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Background: Insomnia (IS) and circadian rhythm sleep-wake disorders (CRSWD)

are complex disorders with limited and unsatisfactory treatment options that

can even cause some side e�ects. By analyzing blood metabolites to reveal

underlying biological processes, studies of sleep and the complex interactions

between its influencing factors can be elucidated. Therefore, we hope to bring

new hope for the treatment of these diseases through blood metabolites.

Aims: Investigating the causal link between blood metabolites and IS

and CRSWD.

Methods: A genome-wide association study (GWAS) for 486 metabolites was

used as the exposure, whereas two di�erent GWAS datasets for sleep disorders

were the outcome, and all datasets were obtained from publicly available

databases. We employed the standard inverse variance weighting (IVW) method

for causal analysis, supported by the MR-Egger method, weighted median (WM)

method, and MR-PRESSO method for sensitivity analysis to mitigate the impact

of pleiotropy. Genetic correlation between IS, CRSWD, and blood metabolites

was explored through linkage disequilibrium analysis (LDSC), while Multivariable

MR analysis (MVMR) elucidated whether these metabolites exhibit a direct

association with IS and CRSWD. Further, we conducted metabolic pathway

analysis to identify the specific metabolites driving these relationships.

Results: Employing meticulous MVMR analysis, we have identified specific

metabolites that independently influence IS, including 2-hydroxypalmitate (OR

2.95, 95%CI 1.05–8.31 P = 0.040), X-11786-Methylcysteine (OR = 0.25, 95%CI

0.08–0.76 P= 0.014), and salicylate (OR 0.89, 95%CI 0.83–0.95 P= 9× 10–4). In

the context of CRSWD, our findings reveal direct associations with metabolites

such as carnitine (OR 0.02, 95%CI: 0.00–0.20, P = 0.002), levulinate (OR 0.06,

95%CI: 0.01–0.64, P = 0.020), p-cresol sulfate (OR 0.25, 95% CI: 0.09–0.67,

P = 0.006), and X-14208-Phenylalanylserine (OR 0.36, 95% CI: 0.16–0.81, P =

0.014). These discoveries contribute to a nuanced understanding of the distinct

metabolic signatures underlying IS and CRSWD.
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1 Introduction

Insomnia, a common sleep problem where people have trouble

falling or staying asleep (Buysse, 2013), has various forms, as

classified by the International Classification of Sleep Disorders,

Third Edition (Sateia, 2014). Many individuals with insomnia

struggle with it for a long time due to different underlying factors

(Pavlova, 2017). Some key differences between those with insomnia

and those without it include higher metabolic rates during sleep

and waking, increased levels of stress hormones like cortisol during

early sleep stages, less relaxation in heart rate patterns, and more

active brain waves during certain sleep phases. These factors

contribute to the complexity of insomnia and its effects on sleep

quality (Nofzinger et al., 2004).

The biological clock plays a crucial role in regulating various

body functions, including metabolism and our sleep patterns

(Gachon et al., 2004). Circadian rhythm sleep-wake disorders

(CRSWD) are a group of sleep problems caused by disruptions in

our internal body clock or conflicts between our natural rhythms

and external cues like light and dark. These disorders often lead to

issues like trouble sleeping at night and feeling excessively sleepy

during the day, which can really affect a person’s quality of life

(Sun and Chen, 2022). There are two main types of CRSWD: one

where there are long-term changes in how our body clock works,

and the other where our sleep schedules clash with our internal

rhythms because of changes in our environment (Sateia, 2014).

Research has shown that melatonin, a hormone that regulates sleep,

can help improve sleep duration and quality, which can make a big

difference in how people with CRSWD feel (Nagtegaal et al., 2000).

Currently, common treatments for CRSWD include

chronotherapy, phototherapy, and behavioral therapy. It has

also been found that melatonin has a certain therapeutic effect

on this disease, but it usually relapses after stopping the drug

and is accompanied by many side effects (Sun and Chen, 2022).

Therefore, the treatment of this disease still requires a more in-

depth understanding. If blood metabolites that have an impact on

the disease are discovered, we can explore its potential pathogenesis

or pathways and provide corresponding treatment options for

solving CRSWD.

When people have sleep disorders, their bodies become more

active metabolically, leading to changes in the levels of various

substances in their blood. These substances, called metabolites,

are produced and used up during our body’s metabolic processes.

