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Increased relative abundance of
Alistipes and Sellimonas is related
to stage 2 and 3 sleep duration

Hiroyuki Sasaki, Hirofumi Masutomi* and Katsuyuki Ishihara

Research & Development Division, Calbee, Inc., Utsunomiya, Tochigi, Japan

Sleep is important for maintaining body homeostasis, and lack of sleep or

poor sleep quality increases the risk of various diseases. In recent years, it has

been shown that there is an interaction between the gut microbiota and brain

function, known as the brain-gut interaction. Although several studies have

examined the relationship between gut microbiota and sleep, most of them

rely on subjective indicators, and there are few reports using objective sleep

measurements. Therefore, the aim of this study was to clarify the relationship

between gut microbiota and sleep using various statistical analysis methods

based on data obtained from the database. First, we obtained data from

the Sukoyaka Health Survey, and performed hierarchical clustering analysis of

the electroencephalogram (EEG)-derived sleep parameters. We examined the

intestinal bacteria that di�ered significantly among clusters, and the relationship

between intestinal bacteria and EEG-derived sleep parameters using multiple

regression analysis and causal search. Multiple regression analysis and causal

search suggested a relationship between increased Sellimonas levels and

increased non-rapid eye-movement (non-REM) sleep stage 2, and increased

Alistipes levels and increased non-REM sleep stage 3. The results of the causal

search indicated that Alistipes and Sellimonas may influence the duration of

non-REM sleep stage.
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1 Introduction

Sleep takes almost one-third of the day and functions as homeostasis to recover
from body fatigue and brain functions (Garbarino et al., 2021). For example, in terms
of physical function, sleep is associated with the regulation of nearly every system in the
body, including the autonomic nervous (Tavares et al., 2021), cardiovascular (Covassin
and Singh, 2016), immune (Irwin, 2019) and metabolic systems (Magee and Hale, 2012),
and in terms of brain function, sleep plays an important role in cognitive performance
(Van Dongen et al., 2003), memory consolidation (Tononi and Cirelli, 2014), and mood
regulation (Lieberman et al., 2005).

Brain activity changes in various ways, even during sleep. Sleep is broadly classified
into rapid eye movement (REM) and non-REM, based on electroencephalogram (EEG).
Non-REM sleep is further divided into the stages 1 to 4 (N1, N2, N3, and N4 respectively)
(Hori et al., 2001; Ackermann and Rasch, 2014).
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In recent years, sleep deprivation (sleep loss) has attracted
attention as a global health issue. Sleep disorders have become a
global public health problem, affecting approximately 15%−30%
of adults and placing a significant burden on quality of life
(Zammit et al., 1999; Karna et al., 2024). Sleep deprivation has been
reported to be associated with increased risk of various health risks,
including cardiovascular disease, diabetes, metabolic syndrome,
and depression (Reutrakul and Van Cauter, 2018; Tobaldini et al.,
2019; Agrawal et al., 2022). Not only the duration of sleep, but
also the duration of REM and non-REM sleep is important. For
example, it has been reported that a ratio of REM sleep to total
sleep time of <15% is associated with an increased risk of death
from cardiovascular diseases and other causes (Leary et al., 2020).
The percentage of non-REM sleep stage 3 has also been reported
to be correlated with daytime sleepiness, exercise performance, and
problem-solving performance, and is important for overall daytime
activity (Dijk, 2009; McCarter et al., 2022). Additionally, it has been
reported that a lower ratio of non-REM sleep stage 3 can lead to
anxiety and depression (Motomura et al., 2013).

During non-REM sleep, brain and autonomic nervous system
activities decrease, including heart rate, respiratory rate, and blood
pressure (Pagani et al., 1986). One of the important restorative
functions of sleep is related to tissue repair, particularly in the
musculoskeletal and immune systems. During slow-wave sleep
(non-REM sleep stage 3), the body increases the production of
growth hormone, which is an important mediator of tissue repair
and cell regeneration (Redwine et al., 2000). Growth hormone
stimulates protein synthesis and cell division, promotes the repair
of damaged muscle fibers and accelerates wound healing (Dioufa
et al., 2010; Chikani and Ho, 2014). Sleep is also associated with
an increase in the production of cytokines, signaling molecules
that play an important role in regulating immune responses and
inflammation (Redwine et al., 2000). Insufficient sleep can lead to
reduced cytokine levels, which can impair the body’s ability to fight
infection and recover from inflammation (Veler, 2023).

Memory consolidation is one of the best studied functions
of sleep and involves the stabilization and integration of newly
acquired information into long-term memory. This process occurs
primarily during slow-wave sleep (non-REM sleep stage 3 and
4). During this stage, the brain engages in “replay” activity,
reactivating the patterns of activity experienced during waking by
neurons in the hippocampus, which is responsible for short-term
memory. This reactivation strengthens the synaptic connections
between the hippocampus and the neocortex, allowing memories
to be transferred to more permanent memory areas (Genzel
and Battaglia, 2017; Frazer et al., 2021; Reyes-Resina et al.,
2021). In contrast, REM sleep is accompanied by the loss of
skeletal muscle tone and a decrease in thermoregulation, but the
brain waves are very similar to those during wakefulness (Dong
et al., 2022). Therefore, REM sleep is considered important for
intellectual development (Maquet et al., 1996; Nofzinger et al.,
1997). Sleep helps to balance synaptic strength through a process
known as synaptic homeostasis. During wakefulness, as the brain
processes and responds to environmental stimuli, synapses are
often strengthened. However, this strengthening consumes energy
and neural capacity, and the circuits can become “overloaded”
(Tononi and Cirelli, 2006). During sleep, and particularly during
slow-wave sleep, the brain selectively weakens less important

synapses while maintaining important connections (a process
called synaptic downscaling) (Blanco et al., 2015; Liu et al., 2024).
This pruning allows the brain to maintain its efficiency and be
ready to process new information the next day. One of the most
remarkable discoveries in recent years is the glymphatic system, a
network that promotes the removal of neurotoxic waste products
from the brain during sleep (Xie et al., 2013; Rasmussen et al.,
2018). This system is mainly active during non-REM sleep and
relies on the exchange of cerebrospinal fluid and interstitial fluid to
flush out metabolic by-products such as amyloid beta protein and
tau protein, substances associated with neurodegenerative diseases
such as Alzheimer’s (Reddy and van der Werf, 2020; Shirolapov
et al., 2024). Because of these various processes, sleep is important
for the recovery of physical and brain function.

