
TYPE Original Research
PUBLISHED 10 May 2024
DOI 10.3389/frsle.2024.1349537

OPEN ACCESS

EDITED BY

Antonio Fernández-Caballero,
University of Castilla-La Mancha, Spain

REVIEWED BY

Salim Dib,
University of Miami Health System,
United States
J. Kent Werner,
Uniformed Services University of the Health
Sciences, United States

*CORRESPONDENCE

Julie A. Onton
jonton@ucsd.edu

RECEIVED 04 December 2023
ACCEPTED 16 April 2024
PUBLISHED 10 May 2024

CITATION

Onton JA, Simon KC, Morehouse AB,
Shuster AE, Zhang J, Peña AA and Mednick SC
(2024) Validation of spectral sleep scoring
with polysomnography using forehead EEG
device. Front. Sleep 3:1349537.
doi: 10.3389/frsle.2024.1349537

COPYRIGHT

© 2024 Onton, Simon, Morehouse, Shuster,
Zhang, Peña and Mednick. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Validation of spectral sleep
scoring with polysomnography
using forehead EEG device

Julie A. Onton1*, Katherine C. Simon2,3, Allison B. Morehouse4,
Alessandra E. Shuster4, Jing Zhang4, Andres A. Peña4 and
Sara C. Mednick4

1Institute for Neural Computation, University of California, San Diego, La Jolla, CA, United States,
2Department of Pediatrics, School of Medicine, University of California, Irvine, Irvine, CA, United States,
3Pulmonology Department, Children’s Hospital of Orange County, Orange, CA, United States,
4Department of Cognitive Sciences, Sleep and Cognition Lab, University of California, Irvine, Irvine, CA,
United States

Introduction: Visual scoring of sleep electroencephalography (EEG) has long
been considered the gold standard for sleep staging. However, it has several
drawbacks, including high cost, time-intensiveness, vulnerability to human
variability, discomfort to patients, lack of visualization to validate the hypnogram,
and no acknowledgment of di�erences between delta and slow oscillation deep
sleep. This report highlights a spectral scoring approach that addresses all these
shortcomings of visual scoring. Past algorithms have used spectral information
to help classify traditional visual stages. The current method used the clearly
visible spectral patterns to develop new spectral stages, which are similar to
but not the same as visual stages. Importantly, spectral scoring delivers both a
hypnogram and a whole-night spectrogram, which can be visually inspected to
ensure accurate scoring.

Methods: This study compared traditional visual scoring of 32-channel
polysomnography with forehead-only spectral scoring from an EEG patch worn
concurrently. The PSG was visually scored by trained technicians and the
forehead patchwas scored spectrally. Because non-rapid eyemovement (NREM)
stage divisions in spectral scoring are not based on visual NREM stages, the
agreements are not expected to be as high as other automated sleep scoring
algorithms. Rather, they are a guide to understanding spectral stages as they
relate to the more widely understood visual stages and to emphasize reasons
for the di�erences.

Results: The results showed that visual REM was highly recognized as spectral
REM (89%). Visual wake was only scored as spectral Wake 47% of the time, partly
because of excessive visual scoring of wake during Light and REM sleep. The
majority of spectral Light (predominance of spindle power) was scored as N2
(74%), while less N2 was scored as Light (65%), mostly because of incorrect visual
staging of Lo Deep sleep due to high-pass filtering. N3 was scored as both Hi
Deep (13 Hz power, 42%) and Lo Deep (0–1 Hz power, 39%), constituting a total
of 81% of N3.

Discussion: The results show that spectral scoring better identifies clinically
relevant physiology at a substantially lower cost and in a more reproducible
fashion than visual scoring, supporting further work exploring its use in clinical
and research settings.
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1 Introduction

Visual sleep scoring has long enjoyed “ground truth” status but

visual scoring is not without faults, nor is it the only way to interpret

sleep data. Many attempts have been made to use machine learning

algorithms instead of visual scoring, but while these algorithms

can be as accurate as another visual scorer (Ferri et al., 1989;

Stanley, 2023), they have not been accepted as equal to visual

scoring. Currently commercially available options advertise that

their scoring algorithm can reduce scoring time, but not replace

it. This is because in order to validate the automated scoring, the

technician must manually scroll through the entire dataset as they

would to visually score it anyway. Thus, despite many algorithms

and several commercially available options boasting accuracy on

par with human scorers, these applications will never be more

than supportive technology due to the problem of validating the

final hypnogram.

