older healthy controls who were

previously imaged at our medical center through different research

protocols. This project was approved by the University of Michigan

School of Medicine Institutional Review Board (UM IRBMED).

All iRBD participants signed informed consent documents prior to

participating. The UM IRBMED granted our study team a waiver of

the United States Health Insurance Portability and Accountability

Act (HIPAA) authorization to access limited retrospective DASB

PET data on healthy control participants who had already

undergone DASB imaging at the UM PET center in previous

research studies. These healthy control participants (n = 16) were

recruited as normal control participants and imaged with DASB

PET in two different previous cohort studies studying normal aging

at our center. Their ages ranged from 55 to 74 years. We sought

to include control DASB imaging data in this project to offer

a reference group relative to iRBD DASB findings although an

important limitation is that we have limited clinical information on

this control cohort.

All participants underwent brain serotonin transporter

(SERT) 11C-3-amino-4-(2-dimethylaminomethyl-phenylsulfaryl)-

benzonitrile (DASB) PET imaging. Our DASB imaging approach

is described in our group’s previous studies (Kotagal et al., 2012,

2018). Briefly, participants were injected with an intravenous

dose of 11C-DASB followed by a continuous infusion delivered

over 80min (70% bolus, 30% continuous infusion). PET images

were corrected for motion and were normalized into a common

space using Neurostat software (https://neurostat.neuro.utah.edu).

Regions of interest were defined using Brodmann areas within a

Talairach atlas linked to Neurostat as well as a group of defined

certain subcortical structures (Bohnen et al., 2006). Normalized

K1 images were used to define regions of interest as described

previously (Minoshima et al., 1994; Frey et al., 1996). We used

the reference region Logan plot graphical analysis method (Logan

et al., 1996) to estimate distribution volume ratios (DVRs) for

regions of interest with time activity curves serving as the input

function and inferior posterior cerebellar gray matter serving as

the reference region for DVR calculation (Ginovart et al., 2001;

Meyer, 2007). DVRs for all regions of interest were calculated as

the bilateral mean of left and right hemispheres/brain regions.

Total neocortical mantle DVR was calculated as the mean value

across Brodmann areas (BAs), excluding BAs 13–16 (Insular

cortex—defined separately) and BAs 33 and 41 (excluded due

to technical or other factors). PET data on the healthy controls,

analyzed differently using a separate reference region, have been

reported previously as well (Chou et al., 2022). We used descriptive

statistics to summarize cohort demographic and clinical factors in

Table 1. We compared DASB DVRs between regions of interest

in iRBD vs. healthy control participants using two sample t-tests.

Within iRBD participants, we used Pearson’s correlation coefficient

to test the correlation between Montreal Cognitive Assessment

(MoCA) score and DVR values in the listed regions of interest.

Results

Demographic and DASB imaging factors for participants are

depicted in Table 1. iRBD participants were on average older than

healthy controls and more likely to be male. Decreased DASB DVR
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TABLE 1 Cohort demographic and imaging factors.

iRBD (n = 11) Healthy controls (n
= 16)

t-test/chi-square;
p-value

Age 72.5 years (1.54) 66.0 years (1.30) t =−3.24, p= 0.003

Sex 10 M/1W 10 W/6M χ2
= 7.70, p= 0.006

Montreal cognitive assessment 26.6 (2.7) Not available –

Movement disorders society unified Parkinson’s disease rating scale

motor exam score

8.5 (4.4) – –

Serotonin transporter positron emission tomography (DASB PET) distribution volume ratio (DVR) by region of interest