Sleep is strongly influenced by the internal and external
environments, including circadian rhythms, light environment,
and diet, one of which is the intestinal microbiota (Ogawa
et al., 2020). The mammalian intestinal microbiota comprises
approximately 100 trillion bacterial cells. A symbiotic relationship
has been established between the intestinal microbiota and hosts.
The intestinal microbiota grow by utilizing indigestible nutrients
that cannot be digested or absorbed by the host, and the
host utilizes the metabolites produced by the fermentation and
degradation of indigestible nutrients by the intestinal microbiota to
regulate physiological functions (Koh et al., 2016; Marchesi et al.,
2016; Blaak et al., 2020). It has been reported that there is an
interaction between the brain and intestinal tract functions and
intestinal microbiota. This interrelationship is called the brain-
gut-interaction or brain-gut-axis (Mayer et al., 2022). An example
of the influence of the brain on intestinal function is irritable
bowel syndrome, a well-known stress-related disorder. Irritable
bowel syndrome is a condition in which abdominal pain and
discomfort persist, with recurrent constipation and diarrhea, even
in the absence of intestinal tract abnormalities. When the brain
experiences anxiety or stress, the intestinal tract is hypersensitive
to these signals, resulting in abnormal peristalsis, abdominal pain,
diarrhea, and constipation. It has been reported that a vicious
cycle occurs in which the stimulus is further transmitted to the
brain, increasing distress and anxiety, thereby causing further
abnormalities in peristalsis (Coss-Adame and Rao, 2014). However,
basic studies using germ-free mice have been reported as an
example of the influence of the gut on brain function. In germ-
free mice, the response to stress is greater than that in normal
mice, and the expression of brain-derived neurotrophic factor is
reduced. Furthermore, transplantation of the intestinal microbiota
of normal mice into germ-free mice has been shown to suppress
stress response to the same level as that in normal mice (Sudo
et al., 2004). In other words, it has been demonstrated that the
microbiota is important for the gut-brain relationship and that
fluctuations in the microbiota are linked to changes within these
systems of communication (Mayer et al., 2014). Other relationships
between intestinal microbiota and brain function have also been
reported in relation to memory formation, cognitive function,
mental health, and circadian rhythms, and clinical, epidemiological
and immunological evidence suggests that the gut microbiota has
a broad and significant impact on the gut-brain relationship (Dos
Santos and Galiè, 2024). Furthermore, several mood disorders,
such as anxiety disorders and depression, are now established
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to be associated with functional gastrointestinal disorders, while
gastrointestinal disorders (e.g., irritable bowel syndrome, irritable
bowel disease) are often associated with psychological comorbidity
linked to alterations in the gut microbiota (Mangiola et al., 2016;
Ancona et al., 2021). These brain-gut interactions are linked
through the vagus nerve and circulatory systems (Möhle et al., 2016;
de Zambotti et al., 2018; Chu et al., 2019; Sherwin et al., 2019).

Considering the interaction between intestinal bacteria and
various brain functions, intestinal microbiota may also affect sleep.
In fact, compared to normal mice, mice whose intestinal microbiota
was removed by antibiotics showed a decrease in the duration of
non-REM sleep during the inactive period, and an increase in the
duration of non-REM and REM sleep during the active period. In
other words, it has been reported that the sleep-wake cycle is no
longer distinct (Ogawa et al., 2020). In addition, it has also been
reported that when fecal transplants were performed on germ-
free mice from sleep apnea model mice, the transplanted mice
showed sleep disorders (Badran et al., 2020). Furthermore, there
are also studies being conducted to see whether fecal transplants
can improve insomnia in real world situations (Fang et al., 2023).
It has also been reported that in rats, continued administration
of prebiotics from the weaning period increases the diversity of
intestinal microbiota in the adult period, and prevents the decrease
in non-REM sleep time, even when sleep is disturbed by an electric
shock (Thompson et al., 2016). In humans, feeding probiotics to
adults with latent symptoms of depression, anxiety, and insomnia
improved their scores on the Pittsburgh Sleep Quality Index
(PSQI), along with changes in intestinal microbiota composition
(Nishida et al., 2019; Chan et al., 2023; Badrfam et al., 2024; Li et al.,
2024). Additionally, feeding probiotic tablets to medical students
who were assumed to be chronically stressed results in a decrease in
Bifidobacterium and an increase in Streptococcus and Lachnospira,
along with improved sleep scores on the PSQI and shorter deep
sleep latency (time from falling asleep to the first N3) (Nishida
et al., 2019). It is also known that there is a correlation between
sleep duration and the ratio of various intestinal bacteria (Shimizu
et al., 2023), and between the measurement of sleep efficiency
using an Actiwatch and the diversity of the intestinal microbiota
and the ratio of intestinal bacteria (Smith et al., 2019). Thus, the
relationship between sleep quality and gut bacteria is very close
and two-way, and the gut microbiota, a highly complex microbial
community, may directly or indirectly regulate the sleep-wake
cycle through the microbiota-gut-brain axis (Marjot et al., 2021;
Dissanayaka et al., 2024). In other words, it has been suggested that
taking into account the gut microbiota may improve sleep quality.

Although there have been several reports examining the
relationship between gut microbiota and sleep quality, most of
them are based on subjective evaluations using questionnaires, and
few discuss the relationship between sleep and gut microbiota from
an EEG perspective. Furthermore, there have been no reports that
have clarified their correlation or causal relationship. Therefore,
with the aim of clarifying what kind of gut microbiota improves
the quality of sleep, this study clarified the relationship between
gut microbiota and sleep using various statistical analysis methods
from a database of microbiota and sleep parameters obtained from
EEG measurements during sleep.

2 Materials and methods

2.1 Study design and population

This study was conducted using data from “the comprehensive
survey to establish an integrated database of food, gut microbiome,
and health information (the ‘SukoyakaHealth Survey’),” conducted
at the Hokkaido Information University. The Sukoyaka Health
Survey is a survey of healthy Japanese men and women aged
20–80 years, excluding those with serious cerebrovascular disease,
heart disease, liver disease, kidney disease, gastrointestinal disease,
or infectious diseases requiring notification. The survey was
conducted twice a year, in summer and winter, with the main
survey being conducted in summer, and some people who were
willing to participate also took part in the winter survey, and
the same measurements were taken as in the summer. The
Sukoyaka Health Survey was conducted in 2019 and 2020, as
part of the Strategic Innovation Creation Program project. In
this study, we analyzed data from the 2019 summer term, which
included data from 642 participants in terms of attributes, body
composition measurements, heart rate and EEG-derived sleep
parameters, microbiota composition, and dietary survey (reference
URL: https://humandbs.dbcls.jp/). The gut microbiota data from
the Sukoyaka Health Survey was obtained by extracting DNA
from stool samples collected from participants using the ISOSPIN
Fecal DNA Kit (NIPPON GENE Co., Ltd., Tokyo, Japan). The
extracted DNA was sequenced using the NovaSeq 6000 (Illumina,
Inc., San Diego, CA, USA) to obtain high-quality read data. The
classification composition was then estimated from the sequence
data using Kraken2 (Wood et al., 2019). We used the data set
obtained after that analysis. The EEG-based sleep assessment data
from the Sukoyaka Health Survey was measured using HARU-1
(PGV Inc., Tokyo, Japan). HARU-1 is a portable EEG device that
records brain activity via forehead-mounted dry electrodes during
sleep. The recorded EEG data are processed using a proprietary
algorithm to classify sleep into five stages: Wake, non-REM sleep
stage 1 (N1), non-REM sleep stage 2 (N2), non-REM sleep stage
3 (N3), and REM sleep (Matsumori et al., 2022; Ueno et al.,
2023). The classification of sleep stages is based on spectral analysis
of EEG signals, including slow wave activity (SWA) and sleep
spindle detection. HARU-1 has been validated in a small-scale
study (n = 30) where it demonstrated a 75%−78% agreement with
polysomnography (PSG) (Matsumori et al., 2022). However, it is
important to note that HARU-1 does not record electromyography
(EMG) or electrooculography (EOG), which are used in PSG to
enhance the detection of REM sleep. Due to this limitation, its
classification accuracy for REM sleep and transitions between N2
and N3 stages may be lower than that of PSG.