Changes in these metabolites can affect both our physical and

mental health (Davies et al., 2014). Analyzing blood metabolites

could be a valuable tool for spotting diseases early or keeping

track of a person’s overall health (Tremblay et al., 2019). By

understanding these metabolic changes, we might be able to

predict and even prevent certain health issues (Zernia et al.,

2020). Understanding the connections between different traits

and diseases is a big challenge in medical research. Mendelian

randomization (MR) analysis is one of the epidemiological research

methods that uses genetic variation to link exposure to outcome

as an instrumental variable (IV) to assess causality. In contrast to

other epidemiologic research strategies, MR can provide unbiased

estimates of genotype and is usually immune to confounders and

reverse causation. As a result, MR has been widely used in GWAS

to aggregate statistics to infer causality for relevant disease risk

exposures (Hemani et al., 2018; Zeng et al., 2021; Wang et al.,

2022).

Therefore, we hypothesized that bloodmetabolite profiles could

be used to infer causal relationships between blood metabolites and

IS with CRSWD. Therefore, we explored the genetic correlations

between IS, CRSWD, and blood metabolites by LDSC analysis,

and tested whether these metabolites were directly associated

with IS and CRSWD by MVMR analysis. In addition, we

performedmetabolic pathway analysis to investigate the underlying

biological processes.

2 Materials and methods

2.1 Study design

MR studies rely on selecting specific genetic variations as

instrumental variables (IVs), guided by key assumptions: (i) a

connection between genotype and exposure exists; (ii) the impact

of genotypes on outcomes occurs solely through the mediation of

exposure; and (iii) confounding factors are effectively accounted

for (Taylor et al., 2014; Boef et al., 2015). All MR analyses were

performed using R Studio (version 4.3.1) with the primary R

package, TwoSampleMR (Yun et al., 2023). Our study utilized

genome-wide association study (GWAS) data to conduct MR

analysis, employing blood metabolites as exposure variables and

investigating their links to ischemic stroke (IS) and circadian

rhythm sleep-wake disorders (CRSWD) as outcomes. The overall

process is outlined in Figure 1.

2.2 GWAS data for blood metabolites and IS
and CRSWD

In our research, we harnessed genetic data related to blood

metabolites, accessible from the Metabolomics GWAS server

(https://metabolomics.helmholtz-muenchen.de/gwas/). This

association was achieved through widespread deployment of

genome-wide association scans with high-throughput metabolic

profiling, curated by Shin et al., as they combined data on gene

expression, heritability, overlap with known drug targets, and

previous association with complex diseases. Combined with

information on the association with inborn errors of metabolism,

the in vivo blueprint of metabolism in the human blood has been

broadly described (Shin et al., 2014). Details of these metabolites

are set out in Supplementary Table 1. We had access to a wealth of

valuable genome-wide associations, encompassing 145 metabolic

traits and their relationships with 486 distinct metabolites in

human blood. This extensive dataset boasted nearly 2.1 million

SNPs available for meticulous examination. The 486 serum

metabolites were categorized into two overarching groups. The

first group comprised known metabolites, rigorously identified

through chemical characterization and further classified into eight

subtypes: amino acids, carbohydrates, cofactors and vitamins,

energy-related compounds, lipids, nucleotides, peptides, and

heterometabolism (Kanehisa et al., 2012). The second group

encompassed metabolites categorized as “unknown” due to their

unspecified chemical properties, distinguished by an “X-” label.
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FIGURE 1

Flowchart of the study design. (1) Genetic tools are strongly correlated with exposure; (2) Genetic tools are independent of confounders; (3) Genetic

tools a�ect outcomes only through exposure. WM, weighted median; LOO analysis, leave-one-out analysis; MR-PRESSO, MR-Pleiotropy RESidual

sum and outlier; LD, linkage disequilibrium; LDSC, linkage disequilibrium score; MR-PRESSO, MR-Pleiotropy RESidual sum and outlier; MVMR,

multivariable Mendelian randomization analysis; SNPs, single nucleotide polymorphisms.

Our study incorporated pertinent GWAS data from the dataset

published by the Finnish Consortium R9. The cohort for IS

consisted of 375,359 individuals, with 4,214 cases and 371,145

controls. For CRSWD, there were 371,145 individuals, with 410

cases mirroring the control group observed in the IS cohort.