One alternative approach to visual scoring, developed by the

first author, is an automated spectral scoring technique which relies

on a spectral transformation of the raw EEG into frequencies over

time (Onton et al., 2016). This differs from previous algorithms

using spectral information because it does not use spectral

information to extract what a human would score, but rather reads

the spectral information as the stage itself. In other words, spectral

scoring allows the spectral data to dictate the sleep stage rather

than being used to reverse engineer what a human would see in

the raw time domain data. The resulting spectral hypnogram can

be quickly visually compared with the corresponding spectrogram

image which shows how frequency power and therefore sleep cycles

varied across the night. Thus, it has the distinct advantage of

providing a visual verification of the final hypnogram results. Visual

inspection of the spectrogram can also quickly identify abnormal

sleep that may need further attention. The algorithm investigated

here uses five frequency bands from a single channel of EEG to

separate the night into four possible sleep stages and Wake (Onton

et al., 2016). The algorithmwas optimized using the easily accessible

forehead region, which allows for minimally disrupted sleep in the

home environment.

What no other algorithm to date has recognized or dared to

consider is that forcing an algorithm to recapitulate visual scoring

may blind us from seeing how the brain actually behaves during a

night of sleep. In other words, the “ground truth” status that has

been given to visual scoring may have been hampering progress

toward better understanding of sleep physiology. For example,

simply looking at the spectrogram of a night of sleep demonstrates

two clearly identifiable deep sleep states, one in the delta range

(1–3Hz) and one in the slow oscillation range (<1Hz) (Onton

et al., 2016). This difference in dominant slow wave frequency is

even known to have behavioral differences in the research literature

(Mölle et al., 2002; Bersagliere and Achermann, 2010; Kawai et al.,

2020), but this distinction continues to be ignored in visual sleep

scoring. Spectral scoring, on the other hand, which uses stages

based on the dominant frequencies expressed in the data, found

that a lack of slow oscillations was significantly more common

in a military posttraumatic stress disorder (PTSD) population

compared to healthy sleepers (Onton et al., 2018). Visual scoring

not only misses some aspects of sleep due to antiquated stage

definitions, but it also requires an extremely cumbersome number

of electrodes across the scalp that can only be positioned in

a laboratory setting. In contrast, spectral scoring requires only

one channel from the accessible forehead region to get a rich

understanding of the overall structure of the sleep EEG as well as

the specific stages encountered during the night. This difference in

equipment means not only that a patient can be more comfortable

and in their home environment, but also that the cost per recording

is drastically reduced. Spectral scoring then allows for the acquired

data to be scored objectively using a computer algorithm that is

robust yet also based on simple spectral power trends in the data

which can be easily validated against the whole night spectrogram.

For all these reasons, a shift from visual scoring to spectral scoring

could revolutionize sleep medicine and research.

Spectral scoring relies on different information than visual

scoring, which results in spectral stages that do not necessarily

have a direct visual stage correlate. For example, rather than

scoring N1, N2, and N3 stages of non-rapid eye movement

(NREM) sleep according to standard visual scoring rules, spectral

scoring classifies three dominant patterns of spectral activity during

NREM. The three NREM spectral sleep stages are defined as Light

(predominance of spindle power), Hi Deep (predominance of 1–

3Hz power), and Lo Deep (predominance of power below 1Hz).

Both Hi and Lo Deep sleep are similar to N3 but are separated

because of clear spectral differences between them. In addition, it

has been shown in animals that slow oscillations (Lo Deep) have a

cortical origin while delta (Hi Deep) has a thalamic origin (Steriade

et al., 1993a,b). Electrodermal activity is elevated and oscillating

(i.e., “storming”) during Lo Deep sleep, but not during Hi Deep

sleep (Onton et al., 2016). Behaviorally, slow oscillations appear to

be associated with remembering information while delta may be

associated with forgetting (Kim et al., 2019). Slow oscillations can

also be enhanced in humans by delivering auditory stimulation at

the optimal phase of the slow oscillation, which results in improved

memory recall the next day (Ngo et al., 2013). Despite these

differences, visual sleep scoring does not differentiate between delta

and slow oscillations.

There are several reasons to look beyond the traditional sleep

scoring approach for sleep analysis. Spectral scoring provides

a more objective, simple, and clear set of rules for scoring

that does not rely on human judgment. In visual sleep scoring,

there is variability between scorers within a lab, and the even

more pronounced problem of variability between labs where

the interpretations of the American Academy of Sleep Medicine

(AASM) rules may vary. The objective rules in spectral scoring

should reduce a degree of this variability. Spectral scoring is fast

and requires minimal person-time, a fewminutes of computer time

compared to several hours of technician time. Additionally, many

nuances in the sleep EEG can be detected very quickly by observing

the whole-night spectrogram. This could be useful for clinical sleep

assessment and could also lead to important discoveries in the

research setting. And finally, requiring only one channel of EEG

allows for a simple forehead-only device that is more comfortable

to wear than current lab or at-home recording devices used for

visual scoring.