2.1.1 Exclusion criteria
Individuals with missing values in any of the aforementioned

datasets were excluded from analysis. Excluding individuals with
missing values, 601 participants were included in the analysis. The
average physical characteristics of the 601 participants are listed in
Table 1.
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TABLE 1 Physical characteristics of all subjects.

Characteristic Mean ± SE

Age (years) 50.77± 0.49

Height (cm) 161.21± 0.33

Weight (kg) 57.14± 0.45

Body fat (%) 26.27± 0.28

BMI (kg/m2) 21.87± 0.13

Systolic blood pressure (mmHg) 116.94± 0.71

Diastolic blood pressure (mmHg) 77.23± 0.43

All value are shown as mean± SEM. BMI, Body mass index.

2.2 Ethics

The Sukoyaka Health Survey was conducted in accordance
with the ethical principles of the Declaration of Helsinki (revised
by the World Medical Association Fortareza General Assembly
in October 2013), and in compliance with the Ethical Guidelines
for Medical Research for Persons (revised by the Ministry of
Education, Culture, Sports, Science and Technology and the
Ministry of Health, Labor, and Welfare on February 28, 2017).
Written informed consent was obtained from all the participants.
The Bioethics Committee of Hokkaido Information University
reviewed and approved the feasibility, ethics, and scientific validity
of the observational study (approval date: April 22, 2019; approval
number: 2019-04).

2.3 Sleep parameter definitions

Sleep parameters in this study were obtained using HARU-1,
a portable EEG-based sleep monitoring device. Unlike traditional
PSG, HARU-1 utilizes a proprietary algorithm for sleep stage
classification, and it does not strictly follow the Rechtschaffen and
Kales criteria (Wolpert, 1969). Instead, sleep stages were classified
based on spectral analysis of EEG signals, including SWA and
sleep spindle detection (Matsumori et al., 2022). The following
definitions were used for sleep parameters in this study: Sleep
onset latency (SOL): The time from getting into bed to the first
occurrence of any sleep stage.Wake time after sleep onset (WASO):
The total duration of wakefulness after sleep onset. Sleep period
time (SPT): The total time spent in all sleep stages, excluding
WASO. Time to non-REM sleep stage 3 (SON3P): The time from
sleep onset to the first occurrence of non-REM sleep stage 3 (N3).
Stage appearance time (N1, N2, N3, and REM): The total time spent
in each sleep stage during the sleep period. These values represent
duration. To avoid confusion, the term “appearance time” in this
study refers to the time spent in a particular sleep stage, not the
latency to its onset.

2.4 Statistical analysis

All statistical analyses were performed using GraphPad Prism
version 9.5.1 (GraphPad Software Inc., San Diego, CA, USA) and

free and open source software “R” version 4.3.1 (reference URL:
https://cran.r-project.org/). The flow of statistical methods for this
experiment is shown in Supplementary Figure S1.

2.4.1 Hierarchical cluster analysis
Hierarchical cluster analysis was performed to group subjects

based on sleep parameters; SPT, WASO, SOL, SON3P, REM, N1,
N2, and N3. Hierarchical cluster analysis was performed using
“R.” For the hierarchical cluster analysis, the EEG-derived sleep
parameter dataset was read as a csv file and used as a data
frame. Next, the data frames were standardized using the “scale”
function, and the standardized data frames were used for the
hierarchical cluster analysis. The distance between samples was
then calculated using the “dist” function included in the “stats”
package. The Euclidean method was used to calculate the distance.
Next, the “hclust” function included in the “stats” package was
used to specify ward.D as the algorithm for cluster merger and
perform the calculation. The plot function included in the “gplots”
package was then used to create a tree diagram of the participants
and sleep parameters, and the “heatmap.2” function was used
to represent the results of the hierarchical cluster analysis in a
heat map. We explored the optimal number of clusters using the
elbow method, taking into account the tree diagram of the subjects
and the results of the heatmap created by hierarchical cluster
analysis, and determined that the number of clusters should be
five, focusing on the point where the curve plot first turned sharply
(Supplementary Figure S2). The participants were then classified
into five clusters using the “cutree” function included in the “stat”
package. The results were combined into a sleep parameters data
frame with the “cbind” function. Finally, the results were output to
csv format with the “write.csv” function, and the resulting csv file
was used for analysis of variance (ANOVA).

2.4.2 One-way ANOVA and non-parametric tests
One-way ANOVA and non-parametric tests were conducted

to determine whether gut bacteria, body characteristics, and food
intake differed between clusters. One-way ANOVA and non-
parametric tests were performed using GraphPad Prism. The
D’ Agostion-Pearson test was used to assess the normality of
the distributed data, whereas the Bartlett’s test was used to
examine whether the variation was skewed. If the data showed a
normal distribution and equal variation, statistical significance was
determined using the one-way ANOVAwith a Tukey’s post-hoc test.
If the data showed a non-normal distribution or biased variation,
statistical significance was determined using the Kruskal–Wallis
test with a Dunn post-hoc test. Statistical significance was set at
p < 0.05.

2.4.3 Multiple regression analysis
Multiple regression analysis was conducted to determine

whether there is a positive or negative relationship between gut
bacteria and EEG-derived sleep parameters. The sleep parameters
data and intestinal bacteria for which significant differences
were found between clusters by the one-way ANOVA and non-
parametric tests were extracted, and a multiple regression analysis
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TABLE 2 List of constraints on network model construction.

No. From To

1 Sex_ID Age

2 BMI Age

3 Systolic blood pressure Age

4 Diastolic blood pressure Age

5 Energy intake Age

6 Na intake Age

7 K intake Age

8 Soluble fiber intake Age

9 Insoluble fiber intake Age

10 SOL Age

11 SON3P Age

12 WASO Age

13 REM Age

14 N1 Age

15 N2 Age

16 N3 Age

17 Sutterella Age

18 Sellimonas Age

19 Odoribacter Age

20 Alistipes Age

21 Age Sex_ID

22 BMI Sex_ID

23 Systolic blood pressure Sex_ID

24 Diastolic blood pressure Sex_ID

25 Energy intake Sex_ID

26 Na intake Sex_ID

27 K intake Sex_ID

28 Soluble fiber intake Sex_ID

29 Insoluble fiber intake Sex_ID

30 SOL Sex_ID

31 SON3P Sex_ID

32 WASO Sex_ID

33 REM Sex_ID

34 N1 Sex_ID

35 N2 Sex_ID

36 N3 Sex_ID

37 Sutterella Sex_ID

38 Sellimonas Sex_ID

39 Odoribacter Sex_ID

40 Alistipes Sex_ID

When conducting a causal search using a Gaussian Bayesian network, this list was set up
using the “tiers2dblacklist” function included in the “bnlearn” package using “R”. BMI, Body
Mass Index; SOL, Sleep latency (Time taken from getting into bed to falling asleep); SON3P,
Time taken from sleep onset to Non-REM sleep stage 3; WASO, wake time after sleep onset;
REM, REM sleep stage appearance time; N1, Non-REM sleep stage 1 appearance time; N2,
Non-REM sleep stage 2 appearance time; N3, Non-REM sleep stage 3 appearance time.

was conducted using GraphPad Prism with the forced entry
method with sleep parameters as explanatory variables, and each
intestinal bacterium as objective variables. Before conducting the
multiple regression analysis using GraphPad Prism, the extracted
sleep parameters, intestinal bacteria, and confounding factors were
converted into a. csv file as a dataset. The csv file was then read
by “R” to create a data frame, the data frame was standardized by
the “scale” function, the standardized data frame was output to csv
format by the “write.csv” function, and the resulting csv file was
used for the multiple regression analysis. Model 1 was defined as
the one in which only sleep parameters were entered as explanatory
variables; Model 2 was defined as the one in which age, sex, body
mass index (BMI), systolic blood pressure, and diastolic blood
pressure were adjusted as confounders; and Model 3 was defined
as the one in which total energy intake, soluble dietary fiber intake,
insoluble dietary fiber intake, sodium intake, and potassium intake
were adjusted for confounders in addition to those of Model 2.
Variance inflation factor (VIF) was calculated as multicollinearity,
and it was confirmed that the VIF value was not >5.