2.3 MR analysis of IVs selection

The process of selecting instrumental variables demands

meticulous screening to ensure the robustness of analyses. In

our study, we evaluated the abundance of single nucleotide

polymorphisms (SNPs) associated with blood metabolites,

ultimately establishing a stringent threshold of 0.05 for inclusion.

Simultaneously, we employed the criteria established by Yang and

Choi et al. to eliminate linkage disequilibrium LD biases (R2
> 0.1

within 500 kb) originating from causal effects (Choi et al., 2019;

Yang et al., 2020). Furthermore, we conducted F-value statistics for

each SNP, classifying those with F-values <10 as adverse genetic

variations (Burgess et al., 2013). Consequently, this subset of data

was meticulously excluded from our analysis.

2.4 MR analyses and sensitivity analysis

Drawing from the insights of Burgess et al., we chose the Inverse

Variance Weighted (IVW) analysis as our primary method for

Mendelian randomization (MR). This method helps us determine

the causal link between genetically determined serum metabolite

levels and neuroticism. IVW is based on the assumption that

there is no horizontal pleiotropy for all SNPs. Under this premise,

IVW provides the most accurate assessment of causal effects

(Pierce and Burgess, 2013). IVW analysis is considered reliable for

assessing causal exposure effects when each instrumental variable

meets specific assumptions (P-IVW < 0.05). Additionally, we

supplemented our analysis with MR-Egger and weighted median

(WM) methods to validate significant estimates of metabolites,

ensuring consistency across these three MR approaches (Bowden

et al., 2015). To ensure the reliability of our findings, we

conducted a thorough investigation into potential pleiotropy and

heterogeneity, employing sensitivity analyses. This comprehensive

assessment included various tests such as the Cochran-Q test,

MR-Egger intercept, Leave-One-Out (LOO) analysis, and MR-

PRESSO (Cohen et al., 2015). A significant result in the Cochran-

Q test (p < 0.05) indicated the presence of heterogeneity,

while horizontal pleiotropy was evaluated through the MR-Egger

intercept. Furthermore, LOO analysis helped us understand the

influence of individual single-nucleotide polymorphisms (SNPs)

on outcomes (Burgess, 2017). To enhance the robustness of

our statistical evaluation, we utilized an online resource (https://

shiny.cnsgenomics.com/mRnd/) to assess the performance of our

analyses, maintaining a Type I error rate of 0.05. Power calculations

were based on the R2 of instrumental variables, the proportion

of cases with the outcome, and the odds ratio (OR) obtained

from IVW analysis. Metabolites with power values below 0.8 were

systematically excluded from our analysis (Brion et al., 2013).

2.5 Genetic correlation and direction
verification

Expanding on our previous investigations, where we excluded

single-nucleotide polymorphisms (SNPs) directly linked to

ischemic stroke (IS) and circadian rhythm sleep-wake disorders
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(CRSWD), we acknowledge the possibility of SNPs unrelated to

these disorders influencing their heritability (O’Connor and Price,

2018). To ensure the credibility of our findings andmaintain clarity

regarding causal effects, we utilized LDSC to examine the genetic

correlation between the identified metabolites and the diseases.

2.6 Confounding factors and multivariate
MR analysis

Confounding factors wield significant influence on study

outcomes, often introducing complexities when disentangling the

true effects of exposure. To address this challenge, we harnessed an

online resource (http://www.phenoscanner.medschl.cam.ac.uk/) to

systematically assess the potential confounding effects of 486

metabolite-associated SNPs. Parameters adhered to default settings

(Catalog: Diseases & traits, p-value: 1E-5, Proxies: None, r2:

0.8, Build: 37). This comprehensive step fortified our analytical

framework by mitigating the potential interference of confounders

on the exposure-outcome relationship. IS is influenced by various

risk factors, including age, sex, and a family history of insomnia

(Morin and Jarrin, 2022). On the other hand, individuals with

neuropathological conditions affecting the hypothalamus, retina,

and optic nerve are predisposed to CRSWD (Zee and Abbott,

2020). In the presence of SNPs associated with these confounders, a

deliberate process of removal was implemented. Subsequently, MR

analyses were conducted to ensure the credibility of the results. This

approach was instrumental in isolating the direct effects of each

exposure on the outcomes, allowing for the disentanglement of

multiple risk factors. MVMRwas employed for this purpose, which

was further complemented by the IVW method. The utilization

of MR-PRESSO enabled the identification and removal of outliers,

critical in assessing the presence of pleiotropy in our MR analyses

(Burgess and Thompson, 2015; Verbanck et al., 2018; Sanderson,

2021).