The current study focuses on the correspondence between

traditional visual sleep scoring of full PSG and spectral scoring
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of EEG from a headband-free, 3-channel, forehead-adherable

device recorded concurrently. We expect that this information will

FIGURE 1

Picture of a subject wearing the CGX patch and EEG cap
concurrently in order to collect both forehead EEG for spectral
scoring and cap data for visual scoring. In the upper right is a picture
of the CGX patch worn alone to show its minimal footprint as a
sleep tracking device.

encourage use of the spectral sleep scoring technique for rapid,

consistent, and more informative sleep reports, as well as a move

toward less invasive, at-home recording devices that minimize

sleep disruption.

2 Materials and methods

2.1 Participants

All study activities were approved by the Internal Review Board

at the University of California at Irvine and the Army Office of

Human Research Oversight. Twenty-six subjects (mean age= 23.2,

15 females) were recruited using word of mouth, social media, or

flyers. One subject was dropped due to illness and in six cases the

EEG forehead device fell off during the night or was corrupted

by artifactual noise indicative of a loose connection. Therefore 19

subjects were used for the final analyses contained in this report.

Subjects were 18+ years old, regularly obtaining 7–9 h of sleep per

night, habitual bedtime between 10 pm and midnight and habitual

wake time between 6 and 8 am and a non-polarized chronotype

(Horne-Ostberg Morningness-Eveningness Questionnaire score

between 31–69) (Horne and Ostberg, 1976). Subjects were excluded

if a sleep disorder was reported or detected, they or a first degree

relative was diagnosed with a significant psychopathology, they

had a personal history of head injury or loss of consciousness

FIGURE 2

Example sleep report showing general alignment of cap visual scoring (top) and CGX patch spectral scoring (second). The third panel is the
whole-night spectrogram showing relative dB power (baseline across the whole night removed). The bottom panel shows the dominant frequency
from the spectrogram at each 0.5 sec window, which helps to highlight low amplitude spectral power in higher frequencies like low beta during REM
sleep.
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>2min or seizures, a history of substance abuse, current use of

psychotropic medications, or any cardiac, respiratory, or other

medical condition that may affect cerebral metabolism. Subjects

completed the following questionnaires: (1) Epworth Sleepiness

Scale (Johns, 1991), (2) Horne-Ostberg Morningness-Eveningness

Quesionnaire (Horne and Ostberg, 1976), (3) Karolinska Sleepiness

Scale, (4) Beck Depression Inventory, and (5) General Anxiety

Disorder-7 (Spitzer et al., 2006). Subjects were asked to refrain from

caffeine for at least 12 h, and alcohol or other stimulants for 24 h

before their scheduled sleep time at the lab.

2.2 Equipment/setup

The CGX Patch is a small, portable, battery powered EEG

recording device (CGX, San Diego, CA) that adheres to the

forehead with a single medical-type adhesive with three hydrogel

leads at FP1, FP2, and AFz. FP1 serves as the reference, though all

three channel differences can be derived (FP1-AFz, FP1-FP2, and

FP2-AFz). Data are written to an internal microSD card at 500Hz

with no hardware filters. Each data record is marked with the start

and stop internal clock times.

EEG data for the PSG was collected with a 32-channel

BrainCap by EASYCAP (Wörthsee, Germany) attached to a Brain

Amp Standard (BrainProducts, Munich, Germany) amplifier which

collects at 5,000Hz with a low frequency hardware cutoff of

0.016Hz. The cap contains 32 channels total, with 3 channels

(FP1, FPz, and FP2) that were not used because of the EEG patch

placement. All other EEG channels (F3, F4, C3, C4, F7, F8, T7,

T8, P7, P8, FT9, FT10, Fz, Cz, COz, PZ, POz, E1, E2, O1, O2,

P3, and P4) were collected, along with 2 electrocardiogram and 2

chin electromyogram electrodes. The ground electrode was located

between FPz and Fz and the online reference was located between

Fz and Cz.

2.3 Procedure

Subjects were fitted with a small, battery-operated forehead

EEG recording patch (CGX, San Diego, CA) and then with a full

EEG cap that was folded back in the front to accommodate the

patch (Figure 1). Subjects slept in a small bedroom, both EEG

systems were turned on to record the entire night and the lights

were turned off.

2.4 Visual scoring

For visual sleep scoring, full PSG cap data were resampled

to 256Hz, filtered between 0.5 and 35Hz, and re-reference to

contralateral mastoid for electrodes F3, F4, C3, C4, E1, E2, O1,

and O2 using BrainVision Analyzer 2.0 (BrainProducts, Munich,

Germany). Sleep scoring was accomplished by two technicians

independently, scoring 30-sec epochs at a time into wake, stage 1

NREM sleep (N1), stage 2 NREM sleep (N2), stage 3 NREM sleep

(N3), and REM sleep according to the AASM rules for sleep scoring

using HUME, a custom MATLAB (Natick, MA) toolbox. If inter-

scorer reliability was <90%, a third reviewer independently scored

the sections of discrepancy and the stages with two out of three

scores was applied.