2.4.4 Exploratory causal analysis
A causal search using the Gaussian Bayesian network was

conducted using the variables in Model 3 of the multiple regression
analysis to examine the causal relationships among the variables.
In this study, we wanted to create a network model that took
into account the noise and uncertainty present in real data, so we
used a Gaussian Bayesian network, which can flexibly infer the
interactions and relationships between variables using conditional
probability. We added constraints on sex and age. For example,
a causal effect of gut bacteria on sex is not possible. Therefore,
we constrained the node from intestinal bacteria to sex so that
it would not appear. A list of the constraints is provided in
Table 2. Constraints were setup using the “tiers2dblacklist” function
included in the “bnlearn” package. Subsequently, sub-datasets were
created from the datasets using the bootstrap method. For each
subdataset, a structural learning algorithm using the hill-climbing
method was employed to teach a directed acyclic graph (DAG).
After recording the number and direction of nodes that appeared
in the DAG and calculating the rate of appearance of the nodes
relative to the entire sub-dataset, those whose rate of appearance
exceeded a certain threshold were adopted as the averaged DAG.
These structural learnings were performed by the “boot.strength”
function included in the “bnlearn” package, and graphs were
created by the “strength.plot” function. Next, parameter estimation
was performed using the “bn.fit” function included in the “bnlearn”
package. The maximum likelihood parameter estimation method
was used as the estimation method.

3 Results

3.1 Sleep characteristics were classified
from sleep parameters using hierarchical
cluster analysis

First, we decided to group participants according to their sleep
conditions, such as difficulty falling asleep or long periods of deep
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FIGURE 1

Hierarchically clustered heatmap showing the distribution of sleep parameters. Columns were hierarchical clustering with 8 sleep parameters

obtained by EEG measurements, and rows were hierarchical clustering with 601 subjects. The upper cluster dendrogram is the result of clustering

the sleep parameters, while the left cluster dendrogram is the result of clustering the subjects. The methods in clustering are the distance calculation

method used Euclidean distance and the cluster merger algorithm was Ward.D. Sleep parameters were standardized and presented as a gradient

color, with higher values indicated in red and lower values in blue. Subjects were divided into five clusters at the red dotted line shown in the cluster

dendrogram of subjects, and into clusters according to sleep parameters. Cluster numbers are shown on the right-hand side of the heatmap. SPT,

sleep duration; WASO, wake time after sleep onset; SOL, sleep latency (time taken from getting into bed to falling asleep); SON3P, time from sleep

onset to non-REM sleep stage 3; REM, REM sleep stage appearance time; N1, non-REM sleep stage 1 appearance time; N2, non-REM sleep stage 2

appearance time; N3, non-REM sleep stage 3 appearance time.

sleep. The participants were classified into clusters based on their
EEG-derived sleep parameters (Figure 1). The sleep parameters
were visualized in a heatmap, and characteristic color changes
were observed between the sleep parameters. Based on these color
changes and the results of searching for the optimal cluster using
the elbow method, in particular, when checking the curve plot of
the elbow method, the number of clusters was decided to be five
because the curve first bent sharply and the within-cluster sum
of squared errors was balanced at five (Supplementary Figure S2).
The values of sleep parameters were tabulated for each cluster and
statistical analysis was used to check whether there were significant
changes between clusters and to find out the characteristics of
sleep in each cluster. Cluster 1 had a significantly longer wake
time after onset (WASO) and longer time spent from bedtime
to falling asleep (SOL) than the other clusters (Figures 2A, B).
Cluster 2 had significantly longerN1 and N2, respectively than the
other clusters (Figures 2C, D). Cluster 3 had a significantly longer
SON3P and longer REM sleep than the other clusters (Figures 2E,
F). Cluster 4 had a significantly shorter SPT than clusters 1, 2,
and 3. Cluster 4 also had the shortest sleep duration than cluster

5, although not significant, and cluster 4 had the shortest sleep
duration (Figure 2G). Cluster 5 had a significantly longer N3 than
the other clusters (Figure 2H). These results confirm that each
cluster has different characteristics for sleep.

3.2 There are di�erences in physical
characteristics and diet for each cluster

Next, we examined whether there were differences in physical
characteristics and dietary parameters among the clusters, as the
differences in sleep characteristics and gut microbiota between the
clusters could be due to physical characteristics such as age and
gender. Only cluster 3 had more males than females (Table 3). Age
was significantly higher in cluster 3 than that in the other clusters
(Figure 3A). Height and weight were significantly higher in cluster
3 than those in clusters 1 and 5, and BMI was significantly higher
in Cluster 3 than that in clusters 2 and 5 (Figures 3B–D). Systolic
blood pressure was significantly higher in cluster 3 than that in
clusters 1, 2, and 5, and diastolic blood pressure was significantly
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FIGURE 2

Sleep characteristics di�er among clusters. Summary of sleep parameters results by cluster. (A) WASO: wake time after sleep onset, (B) SOL: sleep

latency (time taken from getting into bed to falling asleep), (C) N1: non-REM sleep stage 1 appearance time, (D) N2, non-REM sleep stage 2

appearance time; (E) SON3P: time from sleep onset to non-REM sleep stage 3, (F) REM: REM sleep stage appearance time, (G) SPT: sleep duration,

(H) N3: non-REM sleep stage 3 appearance time. All values are shown as mean ± standard error of the mean. **p < 0.01, *p < 0.05, evaluated using

the Kruskal-Wallis test with a Dunn’s post hoc-test.

higher in cluster 3 than that in cluster 5 (Figures 3E, F). Energy
intake was significantly higher in cluster 3 than that in clusters
1, and 4 (Figure 3G). Regarding blood pressure, which showed

significant differences in physical characteristics, the intakes of
sodium and potassium, which may affect blood pressure, were also
examined; however, there were no significant differences among
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TABLE 3 The number of male and female subjects overall and by cluster.

Group Male Female

All subjects 196 405

Cluster_1 28 76

Cluster_2 66 155

Cluster_3 32 20

Cluster_4 50 97

Cluster_5 20 57

Numbers indicate the number of people in each.

the clusters (Figures 3H, I). Additionally, the intake of soluble and
insoluble fibers, which may affect the intestinal microbiota, was
examined; however, there were no significant differences among the
clusters (Figures 3J, K).

3.3 Relative abundance of intestinal
bacteria di�er in each cluster

The relative abundance of intestinal bacteria in each cluster
showed significant differences in the four genera (Sutterella,
Sellimonas, Odoribacter, and Alistipes). In Sutterella, cluster 3 was
significantly more abundant than clusters 1 and 2 (Figure 4A).
Cluster 2 was significantly more abundant than clusters 3 and 4 for
Sellimonas (Figure 4B), cluster 5 was significantly more abundant
than cluster 2 for Odoribacter (Figure 4C), and cluster 5 was
significantly more abundant than cluster 4 forAlistipes (Figure 4D).