2.7 Metabolic pathway analysis

To unravel the intricate biological mechanisms through which

blood metabolites exert their impact on SD, we conducted

metabolic pathway analysis using known metabolites. This

comprehensive analysis was based on the KEGG database and

was executed with the aid of MetaboAnalyst 5.0 (https://www.

metaboanalyst.ca/). By scrutinizing established metabolites and

their interconnected pathways, we aimed to shed light on the

underlying molecular processes that contribute to Sleep Disorders.

3 Result

3.1 MR analyses and sensitivity analysis

After a rigorous instrumental variable screening procedure,

we performed MR Analysis of blood metabolites in 486, see

Supplementary Table 2 for detailed data. IVW analysis results

preliminarily screened out 17 metabolites with potential

causal relationship with IS. After combining complementarity,

sensitivity analysis, and calculated power values, 12 metabolites

were identified as candidates, including 5-oxoproline (P =

0.001), salicylate (P = 9 × 10–4), glycerol 3-phosphate

(P = 0.029), acetylphosphate (P = 0.009), saccharin (P =

0.021), androsterone sulfate (P = 0.034), scyllo-inositol (P =

0.006), 2-hydroxyacetaminophen sulfate (P = 0.037), X-13431-

nonanoylcarnitine (P = 0.048), 2-stearoylglycerophosphocholine

(P = 0.031), 2-hydroxypalmitate (P = 0.002), leucylleucine (P

= 0.034). Seven metabolites that met the criteria were identified

in CRSWD, including carnitine (P = 0.007), levulinate (P =

0.016), cholate (P = 0.007), ADpSGEGDFXAEGGGVR (P =

0.016), p-cresol sulfate (P = 0.008), X-14208—phenylalanylserine

(P = 0.009), succinylcarnitine (P = 0.030).All metabolites have

Power values greater than 0.8, and these metabolites will be

analyzed in more depth Detailed data of metabolites are shown

in Figure 2. The direction and magnitude of the IVW, MR

Egger, and WM estimates are consistent. All metabolites have

Power values >0.8, and these metabolites will be analyzed in

more depth. Detailed results of sensitivity analysis are shown in

Supplementary Table 3, and detailed results of MR-PRESSO are

shown in Supplementary Table 4. The results of the LOO analysis

are presented in Supplementary Figure 1.

3.2 Genetic correlation and direction
verification

Our LDSC results showed that the metabolite “X-14473”

may be genetically correlated with CRSWD (Rg = 1.063, Se =

0.493, P = 0.031), but because its chemistry is unknown, more

detailed exploration is needed. Detailed results of all metabolites

are presented in Supplementary Table 5. At the same time, reverse

MR Results (Supplementary Table 6), it also showed that there was

no mutual causal relationship between these candidate metabolites

and IS and CRSWD.

3.3 Confounding factors and multivariate
analysis

After our verification, all metabolites are independent of

confounding factors. To verify the direct impact of these candidate

metabolites on the disease, we usedMVMR analysis, IVW andMR-

PRESSO analysis, and found that three metabolites can directly

affect IS (Figure 3), including X-11786 methylcysteine (P = 0.014),

2-hydroxylaminate (P= 0.040), and salicylate (P= 9× 10–4). Four

metabolites can directly affect CRSWD (Figure 4), include carnitine

(P= 0.002), levulinate (P= 0.020), p-cresol sulfate (P= 0.006), and

X-14208—phenylalanylserine (P= 0.014).

3.4 Metabolic pathway analysis

Through a strict screening process of metabolites (p < 0.05) we

found that, in IS, 1-acyl-sn-glycerol-3-phosphatecholine and sn-3-

phosphoglycerol play important roles in the glycerol phospholipid

metabolism pathway, and sn-3-phosphoglycerol is also involved in
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FIGURE 2

Forest plot for the causality of blood metabolites on IS and CRSWD from inverse variance weighted (IVW) analysis. CI, confidence interval; IVW,

inverse variance weighted; OR, odds ratio.

the glycerol ester metabolism pathway. In CRSWD, L-serine and

glycine are involved in the metabolic pathways of glyoxylate and

dicarboxylic acid, as well as in the metabolic pathways of glycine,

serine, and threonine. Glycine and cholic acid are found to be

involved in the biosynthesis pathway of primary bile acids. In the

biosynthesis pathway of aminoacyl tRNA, glycine and L-serine act.