2.5 Spectral scoring

Details of the data processing have been reported previously

(Onton et al., 2016), but the procedure is summarized here. CGX

Patch EEG data were imported into Matlab (Mathworks, Natick,

MA, USA) where the two original channels referenced to FP1

(FP1-AFz, FP1-FP2) were subtracted to create the third FP2-AFz

channel. Each channel was decomposed into frequency amplitude

from 0.1 to 100Hz for each 0.5 sec time point using Morlet

wavelet analysis with 3 cycles at the lowest frequency, 30 cycles

at the highest frequency and a smooth distribution of cycles at

the frequencies in between. This gradient of cycles produces an

optimal trade-off between time and frequency resolution for each

frequency. The real portion of the amplitudes was computed

by multiplying the complex number by its conjugate and then

converted to decibels (dB) by the formula 10∗log10 (amplitude).

The baseline was calculated by averaging across the entire night

except noise epochs defined by extreme root mean squared or

total power values. The baseline spectrum was subtracted from the

spectrum at each time point to create the spectrogram used for

spectral band calculations. The dominant frequency display was

derived from the baselined spectrogram by marking a dot at the

frequency with the maximum power value at each time point. The

display spectrogram was smoothed using a moving 40-sec window

for better visualization of the macroscopic patterns. Line noise

frequencies between 50 and 70Hz were masked by assigning the

power at surrounding frequencies for the visual spectrogram and

they were ignored for calculation of the Wake power band.

FIGURE 3

Confusion matrix for visual and spectral scoring techniques.
Numerals indicate the number of total epochs across subjects that
were scored as each visual-spectral scoring combination.
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Each patch channel (FP1-AFz, FP2-AFz and FP1-FP2 [“FF”])

was submitted separately to the sleep scoring algorithm which

converts the data from the whole night into a full spectrogram

from 0.1–100Hz then averages five spectral bands for scoring. The

details of the spectral sleep scoring algorithm have been published

previously (Onton et al., 2016). But to summarize, each 30-sec

time window is represented with 5 frequency bands which define 5

stages of sleep: Wake (40–95Hz), REM (∼17–26Hz), Light (∼11–

15.5Hz), Hi Deep (1–3Hz), and Lo Deep (0.1–1Hz). While REM

sleep is also associated with frontal theta power (Nishida et al.,

2009), it is not consistent enough to use for accurate spectral

scoring. This information was modeled as a HMM and refined

with estimation maximization (Rabiner and Juang, 1986). For each

30-sec epoch, the conditional probability of the subject being in

each stage was calculated and the stage with maximal probability

was assigned. The following modifications have been added since

the original publication of the algorithm that account for several

common ambiguities that can lead to mis-scoring. Both REM and

Light peak frequencies are refined after a first pass scoring and the

ranges set to −1 to +1.5Hz around the peak spindle frequency

for Light, and −2 to +2Hz around the peak frequency for REM.

The function then conducts a series of post-HMM corrections

for irregular sleep expressions. For example, some sleep records

show high power in the Wake frequency band (40–95Hz) while

the spindles and low frequency power clearly shows NREM sleep.

Thus, if the algorithm scored these segments as Wake, the post-

correction tests will change them back to NREM based on the lower

frequency sleep rhythms. Other automatic corrections were: (1)

changing Lo or Hi Deep to REM or Wake based on a high beta-

to-spindle ratio along with relatively low total spindle power, (2) Lo

or Hi Deep changed to Wake if total power is high and spindles

are relatively low (indicates very noisy data that is not sleep), (3) Lo

or Hi Deep changed to Light when spindle power is greater than

low frequency power, and (4) Wake to Hi Deep or Light if delta or

spindles are sufficiently high, indicating NREM sleep, and it is after

initial sleep onset. On very clean sleep, these tests are unnecessary,

but on more complicated records they are essential to accurate

scoring. The colored dots at the bottom of the hypnogram denote

the changed epochs (e.g., Figure 2). Each colored dot indicates the

sleep stage from which the epoch was changed (green = Wake,

FIGURE 4

Confusion percentages (y-axis) across subjects of CGX patch spectral stage designations (x-axis) for each cap-scored visual stage (A). Percent
confusions (y-axis) across subjects of cap-scored visual stage designations (x-axis) for each patch-scored scored spectral stage (B). Red lines indicate
the median, while the boxes represent the 25th and 75th percentiles and plus symbols show outliers.
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red = REM, cyan = Light, blue = Hi or Lo Deep). The current

report uses a 30-sec scoring time window for consistency with PSG

scoring, but in practice this window can be decreased to about

10-sec windows with little change in the spectral hypnogram. For

any duration below 10 seconds the hypnogram begins to jump

frequently between stages when there are momentary spindle or

delta bursts, for example, that alternately achieve dominance in very

short time windows.