3.4 Multiple regression analysis suggests
that there is a relationship between
intestinal bacteria and sleep

When the participants were clustered according to their sleep
parameters, each cluster had its own unique sleep characteristics.
At this point, the relative abundance of gut bacteria was calculated
for each cluster, and when comparing between clusters, four types
of gut bacteria were found to differ significantly between clusters. In
other words, it was thought that there was a possibility that the gut
microbiota would change depending on the characteristics of sleep.
Therefore, in order to analyze these relationships, a regression
analysis was performed, but it was shown that there were also
differences in age and gender between clusters. In other words,
it is possible that the characteristics of sleep and changes in the
gut microbiota were affected by age, gender and diet, and that
these factors could be confounding factors. For this reason, we
decided to perform multiple regression analysis while taking these
confounding factors into account. Multiple regression analysis was
performed using each sleep parameter as an explanatory variable
and gut bacteria as an objective variable.We analyzed eachmodel as
Model 1 uncorrected, Model 2 corrected for physical characteristics
and Model 3 corrected for physical characteristics and diet. For
the Sutterella, there was a significant negative association with
N3 in both models (Table 4). For the Sellimonas, there was a

significant positive association with N2 in both models (Table 5).
For the Odoribacter, there was a significant negative association
with WASO in both models (Table 6). For the Alistipes, there
was a significant positive association between N3 and SON3P
in both models (Table 7). For the Sellimonas and Alistipes in
particular, there were negative and positive significant association
with age in Model 2 and Model 3, respectively. These results
show an association between sleep and gut bacteria, even after the
modulation of physical characteristics and nutrition.

3.5 Gaussian Bayesian network analysis
shows that Alistipes and Sellimonas may
a�ect the time of N3 and N2

Results of multiple regression analysis found an association
between sleep and gut bacteria, even after adjusting for
confounding factors. However, multiple regression analysis
does not reveal a causal relationship between the sleep and gut
bacteria. In other words, it is not known whether sleep changed
as a result of changes in gut bacteria or gut bacteria changed as
a result of changes in sleep. Therefore a causal estimation was
conducted to investigate the causal relationships between sleep and
intestinal bacteria (Figure 5). Causal relationships between sleep
and intestinal bacteria were estimated as “from Alistipes to N3” and
“from Sellimonas to N2.” The coefficient for the “from Alistipes to
N3” node was 0.113, and the coefficient for the “from Sellimonas

to N2” node was 0.099 (Supplementary Table S1). These results
suggest that participants with a higher abundance of Alistipes in
their intestinal microbiota have more time in non-REM sleep
stage 3, and may have deeper sleep, whereas those with a higher
abundance of Sellimonas in their intestinal microbiota have more
time in non-REM sleep stage 2.

4 Discussion

In this study, we used EEG-derived sleep parameters and gut
microbiota data obtained from the Sukoyaka Health Study to
predict these relationships using causal inference. As a result, it was
predicted that an increase in Alistipes and Sellimonas would lead
to an increase in non-REM sleep time, suggesting the possibility
of improving sleep quality. Although there have been reports on
the relationship between gut microbiota and sleep, most of them
used subjective indices based on the PSQI, and few reports have
evaluated this relationship using objective sleep indices. Some
studies have used the Actiwatch as an objective index. However,
the measurement accuracy of the Actiwatch for sleep-wake cycles,
such as sleep duration, sleep onset latency, and mid-awake, is
comparable to that of EEG; however, the measurement accuracy
for sleep stages is still low (Liang and Chapa Martell, 2018).
For example, a 2017 report conducted in collaboration with the
Fitbit reported that the sleep tracker’s algorithm matched PSG
measurements with 70% accuracy for REM sleep and 60% for non-
REM sleep, but the accuracy of measuring the deepest sleep stages
decreased to approximately 50% (Beattie et al., 2017). Similarly, a
2018 report measured shallow sleep with 80% accuracy, but the
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FIGURE 3

Physical characteristics and dietary survey results also di�ered among clusters. Physical characteristics [(A) Age; (B) Height; (C) Weight; (D) Body Mass

Index (BMI); (E) Systolic blood pressure; (F) Diastolic blood pressure] and dietary survey results [(G) Energy intake; (H) Sodium intake; (I) Potassium

intake; (J) Soluble dietary fiber intake; (K) Insoluble dietary fiber intake] were summarized by clusters. All values are shown as mean ± standard error

of the mean. **p < 0.01, *p < 0.05, evaluated using the Kruska-Wallis test with a Dunn’s post hoc-test.

accuracy decreased to approximately 50% in the deepest sleep
stages (de Zambotti et al., 2018). In other words, the sleep stage
results may reflect a more accurate state of sleep because EEG sleep
data were obtained in this study. However, some biasmay have been
caused by wearing the EEG device, which would not normally be
worn, and this should be considered.

Hierarchical clustering was performed using EEG-derived sleep
parameters, and sleep characteristics were identified for each

cluster. Consequently, the total duration spent in each sleep stage
(N1, N2, N3, and REM) and the time required to transition to
a sleep stage, including SOL and time to SON3P, were shown as
characteristics of each cluster, and a multiple regression analysis
was conducted using these values. However, for sleep quality, not
only the time of appearance of sleep stages is important but also
the cycle or period of sleep (Kumar, 2008). Furthermore, the time
of appearance of the first non-REM sleep stage 3 may also be
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FIGURE 4

Relative abundance of intestinal bacteria di�ers among clusters. From the data on many intestinal bacteria, we selected the intestinal bacteria that

di�ered significantly between clusters and summarized them by cluster [(A) Sutterella; (B) Sellimonas; (C) Odoribacter; (D) Alistipes]. All the values are

shown as mean ± standard error of mean. **p < 0.01, *p < 0.05, evaluated using the Kruska-Wallis test with a Dunn’s post hoc-test.

important for the deepest sleep stage, since growth hormone is
secreted in the very first non-REM sleep stage 3 after the beginning
of sleep (Kerkhofs et al., 1993). In the future, it will be necessary
to analyze each sleep cycle, focusing not only on sleep duration but
also on patterns of sleep stage appearance.

The percentage of non-REM sleep stage 3 is reported to be
important for daytime activities, and is associated with psychiatric
disorders. Deep sleep is also known to increase the risk of
developing hypertension. In a follow-up study of older adult men
without hypertension for approximately 3 years, 243 of 784 men
developed hypertension, and only a percentage of deep sleep
duration was found to be negative associated with development
of hypertension (Fung et al., 2011). In this study, cluster 3, which
had less time in the non-REM sleep stage 3, also had significantly
higher diastolic and systolic blood pressures than cluster 5, which
had more time in the non-REM sleep stage 3. In other words, the
duration of non-REM sleep stage 3 may be negatively associated
with higher blood pressure. The results of this study may be
similar to those of previous studies. However, a causal search
did not reveal a causal relationship between blood pressure and
non-REM sleep stage 3. In contrast, the intestinal microbiota has
also been reported to be associated with hypertension, with the
composition of the intestinal microbiota being altered between
healthy and hypertensive individuals (Yang et al., 2018), and

transplantation of feces from hypertensive patients into germ-free
mice causing an increase in blood pressure in transplanted mice
(Li et al., 2017). In addition to blood pressure, type II diabetes
is also known to be associated with deep sleep, and the duration
of non-REM sleep stage 3 has been reported to affect insulin
sensitivity, and is important for blood glucose control (Vallat et al.,
2023). Furthermore, type II diabetes has also been reported to be
associated with the intestinal microbiota (Cui et al., 2022; Sapp
et al., 2022; Zhou et al., 2022). As this study was conducted in a
wide range of healthy participants of all ages, it is possible that there
was no causal relationship between blood pressure, blood glucose
levels, intestinal bacteria, and sleep. Future follow-up studies over
several years may show that changes in intestinal bacteria affect
sleep, which may in turn improve hypertension.