Total neocortical mantle 1.13 (0.07) 1.19 (0.06) t = 2.33, p= 0.028

Thalamus 2.22 (0.13) 2.17 (0.17) t =−0.72, p= 0.478

Caudate 2.17 (0.21) 2.27 (0.20) t = 1.30, p= 0.205

Putamen 2.07 (0.19) 2.25 (0.18) t = 2.55, p= 0.017

Insular cortex 1.26 (0.11) 1.39 (0.09) t = 3.58, p= 0.001

Hippocampus 1.25 (0.10) 1.28 (0.12) t = 0.52, p= 0.606

Amygdala 1.74 (0.10) 1.75 (0.17) t = 0.27, p= 0.790

Substantia nigra 2.54 (0.37) 2.61 (0.36) t = 0.50, p= 0.619

Dorsal raphe nucleus 3.08 (0.53) 3.47 (0.48) t = 2.00, p= 0.056

Pons 1.60 (0.15) 1.57 (0.15) t =−0.49, p= 0.630

Medulla 1.40 (0.22) 1.43 (0.20) t = 0.42, p= 0.676

Cerebellar hemispheres 0.98 (0.04) 0.95 (0.02) t =−2.93, p= 0.007

in iRBD compared to older controls, potentially reflecting loss of

serotonin terminals, was seen in certain brain regions of interest

including the total neocortical mantle, putamen, and insular cortex

(Figure 1). A non-significant trend toward numerically lower DASB

DVR in iRBD participants compared to controls was also seen

in the dorsal raphe nucleus. Paradoxical relative increases in

DASB DVR in iRBD participants relative to controls were seen

in the bilateral cerebellar hemispheres. Within iRBD subjects, no

statistically significant correlations were seen between MoCA score

and DASB DVR in any of the listed regions of interest.

Discussion

These data describe relative serotonin denervation patterns

in iRBD compared to older controls most likely reflecting

neurodegenerative changes. Relative reductions in iRBD

serotoninergic transporter density were seen in the total neocortical

mantle, the insular cortex, and the putamen. Denervation in each

of these regions could conceivably be a manifestation of the earliest

neurodegenerative changes suggestive of synuncleinopathies.

Our cohort is relatively small, and it is worth noting that older

controls in our study did differ from iRBD participants in mean

age and sex. Nevertheless, these findings show a pattern of

regional DASB binding differences which, if validated in larger

cohorts, could serve as promising biomarkers for identifying

early synucleinopathies. We also showed a modest increase in

DASB binding in the cerebellar hemispheres of iRBD participants

relative to controls, perhaps reflecting either brainstem-cerebellar

autoregulatory functions or perhaps even favorable compensatory

changes in the setting of impending neurodegeneration. It

should be noted that we have limited information on our

control cohort in the present study. Their underlying clinical

characteristics may have influenced some intergroup DASB

findings. Future studies will be needed to confirm our findings in

larger prospective datasets.

Previous serotonin PET tracer studies across PD cohorts have

shown region declines in 5HT projection system integrity. ADASB-

PET study by Albin et al. (2008) reported a reduction in SERT

binding that was most marked supratentorially in the cingulate and

insular cortex and showed brainstem reductions in the pons and

medulla.We previously evaluated differences in DASB PET binding

in PD participants with and without symptoms of comorbid RBD

and showed no significant differences between groups in raphe

or striatal DASB DVR (Kotagal et al., 2012). Of note, although

the software methods used to define volumes of interest differed

from the present study, the mean regional DASB DVR values in

both PD groups was reported in the striatum (2.27–2.30) and

mean raphe nucleus (2.80–2.84). These values are somewhat higher

than mean DVR values (see Table 1) in our present iRBD cohort

in the striatum (caudate: 2.17 & putamen: 2.07) and lower than

the DVR values seen in the dorsal raphe (3.08). These differences

could potentially reflect an iRBD-specific brainstem serotoninergic

imaging dysfunction that may be transient in prodromal (i.e., iRBD

contexts) but that might progress rostrally as Lewy body Braak

staging advances to involve the striatum over time.

Arnaldi et al. (2015) presented intergroup comparisons in a

cohort of participants with iRBD and controls using 123I-FP-CIT

single photon emission computed tomography (SPECT) imaging
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FIGURE 1

Axial DASB PET binding images depicted in a sample iRBD and control participant.

to assess SERT density in the brainstem and thalamus, showing

no differences in binding ratios between groups in these regions.
123I-FP-CIT SPECT measures a combination of serotoninergic,

noradrenergic, and dopaminergic terminals, rendering intergroup

comparisons of small regions of interest influenced by non-

serotoninergic pathology. This is especially true in the striatum

where dopaminergic terminal typically predominate in healthy

older adults. In light of this, our DASB findings of striatal

SERT loss in iRBD present new and specific evidence for striatal

serotoninergic pathology in prodromal synucleinopathies. It should

also be noted that each group defined their regions of interest

differently and that cohort effects might also be driving differences

between our results and theirs.