2.6 Visual and spectral scoring alignment

The CGX Patch and cap data records were aligned as accurately

as possible based on the computer clock start time of the EEG

cap file and the start time of the forehead patch. The overall

alignment of the files can be assessed in Figure 2 which shows

an example night with visual scoring (top panel), spectral scoring

(second panel), spectrogram (third panel), and dominant frequency

(bottom panel).

2.7 Comparison of visual and spectral
scoring

Visual and spectral hypnograms were compared by finding the

number of epochs scored in each stage matching (e.g., N2 and

Light, or N2 and Hi Deep, etc.). This information populated a

confusion matrix between the 5 stages of visual scoring (wake,

REM, N1, N2, and N3) and the 5 stages of spectral scoring (Wake,

REM, Light, Hi Deep, and Lo Deep). In general, a confusion matrix

is a representation of the performance of a classification model,

displaying the true and predicted values for each class in a table for

easy assessment of model accuracy. In this case, there is no actual

true or predicted values, we are simply offering a concise way to

view the agreements and disagreements between the methods. In

order to quantify the scoring confusions across subjects, confusion

matrices for each subject were converted to percentages in each

direction (rows and columns) and pooled across subjects to obtain

the medians for each visual/spectral stage pair.

3 Results

3.1 CGX patch derivation di�erences and
channel selection

All CGX Patch channels returned similar percentages in each

voxel of the confusion matrix (average of ±1.5 standard deviations

between all CGX Patch channels for both visual to spectral

and spectral to visual; range: 0.1–7.0). Some voxels had larger

differences between channels, such as visual wake to spectral Wake

(45%, 48%, and 57%, for FP1, FP2, and FF, respectively). Low

agreement between channels in the percentage of Hi Deep scored

as N3 in (56%, 61%, and 70% on FP1, FP2, and FF, respectively)

were likely due to some incorrectly scored delta activity on FP1

during wake before sleep onset and prolonged wake before lights on

with FP1 and FP2 spectral scoring. It is unclear if this activity is eye

movements or true brain-derived activity, but these results suggest

that much of it appears to be canceled out on the FF derivation. The

other area of disagreement was in the designation of N3 as Hi or

Lo Deep sleep. The FF derivation found 54% of N3 epochs to be Hi

Deep and only 27% as Lo Deep. In contrast, FP1 and FP2 found 42–

43% of N3 epochs as Hi Deep while finding 38–39% of epochs to be

FIGURE 5

Average stage durations for patch spectral scoring (A) and cap visual scoring (B). Blue bars show the mean number of hours for each stage and
method. Black lines indicate the standard deviation across subjects and the green line extensions indicate the maximum and minimum values across
subjects.
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FIGURE 6

Example sleep report showing strong Lo Deep sleep at both cap Fz (D, E) and patch FP1-AFz (F, G) around 4h that is nearly completely scored as N2
by the visual scorers (C). Top panels show raw cap Fz EEG data [(A) = whole night, (B) = zoom into (A)]. Blue traces have a hardware high-pass of
0.016Hz and red traces have an additional software high-pass of 0.5Hz for visual scoring. Dashed purple vertical lines indicate time periods when the
slow oscillations were scored as N2 by cap visual scorers. HP, High-pass.
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LoDeep. This discrepancy is likely attributable to the attenuation of

slow oscillations on the FF derivation due to the generally central

origin of slow oscillations. Because of the importance of Lo Deep

to the spectral scoring mechanism, this report will focus on the

scoring of FP1 and FP2 which were on average only ±65 epochs

different from each other (range: 1–338). To simplify the presented

results and to not favor one side over the other, the number of

epochs from the confusionmatrices for FP1 and FP2 were averaged.

Figure 3 shows the average confusion matrix for FP1-AFz and

FP2-AFz derivations across subjects. Each voxel shows the number

of epochs scored as the given visual stage (row) and the given

spectral stage (column).

The highest agreement between scoring systems was in the

visual-to-spectral REM assignment. For epochs that were visually

scored as REM, the spectral algorithm also identified 89% of these

epochs as REM (Figure 3). In the converse direction (along the

column), spectral REM was scored as REM by visual scorers 64%

of the time. The confusions in this direction were equally divided

among N1, N2 and wake, accounting for 12% of epochs each

(Figure 3).