A causal search was conducted, and a relationship was
estimated whereby an increase in Alistipes caused an increase
in the duration of non-REM sleep stage 3, and an increase in
Sellimonas caused an increase in the duration of non-REM sleep
stage 2. However, a relationship with age and gender was estimated
for Alistipes, and a relationship with age was also estimated for
Sellimonas. Furthermore, with regards to sleep, age and gender
are also related to non-REM sleep stage 3 via other sleep indices.
In multiple regression analysis, even after adjusting for age and
sex, a significant association between Alistipes and non-REM
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TABLE 4 Multiple regression analysis when Sutterella is the objective

variable.

Variables Mopdel_1
(without

adjustment)

Model_2
(adjusted for

physical
characteristics)

Model_3
(adjusted for

physical
characteristics

and
dietary survey)

R2-value 0.012 0.045 0.052

SOL −0.033
(0.455)

−0.049
(0.357)

−0.037
(0.393)

SON3P −0.083
(0.134)

−0.068
(0.218)

−0.067
(0.224)

WASO −0.025
(0.581)

0.003
(0.943)

−0.007
(0.878)

REM 0.0355
(0.441)

0.047
(0.314)

0.041
(0.374)

N1 0.014
(0.777)

0.017
(0.730)

0.018
(0.734)

N2 −0.116
(0.029)

−0.089
(0.100)

−0.082
(0.132)

N3 −0.149
(0.005∗∗)

−0.122
(0.022∗)

−0.120
(0.025∗)

Age - −0.131
(0.004∗∗)

−0.093
(0.053)

Sex - 0.149
(0.1194)

0.094
(0.348)

The numbers are partial regression coefficients, and the numbers in parentheses are p-values,
∗∗p < 0.01, ∗p < 0.05. SOL, Sleep latency (Time taken from getting into bed to falling asleep);
SON3P, Time taken from sleep onset to Non-REM sleep stage 3; WASO, wake time after sleep
onset; REM, REM sleep stage appearance time; N1, Non-REM sleep stage 1 appearance time;
N2, Non-REM sleep stage 2 appearance time; N3, Non-REM sleep stage 3 appearance time.

sleep stage 3 and a significant association between Sellimonas

and non-REM sleep stage 2 were found, indicating a significant
association between these intestinal bacteria and sleep, regardless
of age or sex. However, the effects of age and sex should not
be ignored. Indeed, in multiple regression analysis, the partial
regression coefficients on the adjustment factors age and gender
were large and significant effects appeared. The composition
of the intestinal microbiota changes with age (Odamaki et al.,
2016), and it has been reported that the compositional changes
and diversity of the intestinal microbiota differ, according to sex
because of the influence of sex hormones (de la Cuesta-Zuluaga
et al., 2019; Hatayama et al., 2023). With regard to sleep, the
duration of the onset of non-REM sleep stage 3 decreases with
age, and the duration of one sleep cycle becomes shorter. Studies
examining sex differences in sleep have reported that difficulty
falling asleep and mid-awakening are more common in women,
while early morning awakenings are more common in men (Asai
et al., 2006). Furthermore, in women, non-REM sleep stage 3 is
known to be greatly affected by the menstrual cycle, increasing
in the menstrual and follicular phases and decreasing in the
early and late luteal phases (Parry et al., 1997). In consideration
of the aforementioned results, this study should be interpreted
with caution. In addition, the numbers of people in this study
differed between men and women (Table 3), and the numbers of
people in each age group differed both in total and separately for

TABLE 5 Multiple regression analysis when Sellimonas is the objective

variable.

Variables Mopdel_1
(without

adjustment)

Model_2
(adjusted for

physical
characteristics)

Model_3
(adjusted for

physical
characteristics

and
dietary survey)

R2-value 0.012 0.039 0.038

SOL 0.061
(0.159)

0.046
(0.282)

0.043
(0.319)

SON3P −0.010
(0.850)

−0.005
(0.935)

−0.007
(0.906)

WASO 0.037
(0.420)

0.054
(0.237)

0.051
(0.263)

REM −0.015
(0.747)

0.023
(0.618)

0.023
(0.623)

N1 −0.050
(0.327)

−0.023
(0.656)

−0.026
(0.623)

N2 0.170
(0.002∗∗)

0.134
(0.014∗)

0.142
(0.010∗)

N3 0.033
(0.534)

0.011
(0.851)

0.009
(0.870)

Age - −0.154
(0.0007∗∗)

−0.131
(0.006∗∗)

Sex - −0.021
(0.830)

−0.009
(0.929)

The numbers are partial regression coefficients, and the numbers in parentheses are p-values,
∗∗p < 0.01, ∗p < 0.05. SOL, Sleep latency (Time taken from getting into bed to falling asleep);
SON3P, Time taken from sleep onset to Non-REM sleep stage 3; WASO, wake time after sleep
onset; REM, REM sleep stage appearance time; N1, Non-REM sleep stage 1 appearance time;
N2, Non-REM sleep stage 2 appearance time; N3, Non-REM sleep stage 3 appearance time.

men and women (Supplementary Figure S3). Therefore, instead of
performing a stratified analysis, the analysis was corrected for age
and gender. In the future, it will be necessary to further increase the
number of men and increase the number of people in their 20s and
60s to reduce the variation in age and gender, and then perform
a stratified analysis by age and gender to improve the accuracy of
the results.

There have been several studies that have looked at the
relationship between subjective sleep quality and gut microbiota,
for example, when comparing the gut microbiota of people with
a PSQI score of 5 or more, indicating poor sleep quality, and
those with a score of <5, indicating good sleep quality the gut
microbiota of people with a PSQI score of 5 or more and poor
sleep quality, and those with a score of <5 and good sleep
quality, were significantly different in terms of beta diversity,
and Bacteroides, Prevotella 9, and Faecalibacterium were found
to be significantly associated with sleep quality (Seong et al.,
2024). On the other hand, this report also reported that Alistipes
was involved, but it reported that the relative abundance of
Alistipes was high in humans with high PSQI scores and poor
sleep quality (Seong et al., 2024), which is the exact opposite of
the results of this study. In a study focusing on patients with
depression and anxiety disorders, the participants were divided
into an insomnia group and a non-insomnia group based on
their PSQI scores. In this study, the insomnia group was found
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TABLE 6 Multiple regression analysis whenOdoribacter is the objective

variable.