Sulfate was found to participate in the thiometabolism pathway. In

the metabolic pathway of methyl butyrate, butyric acid is the main

contributor. Detailed data on metabolic pathways are presented in

Supplementary Table 7.

4 Discussion

Our MR study, leveraging two distinct GWAS datasets,

offers a thorough investigation into the causal relationship

between IS, CRSWD, and blood metabolites. The study’s primary

objective is to illuminate the intricate biological processes and

metabolic pathways connecting these disorders with blood

metabolites, fostering a more profound understanding of

their interplay.

In the IS group, the results of multivariate analysis showed that

2-hydroxypalmitate may directly contribute to the development

of insomnia. 2-Hydroxypalmitate and its derivatives have been

studied for various potential applications, including in the

pharmaceutical and cosmetic industries. They may play a role

in biological processes such as cell signaling pathways, lipid

metabolism, and inflammation regulation. This metabolite’s impact

is intimately linked to the HAOX2 gene, primarily expressed

in the liver and kidneys, known for its robust activity against

2-hydroxypalmitate (Jones et al., 2000). The specific metabolic

pathways and mechanisms of 2-hydroxypalmitate in the kidney

may be a key step in solving the mystery of insomnia (Ritter

et al., 2016). It is therefore reasonable to speculate that the

degree of expression of 2-hydroxypalmitate in the kidneys has

some association with insomnia, and that it may be involved as
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FIGURE 3

Multivariable MR analysis of the final identified blood metabolites for IS. 95% CI, 95% confidence interval; IVW, inverse variance weighted;

MR-PRESSO, MR-Pleiotropy RESidual Sum and Outlier; OR, odds ratio.

a substrate or regulator of enzymes involved in lipid metabolism

and cellular signaling in some of the links between insomnia

due to renal disease. In other words, if we can find out in the

kidneys of insomnia patients how 2-hydroxypalmitate specifically

affects insomnia, it may add some new insights into insomnia.

Salicylate was also found to be one of the metabolites that

independently affects insomnia in our multivariate analysis results.

Salicylates, including salicylic acid found in medications such

as aspirin, have been linked to potential effects on sleep. Some

peoplemay experience increased alertness or difficulty falling asleep

after consuming products containing salicylates. This effect may

be due to the stimulant properties of salicylates, especially at

higher doses. Salicylates can irritate the gastrointestinal tract in

sensitive individuals, causing discomfort or digestive problems and

may disrupt sleep. Some people may have specific sensitivities

or allergies to salicylates, which may cause symptoms such as

headaches, which may affect sleep quality. It has been shown

that salicylate-induced tinnitus and consequently insomnia can

be alleviated by the protection of overactive nerves by MK-801

(also known as Dizocilpine, a pore blocker of glutamate receptors)

(Ritter et al., 2016). This suggests that salicylates can have an effect

on insomnia to some extent, and aspirin is one of the common

medications that contain salicylic acid, which is often used to

prevent diseases such as heart disease, stroke and blood clots.

Therefore reducing the intake of such drugs may improve insomnia

in some people. The compound X-11786-Methylcysteine does not

appear to have been proven in many papers or articles, and its link

to insomnia is unclear.

Our research has illuminated the central role of glycerol-3-

phosphate (G3P), a blood metabolite, in the “glycerophospholipid

metabolism” pathway. G3P emerges as a crucial participant,

profoundly impacting the growth and physiological processes

of prokaryotes, plants, animals, and humans (Chanda et al.,

2011). Other research, led by Zhou and colleagues, highlights
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FIGURE 4

Multivariable MR analysis of the final identified blood metabolites for CRWSD. 95% CI, 95% confidence interval; IVW, inverse variance weighted;

MR-PRESSO, MR-Pleiotropy RESidual Sum and Outlier; OR, odds ratio.

G3P’s role in processes related to phosphates in the kidneys,

particularly concerning renal glycolysis (Zhou et al., 2023).

Considering that insomnia is associated with increased arousal

and metabolic activity, which leads to more sugar breakdown

during the night, our research suggests that G3P might be involved

in the changes in glucose levels seen in insomnia cases. This

idea is supported by a study conducted by Philip and his team

(Gehrman et al., 2018). While these observations offer a compelling

perspective, further comprehensive research is necessary to unveil

the intricate relationship between G3P and the glucose changes

linked to insomnia.