Hi and Lo Deep sleep accounted for 81% of N3 epochs,

while Light sleep accounted for 17% of N3 epochs (Figure 3).

Visual N3 epochs were scored mostly as Hi Deep (42%) but were

also scored frequently as Lo Deep sleep (39%). In the opposite

direction, Hi Deep was scored as N3 59% of the time, and

N2 16% of the time. In contrast, epochs scored as spectral Lo

Deep were scored as N3 only 47% of the time and N2 43% of

the time.

Visually scored N2 was most often scored as spectral Light

(65%), with Lo Deep being the next most common spectral score

at 17%. In the opposite direction, spectral Light was scored as N2

74% of the time, meaning that Light rarely aligns with any other

visually scored stage, with the next highest confusion being for N3

9% of the time (Figure 3).

Epochs scored as N1 were approximately equally scored as

REM (34%) or Light (32%), with somewhat fewer epoch scored

as Wake (19%). Since there is no spectral equivalent of N1, the

observed confusions are consistent with being a transitional state

between spectral Wake, REM, and Light sleep.

Finally, visual wake was scored as spectral Wake 47% of the

time, with the main confusions being REM (18%) and Light (13%).

In the opposite direction, spectral Wake was scored as visual

wake 65% of the time, with N2 (14%) and N1 (14%) being the

most common confusions. Interestingly, spectralWake was visually

scored as REM only 4% of the time, suggesting that the spectral

algorithm rarely mistakes REM for Wake.

3.2 Stage confusion ranges

Figure 4 shows the numerical ranges of stage confusion

percentages across subjects. Visual REM was not only the stage

FIGURE 7

Example sleep report showing a subject whose spectral Light sleep was scored as visual N2 with frequent interruptions into visual N1 or wake
(between vertical dashed purple lines) that are rarely justified in the spectrogram or dominant frequency.
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with the most consistent agreement with spectral REM, but it

also showed very little deviation across subjects within any of

the spectral stages. Spectral Light was also consistently scored as

visual N2 with little deviation across subjects. The most deviation

occurred in visual N1, which has no direct correlate in spectral

scoring. Spectral Hi Deep had several outliers in which Hi Deep

was scored during visual wake. This can happen when a subject

is awake for a long time either before sleep onset or at the end

of the night. During these times subjects may express high delta

power (that would normally be Hi Deep) along with high gamma

power (indicating Wake) that is sometimes scored as Hi Deep. Hi

Deep also had high variance for visual N3 scoring which is probably

due to the inherent difference in scoring rules between N3/N2 and

Hi Deep/Light such that Hi Deep might be scored as N2 more

frequently in some subjects if delta power is particularly low.

3.3 Stage duration ranges

Figure 5 shows the average time spent in each stage for both

spectral and visual scoring. The spectral scoring technique scored

an average of 30min more REM than visual scoring. Visual scoring

scored about 20minmore wake than spectral scoring. Light and N2

were the most commonly scored stages, with an average of 3.0 h in

spectral scoring and 3.4 in visual scoring, respectively. Combined

Hi and Lo Deep sleep produced an average of 2.6 h per night, which

is far greater than the average 1.6 h of N3 from visual scoring. This

owes to the fact that visual scorers sometimes scored N2 for both

Hi (17%) and Lo (37%) Deep sleep.

4 Discussion

This report is the first to directly compare spectral scoring

from a forehead patch device with visual scoring from full PSG

recorded simultaneously. The results demonstrate that spectral

scoring aligns with high agreement for REM (89%), with only 4%

of spectral REM scored visually as wake. This finding suggests

that spectral scoring rarely mistakes REM for wake, which is a

common error for many sleep scoring algorithms (Cellini et al.,

2015). N3 is mostly (81%) described spectrally as either Hi or

Lo Deep sleep, as expected, though Light claimed some of these

epochs when delta activity was lower power than spindle activity.

Spectral Light was scored as N2 74% of the time, meaning that

Light is highly similar to the N2 state. These findings underscore

the similarities and intuitive associations of spectral and visual

scoring. These and the more nuanced findings below now allow for

a movement away from visual scoring and toward spectral scoring

whenever possible.