Variables Mopdel_1
(without

adjustment)

Model_2
(adjusted for

physical
characteristics)

Model_3
(adjusted for

physical
characteristics

and
dietary survey)

R2-value 0.014 0.024 0.022

SOL 0.023
(0.593)

0.025
(0.563)

0.018
(0.680)

SON3P −0.037
(0.504)

−0.044
(0.424)

−0.045
(0.416)

WASO −0.099
(0.030∗)

−0.117
(0.011∗)

−0.112
(0.015∗)

REM −0.073
(0.115)

−0.074
(0.116)

−0.071
(0.135)

N1 −0.093
(0.067)

−0.090
(0.086)

−0.094
(0.073)

N2 −0.029
(0.588)

−0.055
(0.317)

−0.057
(0.299)

N3 0.0006
(0.989)

−0.019
(0.725)

−0.020
(0.717)

Age - 0.050
(0.279)

0.042
(0.385)

Sex - −0.023
(0.813)

0.020
(0.850)

The numbers are partial regression coefficients, and the numbers in parentheses are p-values,
∗p < 0.05. SOL, Sleep latency (Time taken from getting into bed to falling asleep); SON3P,
Time taken from sleep onset to Non-REM sleep stage 3; WASO, wake time after sleep onset;
REM, REM sleep stage appearance time; N1, Non-REM sleep stage 1 appearance time; N2,
Non-REM sleep stage 2 appearance time; N3, Non-REM sleep stage 3 appearance time.

to have lower alpha diversity of the gut microbiota, such as
chao1 and Shannon index (Tanaka et al., 2023). Furthermore, a
positive correlation was observed between the relative abundance
of the genus Bacteroides and PSQI scores in the non-insomnia
group, indicating a potential association between the abundance
of Bacteroides and improved sleep quality (Tanaka et al., 2023).
Investigating the intestinal microbiota of patients with major
depression revealed significant differences compared to healthy
controls. In this study, Dorea was found to decrease with higher
PSQI scores, suggesting a relationship between its quantity and
sleep quality (Zhang et al., 2021). In previous studies, it has often
been reported that low subjective sleep quality is closely related to
short total sleep time and frequent middle-of-the-night awakenings
as measured objectively (Åkerstedt et al., 1994, 2016; Barbato,
2021). However, on the other hand, in a study of healthy adult men
and women, cluster analysis was used to group them according
to the proportion of each sleep stage obtained from sleep EEG,
sleep latency, number of awakenings during sleep, and total sleep
time, and the groups were divided into those with good sleep
quality, those with average sleep quality, and those with poor sleep
quality. The study then compared subjective insomnia between
the groups using the Athens Insomnia Scale, and reported that
there were no significant differences between the groups (Iwagami
et al., 2023). As such, it is quite possible that objective and
subjective sleep indicators do not correlate with each other andmay

TABLE 7 Multiple regression analysis when Alistipes is the objective

variable.

Variables Mopdel_1
(without

adjustment)

Model_2
(adjusted for

physical
characteristics)

Model_3
(adjusted for

physical
characteristics

and
dietary survey)

R2-value 0.030 0.072 0.065

SOL 0.016
(0.716)

0.022
(0.606)

0.019
(0.650)

SON3P 0.131
(0.017∗)

0.110
(0.042∗)

0.111
(0.042∗)

WASO −0.047
(0.304)

−0.077
(0.088)

−0.075
(0.097)

REM −0.062
(0.176)

−0.074
(0.110)

−0.072
(0.118)

N1 −0.065
(0.197)

−0.081
(0.111)

−0.081
(0.113)

N2 0.081
(0.125)

0.053
(0.322)

0.053
(0.328)

N3 0.221
(<0.0001∗∗)

0.189
(0.0003∗∗)

0.188
(0.0004∗∗)

Age - 0.177
(<0.0001∗∗)

0.175
(0.0002∗∗)

Sex - −0.218
(0.021∗)

−0.193
(0.053)

The numbers are partial regression coefficients, and the numbers in parentheses are p-values,
∗∗p < 0.01, ∗p < 0.05. SOL, Sleep latency (Time taken from getting into bed to falling asleep);
SON3P, Time taken from sleep onset to Non-REM sleep stage 3; WASO, wake time after sleep
onset; REM, REM sleep stage appearance time; N1, Non-REM sleep stage 1 appearance time;
N2, Non-REM sleep stage 2 appearance time; N3, Non-REM sleep stage 3 appearance time.

diverge, and that this divergence may be creating differences in the
gut microbiota.

Alistipes is classified as gram-negative, rod-shaped, anaerobic,
and non-spore forming. Aristipes is a relatively new genus of
bacteria that is widely present in the gut of humans of all
ethnicities and has been isolated mainly from medical clinical
samples, but has a lower isolation rate than other genera in
the phylum Bacteroidetes and produces acetic and propionic
acids (Parker et al., 2020). Aristipes is largely associated with
bacterial dysbiosis and disease. For example, reduced relative
levels of Aristipes have been reported in patients with cirrhosis,
metabolic dysfunction associated steatotic liver disease (MASLD)
and metabolic dysfunction associated steatohepatitis (MASH),
as fecal levels of acetic acid and propionic acid are reduced
in MASLD and MASH, suggest that a reduction in Aristipes

contributes to a decrease in the amount of these short-chain
fatty acids and is involved in the progression of MASLD and
MASH (Parker et al., 2020). Additionally, Alistipes have been
shown to be greatly increased in mice treated with probiotics
(Li et al., 2016). The relative abundance of Alistipes has been
reported to be reduced in the gut microbiota of patients with
autism spectrum disorders compared with healthy controls (Strati
et al., 2017). In recent years, a comparison of the gut microbiota
of healthy subjects and patients with irritable bowel syndrome
has reported a decrease in the relative abundance of Alistipes in
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FIGURE 5

Gaussian Bayesian network model of sleep characteristics. bmi, Body Mass Index; sbp, Systolic blood pressure; dbp, Diastolic blood pressure;

Sfiber_g, Soluble dietary fiber intake; Ifiber_g, Insoluble dietary fiber intake; Na_mg, Sodium intake; K_mg, Potassium intake; SOL, Sleep latency

(Time taken from getting into bed to falling asleep); SON3P, Time taken from sleep onset to Non-REM sleep stage 3; WASO, wake time after sleep

onset; REM, REM sleep stage appearance time; N1, Non-REM sleep stage 1 appearance time; N2, Non-REM sleep stage 2 appearance time; N3,

Non-REM sleep stage 3 appearance time.

patients with irritable bowel syndrome (Dissanayaka et al., 2024).
Other reports suggest that Aristipes may have preventive effects
against several diseases, including liver fibrosis, colitis, cancer
immunotherapy and cardiovascular disease (Parker et al., 2020).
However, some reports have found a positive correlation between
systolic blood pressure and Alistipes when comparing fecal samples
from patients with hypertension and healthy controls, which may
be associated with intestinal barrier dysfunction and inflammation
in hypertensive patients (Parker et al., 2020). Additionally, there
are reports that Alistipes are increased in mice placed in stressful
environments (Bangsgaard Bendtsen et al., 2012), and that Alistipes
are increased in depressed patients (Naseribafrouei et al., 2014).
Although Alistipes can be found commonly in the intestinal tract,
it has also been shown to have a significant effect on diseases
with localization outside of the gut, such as depression, anxiety,
chronic fatigue syndrome, autism, liver cirrhosis and aging (Parker
et al., 2020). Dysbiosis within the intestine can affect the gut-
brain axis and be used to explain the relationship between the
gut microbiota, depression, and other mood disorders such as
anxiety. It is believed that this increase in Alistipes disrupts the
gut-brain axis because Alistipes is an indole-positive organism,
and, thus decreases serotonin availability (Parker et al., 2020).
As in these many reports, no unified conclusions have been
reached on the relationship between the relative abundance of
Aristipes and disease. However, liver cirrhosis, hypertension, autism
spectrum disorders, and depression are known to be associated with
sleep (Yang et al., 2018; Pandi-Perumal et al., 2020; Johnson and
Zarrinnegar, 2021; Marjot et al., 2021). Therefore, the association