Putaminal DASB DVRs were lower in iRBD participants

compared to controls in our cohort. This finding could reflect

impairment to the broad network of rostrally projecting terminals

arising from the dorsal raphe (Miquel-Rio et al., 2023). Raphe

DASB changes could also be a non-causal risk factor that just

happens to be seen in individuals undergoing early striatal

neurodegeneration in prodromal synucleinopathies. It is worth

noting that a previous PD study has shown that DASB binding

changes in the striatum manifest with a different pattern

than striatal dopamine transporter imaging (Roussakis et al.,

2016), suggesting that non-specific striatal changes in our iRBD

cohort are not simply the earliest manifestation of nigrostriatal

dopaminergic denervation. Interestingly, the Braak model of Lewy

body neuropathology suggests early involvement of the medullary

raphe complex but a relative sparing of the dorsal raphe from

PD-related pathology (Braak et al., 2003). It is possible that

region-specific dorsal raphe DASB binding reductions seen in

our iRBD cohort may represent something other than monotonic

neurodegeneration. It is also possible that these raphe or striatal

changes are a unique signal denoting differential risk for PD vs.

DLB that out cross-sectional study is not in a position to assess.

Studies using multiple 5HT tracers may also be able to helpfully

identify what brainstem and striatal changes are compensatory

vs. degenerative.

iRBD participants in our study also showed lower neocortical

and insular DASB DVRs compared to controls. Postmortem

findings in parkinsonian dementias are known to involve the

insular cortex where synuclein pathology has been hypothesized

to be a correlate of visuospatial cognitive impairment (Yamamoto

et al., 2007; Fathy et al., 2019). It has also been suggested that

the insular cortex in Lewy body disorders may be a particularly

vulnerable site for any number of non-synuclein neuropathologies,

particularly phosphorylated tau (Fathy et al., 2022).

A 5HT1A-R PET tracer studies of the cerebral cortex in

parkinsonian dementias showed correlations between high tracer

regional binding and depression severity (Sharp et al., 2008)

that may reflect post synaptic compensatory receptor changes in

the setting of projection system deafferentation. Our cohort also

showed increases in cerebellar DASB DVR in iRBD participants.

It is possible that these findings represent compensatory changes.

Bedard et al. (2018) have shown similar PET tracer elevations

in iRBD subjects—in their case using the vesicular acetylcholine

transporter ligand 18F- fluoroethoxybenzovesamical (FEOBV)—

where elevations in FEOBV binding correlated with the severity

of phasic and tonic electromyography (EMG) findings. Another

possibility is that regional SERT expression may be autoregulated

in certain highly connected brain regions, allowing it to play

a regulatory function that suppresses or augments serotonin

neurotransmission depending on downstream neurotransmission

(Albert et al., 2011). Given the existence of numerous small

molecule therapies capable of targeting individual 5HT receptors

classes, better characterization of serotoninergic therapeutic targets

in iRBD has the potential to quickly translate into 5HT-focused

clinical trials.

Limitations of our study include the small sample size,

demographic factor differences between iRBD participants and

older controls, and the absence of detailed uniform clinical
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assessments. It is also important to note that our data set is cross-

sectional only and cannot provide insight into longitudinal risk

for differential conversion to either PD, DLB or MSA. Studies

involving larger cohorts would also afford the statistical power to

control for confounders as covariates using regression models. We

would also note that analyses presented in Table 1 did not adjust

or multiple comparisons, leaving open the possibility of type 1

error. Given these limitations, our findings should be interpreted

as exploratory and hypothesis generating in nature. Despite these

limitations, DASB PET is a rigorous andwell-characterized imaging

approach that has been used in other common psychiatric and

neurodegenerative conditions.

Based on the role of the serotonin system in sleep and as a risk

factor for RSWA, the addition of serotonin-specific biomarkers to

future iRBD natural history studies already has strong rationale.

DASB PET findings from this study provide further support for

this and raise the possibility that therapeutic targets within the

serotoninergic nervous system may deserve careful scrutiny for

neuroprotective synucleinopathy trials moving forward.
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