N2 was scored as Light only 65% of the time, meaning N2

epochs include other spectral scores besides Light (whereas Light

FIGURE 8

Example sleep report showing a subject whose patch spectral REM sleep was sometimes scored as N2 by visual cap scoring (between vertical dashed
purple lines). Spectral REM stages are also often longer than the corresponding visual REM stage. Cap visual scoring frequently assigns N2 instead of
REM at the transitions to and from REM.
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was mostly scored as N2). Oddly, the most common confusion for

N2 was Lo Deep, which is likely due to the high-pass filter above

0.5Hz applied prior to visual scoring. This filter may attenuate

much of the activity under 1Hz which contains the large amplitude

slow oscillations that constitute Lo Deep sleep. If delta activity

were not simultaneously elevated during a Lo Deep epoch, then

a visual scorer might not detect slow waves at all and therefore

score N2. An example of this phenomenon is shown in Figure 6

which shows strong slow oscillation activity around 4 h on both

patch channel FP1-AFz (F/G) and cap channel Fz before 0.5Hz

high-pass (D/E) that was ultimately scored as visual N2. This figure

also shows the raw EEG data from the cap at Fz (A) after the

hardware high-pass filter of 0.016Hz (blue traces) and after the

additional 0.5Hz filter used for scoring (red traces). In this panel

it is clear how much amplitude is lost with the addition of the

0.5Hz filter. The zoomed in panel (B) shows in detail how slow

oscillations can be abolished after 0.5Hz high-pass filtering, leading

the visual scorer to assign N2 if delta power is not also strong

during that epoch. For a more comprehensive idea of the power

differences in the slow wav e sleep range, sleep reports from all

subjects with spectrograms from CGX channel FP1-AFz and cap

channel F3 are included in the Supplementary material. Another

possible reason for the discrepancy may be that slow oscillations

are essentially K-complexes (Amzica and Steriade, 1997) which,

in the absence of clear delta waves, woul d be indicators of N2

(Silber et al., 2007). Thus, the combination of high-pass filtering,

and minimal delta power could make remaining slow oscillations

and ongoing spindle activity appear to the visual scorer as N2-

related activity.

4.1 Visual wake scored as light

Visual wake was scored as spectral Light about 13% of the

time, which may be due to visual scoring rules requiring clear sleep

spindles lasting at least 0.5 seconds to be scored as N2 (Silber et al.,

2007). Alternatively, subjects with a low and/or wide sleep spindle

frequency range may appear to have activity in the alpha range

which would signal wake or N1. An example of a subject with

frequent interruptions of N2 into wake or N1 is shown in Figure 7.

These excursions into wake/N1 were not detected by spectral

scoring and there is little evidence in the spectrogram or dominant

frequency display to justifymore than a couplemomentary arousals

at most.

4.2 Spectral REM scored as N2

Spectral REM was scored as visual N2 about 12% of the time,

which was one reason for the lower correspondence in REM in

this spectral to visual direction. These confusions usually occurred

near the boundaries of REM periods, meaning that the spectral

FIGURE 9

Example sleep report showing frequent visual cap-scored wake epochs while spectral patch scoring was more consistently REM or Light.
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FIGURE 10

Example spectrograms from 16 scalp electrode locations across the scalp from a single subject showing the substantial similarities in the overall
structure of the spectrograms.

method scored REM slightly earlier and often extended longer

than visually scored REM. Brief excursions to N2 from REM also

occurred during the middle of visual REM periods. Figure 8 shows

an example subject with many instances of N2 during REM periods

that were mostly scored spectrally as continuous REM. The first

REM cycle around 1.5 h might have excessive excursions into N2

because of a dip in the REM beta frequency into the spindle range,

which might have looked like N2 to the visual scorer. Though

when observing the spindle power band throughout the night, it is

clear that this REM beta activity did not enter the actual spindle

range for this subject. The REM period after 6 h also contained

many N2 epochs that spectral scoring found to be continuous REM

sleep, presumably because of the clear absence of spindles in the

spectrogram. During this period, the dominant frequency panel

(bottom panel, blue dots) demonstrates that low beta power was

not disrupted except a brief excursion into spindle power that the

spectral algorithm also scored as Light.

4.3 Visual and spectral wake confusions

Wake scoring agreement in either direction was fairly low,

but visual wake scored as spectral Wake was especially low

at only 47%. The main confusions were for REM (18%)

and Light (13%). This phenomenon may be due to frequent

jumps from visual REM or N2 to wake that were scored

more continuously as REM or Light by the spectral scoring

algorithm (Figure 9). Due to visual scoring rules, it is sometimes

necessary to score individual epochs within a larger REM or

N2 stage as wake if there is evidence of posterior alpha.