In the CRSWD group, our MVMR analysis identified p-cresol

sulfate (PCS) as a metabolite that may have a significant impact

on CRSWD.PCS are known as uremic toxins and accumulate

significantly in the organs of patients with chronic kidney disease

(CKD). These toxins have the potential to induce inflammatory

responses, exacerbate oxidative stress, induce glomerulosclerosis

and interstitial fibrosis, and exacerbate renal failure. In addition,

they play a key role in cardiovascular function (Liu and Tomino,

2018). Hypoxia-induced renal injury is one of the consequences

of CRSWD (Xie et al., 2020), which can lead to excessive daytime

sleepiness and may trigger respiratory problems such as dyspnea

and hypoxia. It can be hypothesized then that the symptoms of

CRSWD, which are caused by impaired renal or cardiovascular

function and consequently, can be ameliorated to a certain

extent by removing or reducing the accumulated PSC in the

body. Carnitine is involved in fatty acid metabolism for energy

production. Disruption of metabolic pathways, including those

involving carnitine, may affect the regulation of circadian rhythms.

Carnitine can be obtained from dietary sources, particularly

animal products such as meat and fish. Dietary factors can affect

overall health and wellbeing, including sleep quality and circadian

rhythms. L-carnitine may be present in certain products or

environments and may indirectly affect sleep patterns. Therefore,

if products containing L-carnitine (e.g., food additives) trigger an

allergic reaction or intolerance in some individuals, resulting in

discomfort or other symptoms, or if the proportion of meat and

fish in the diet is increased, it may interfere with the quality of sleep

and lead to the development of CRSWD.

Whereas levulinate does not seem to find a relevant pathway in

CRSWD, it is more often used in catalytic oxidation, biorefineries,

etc. The same is true for X-14208-Phenylalanylserine, for which

we have not found a relevant use at this time due to undefined

chemical properties.

Research on PCS-related treatments may represent a

pivotal approach to addressing insomnia within this specific

population. Additionally, our investigation reveals glycine’s

involvement in four metabolic pathways, namely “glyoxylate and

dicarboxylic acid metabolism,” “glycine, serine, and threonine

metabolism,” “aminoacyl tRNA biosynthesis,” and “primary bile

acid biosynthesis.” This finding instigates keen interest in the

potential relationship between glycine and CRSWD. Glycine,

the simplest and most vital amino acid in the human body, is

chiefly synthesized in the liver and kidneys. It serves as a precursor
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for the synthesis of essential compounds, including collagen,

creatine, glucose, and purine. Glycine also participates in immune

functions, anti-inflammatory processes, and antioxidant reactions

(Imenshahidi and Hossenzadeh, 2022). Studies indicate a profound

association between circadian rhythms and hormone secretion,

temperature fluctuations, and melatonin levels. Melatonin’s role

in regulating circadian rhythm-related genes, such as PER1, PER2,

and BMAL1, is well-documented (Pavlova, 2017). Moreover,

the depletion of glycine in mice, stemming from PER2 gene

knockout, leads to intestinal metabolic disorders and potential

alterations in liver antioxidant and inflammatory responses (Zhen

et al., 2022). Recent research highlights the nighttime reduction

in the number and function of β2-adrenergic receptors, linked

to a genetic polymorphism involving glycine 16 substitution

(Martin, 1998). These insights may offer valuable avenues for

future exploration, suggesting that glycine could potentially affect

renal function through specific metabolic pathways, contributing

to the emergence of CRSWD. However, further investigations are

imperative to elucidate these intricate mechanisms.

Our study offers crucial insights into the intricate relationship

between blood metabolites and two distinct sleep disorder

phenotypes, namely IS and CRSWD. However, we acknowledge

certain limitations within our research. Firstly, the utilization

of GWAS data from the European population restricts the

generalizability of our MR results. Consequently, a more

comprehensive validation in a broader population would

substantially bolster the credibility of our findings. Secondly,

this article is an exploratory study, aiming to discover as many

potential positive results as possible, so multiple testing correlation

is not performed. Finally, while our MR analysis has successfully

identified links between several metabolites and IS and CRSWD,

further detailed and comprehensive investigations are imperative

to ascertain the efficacy of these discoveries in influencing

the course of these diseases. In light of these considerations,

our research serves as a stepping stone, urging the scientific

community to engage in deeper, more extensive explorations of

this complex interplay.
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