In contrast, the spectral HMM algorithm tends to favor

continuity because of the probabilistic nature of the HMM

function. In the example shown in Figure 9, frequent jumps to

wake do not seem justified given the relatively low amplitude

gamma activity in the spectrogram during these jumps to

visual wake.
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4.4 Spectral scoring as an alternative to
visual scoring

This report is by no means the first automated sleep scoring

algorithm, nor the first to use spectral information for scoring

purposes (Koley and Dey, 2012). It also does not show the

highest overall accuracy, as previous reports have shown 84%

(Zhao et al., 2022) and 89% (Ghimatgar et al., 2019) overall

accuracy across all sleep stages. However, there are several

reasons that spectral scoring may be superior to these prior

algorithms. First, they were designed to mimic visual scoring,

which as this report has highlighted may itself be flawed, not to

mention inconsistent. They were not letting the data tell them

what features appear in consistent patterns across the night, but

how they can manipulate the data to give the answer that a

human would. In contrast, spectral scoring is simply translating

the visible patterns that appear after frequency transformation

into endogenous stages of sleep. Second, the published methods

are extremely complicated and have no visual outputs to let

the clinician know how each stage was derived. On the other

hand, spectral scoring outputs a spectrogram that shows the

clinician the EEG patterns from which the hypnogram was

derived so that they may quickly verify the accuracy of the

hypnogram. Finally, spectral scoring differentiates between the

delta and slow oscillation frequency ranges which may lead to

important discoveries and novel diagnoses such as the finding

that patients with PTSD were lacking Lo Deep sleep (Onton

et al., 2018). This phenomenon is unlikely to be exclusive to

this population as Lo Deep quantity was not found to correlate

with symptoms of PTSD. Thus, sleep medicine may be able to

advance by incorporating Hi and Lo Deep sleep into diagnoses and

treatment outcomes.

Even though spectral stages are easy to interpret and clearly

defined, this report provides detailed comparisons between spectral

and visual scoring for sleep clinicians or researchers to translate

their prior knowledge of visual scoring to spectral scoring

interpretation. A move to exclusive spectral scoring may occur

slowly over time, but in the short term there are many applications

that can easily use spectral scoring immediately. For example,

spectral scoring could be used to compare sleep quality from before

to after a treatment since spectral scoring would be compared to

itself and the translation from visual scoring is less critical. In this

case, spectral scoring from a single forehead channel would allow

for collection of several nights from each treatment phase while

still being able to score the data with less time and expense. In any

research or clinical situation, the ability to collect several nights

from each subject would greatly enhance our understanding of

sleep. Up to now, the cost-prohibitive and uncomfortable nature

of full PSG analysis has prevented analysis of naturalistic sleep

within subject over more than two nights. Sleep clinics could

also benefit from this technique by providing more information

to the clinician at intake that could steer optimal treatment,

and post-treatment follow-up could provide objective evidence of

treatment efficacy.

While any EEG device collecting from the forehead would

suffice for spectral scoring, the CGX patch device used in this

study is uniquely designed to adhere directly to the forehead

without the need for a strap. This is a notable advancement

because headbands, even when worn relatively loosely, are a slight

distraction to normal sleep. On the other hand, the CGX patch

device has a slim casing in the middle of the forehead and flexible

side flaps that do not give the feeling of sagging, nor does it cause

obstruction to side sleeping. It also contains three leads within

the device that allow for three derivations. Importantly, it is still

possible to detect high amplitude slow oscillations because of the

central and lateral placements of electrodes. And the central to

lateral derivations allow for investigation of lateralized activity that

may be of clinical importance. The CGX patch appears to be the

most powerful and comfortable option for low-profile sleep EEG

collection to date.

While visual scoring and full PSG will still retain its place in

sleep labs when full-head and auxiliary measures are necessary

to diagnose patients with complicated sleep disorders, spectral

scoring is a powerful tool that could revolutionize sleep research

and medicine.

5 Limitations

This analysis is limited in that the patch and cap EEG

recordings were not exactly synchronized, but rather aligned to the

nearest minute or so. Therefore, it is to be expected that the 30

sec epochs used for sleep scoring and confusion matrices may not

be referring to the exact same moments in time. This may create

artificial divergences between visual and spectral scoring during

sleep transitions or during particularly chaotic periods. However,

due to the relatively continuous nature of sleep stages, we believe

that the comparisons made in this report are substantially correct.

One limitation of the spectral scoring method is that it only

scores one channel at a time and therefore does not incorporate

data from the whole head as visual scoring does. However, spectral

scoring can be applied to all channels from a full cap separately

and compared as spectrograms and hypnograms to build a whole-

head picture. This approach may uncover interesting aspects of the

sleeping brain that have not yet been appreciated without a visual

representation (Figure 10).

Spectral scoring does not use the alpha band to detect Wake,

which is particularly useful in visual scoring where posterior

electrodes are present. The reason for not using alpha in spectral

scoring is that in frontal electrodes, for which the algorithm

was optimized, alpha is not always detectable during Wake while

gamma is prominent all over the scalp during Wake. If a posterior

channel were used for spectral scoring, it is conceivable to use the

presence of alpha as a defining feature of Wake EEG in addition

to gamma.
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