between Alistipes, sleep, and these diseases requires further study.
Additionally, as mentioned earlier, Alistipes produces acetic and
propionic acids (Parker et al., 2020) and themain pathways through
which these short-chain fatty acids affect the brain are the immune,
endocrine, and nervous systems. In particular, as a nervous system
pathway, it has been reported that short-chain fatty acids produced
in the intestinal tract are absorbed via intestinal transporters and
blood circulation, affect short-chain fatty acid receptors expressed
in the nerve ganglia to control neural activity, and affect the
brain (Westfall et al., 2017). In other words, it is possible that
the short-chain fatty acids produced by Alistipes affect the brain
and influence sleep. Sleep deprivation decreases short-chain fatty
acids, suggesting a relationship between short-chain fatty acids and
sleep (Shimizu et al., 2023). When tributylin, an ester composed
of three molecules of butyric acid and glycerol, was administered
to mice, the time spent in non-REM sleep increased by nearly
50%, indicating that butyric acid may function as a signaling
molecule that induces sleep (Szentirmai et al., 2019). This suggests
that the sleep-inducing effect of butyrate is mediated by sensory
mechanisms in the liver and/or portal vein wall, as the increase in
sleep time was observed with intra-portal administration but not
with subcutaneous or intraperitoneal injection (Szentirmai et al.,
2019). In addition, Alistipes has been reported to produce gamma-
aminobutyric acid (GABA) (Vedante and Ingarao, 2024). GABA
acts on enterochromaffin (EC) cells in the gut, producing serotonin,
and may increase GABA in the brain via stimulation of the vagus
nerve (Olsen et al., 2023; Vedante and Ingarao, 2024). Then, via
GABAergic neurons, it may inhibit orexin neurons and histamine
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neurons that maintain wakefulness, increase delta waves, and move
into a deep sleep state (Saito et al., 2018). The short-chain fatty acids
mentioned above may also stimulate the vagus nerve system via the
activation of G protein-coupled receptors (GPR41 and GPR43) on
the intestinal mucosa (Dalile et al., 2019; Onyszkiewicz et al., 2019),
and may therefore induce a deep sleep state via a pathway similar
to that of GABA. As this study did not examine the metabolites
of intestinal bacteria in detail, it is possible that further insights
could be obtained by combining the results of this study’s EEG-
derived sleep parameters with data on the relative abundance of
microbiota, and adding the results of bacterial metabolite analysis
using metabolomics.

Sellimonas, a gram-positive, biased anaerobic bacterium, has
been associated with a reduced risk of developing polycystic ovarian
syndrome (Liang et al., 2023), and increase in gut microbiota
for those with prevalent sarcopenia (Chen et al., 2023), and
a higher relative abundance of Sellimonas is associated with a
higher risk of developing breast cancer (Wei et al., 2023) and
inflammatory diseases such as ulcerative colitis, and ankylosing
spondylitis (Radjabzadeh et al., 2022). On the other hand, there
is report that probiotic supplementation increases Sellimonas

and improves MASLD (Hsieh et al., 2024). Although there are
reports on Sellimonas and the disease, not many reports have
examined its relationship with sleep. However, in a gut microbiota
analysis of patients with ulcerative colitis, the relative abundance of
Sellimonas was reported to be higher in ulcerative colitis patients
with depression and anxiety, and in a study comparing the gut
microbiota of schizophrenia patients with healthy controls and
those with metabolic syndrome, Sellimonas was reported to be
significantly higher in patients with schizophrenia (Yuan et al.,
2021; Thirion et al., 2023). Significantly higher abundance of
Sellimonas has also been reported in patients with depression
(Radjabzadeh et al., 2022; Okuma et al., 2024). This suggests
that Sellimonas may be an important bacterium in the brain-
gut axis. Recently, it has been reported that Sellimonas is present
in higher abundant in pediatric patients with autism spectrum
disorders compared to healthy controls. And it was shown that fecal
microbiota transplantation of healthy individuals in these patients
reduced the abundance of Sellimonas and improved in scores on the
sleep disturbance scale for children. This indicates that improving
the composition of the gut microbiota, including Sellimonas, may
have improved sleep disturbances (Dissanayaka et al., 2024). A
comprehensive genomic analysis of Sellimonas intestinalis did not
identify any genes encoding glutamate decarboxylase (GAD), an
enzyme responsible for GABA synthesis, or genes involved in
serotonin biosynthesis (Muñoz et al., 2020). Therefore, it is unclear
whether Sellimonas affects sleep via GABA in the same way as
Alistipes. However, Sellimonas has been associated with various
inflammatory conditions and depressive symptoms, suggesting that
it may indirectly affect the neurochemistry of the host (Wang
et al., 2024). Sellimonas produces acetic acid as an end metabolite,
mainly through glucose fermentation, but it is unclear how this
end metabolite is associated with depression (Seo et al., 2016;
Radjabzadeh et al., 2022). Further studies on Sellimonas spp.
are needed.

It is quite possible that the quality of sleep and sleep disorders
can be improved by intervening in the gut microbiota, not just in
Alistipes and Sellimonas. A meta-analysis of randomized controlled

trials examined whether probiotics or paraprobiotics improve sleep
quality by modulating the gut microbiota. The analysis found
significant improvements in sleep indices, including the PSQI,
Athens Insomnia Scale, and measures of obstructive sleep apnea
(OSA), leading to overall enhanced sleep quality (Yu et al., 2024).
There are also reports that the intake of probiotics has an effect on
non-REM sleep stage 3. When Lactobacillus casei Shirota was given
to medical students who were feeling stressed by their exams, it was
reported that Lactobacillus casei Shirota suppressed the decrease in
non-REM sleep stage 3 sleep time as the exam date approached
(Takada et al., 2017). In addition, it was also reported that the
subjective indicators of “sleepiness when waking up” and “sleep
length” in OSA improved. There are no reports of Alistipes or
Sellimonas being given as probiotics, but in the future, research
into improving sleep quality through gut bacteria will be furthered
by investigating the effects of giving these bacteria as probiotics
on sleep.

This study has several limitations. First, is the population; the
study surveyed healthy Japanese men and women between the
ages of 20–80 years, but more women than men participated in
the survey, resulting in a gender bias (Table 3). Furthermore, the
numbers of people in each age group differed both in total and
separately for men and women, and there may also have been an
age bias (Supplementary Figure S3). Additionally, the participants
in the survey may have potential biases, such as better living
conditions, because of their interest in health. Therefore, it is
possible that the results of this survey do not fully represent the
general population. Second, food and dietary data were collected on
a self-reported basis. Therefore, errors and self-efficacy may have
occurred with respect to the dietary data. Furthermore, although
this study analyzed the amount of food consumed throughout
the day, humans have a circadian clock and rhythms in food
digestion, absorption, and metabolism. Therefore, the effects of
eating the same food may differ, depending on the time of the
day in which the food is consumed (Aoyama and Shibata, 2020).
Furthermore, as well as diet composition, feeding rhythms may
affect the composition of the gut cycling transcriptome and the
expression of circadian rhythm genes, independently or together
(Yu et al., 2024). In other words, further interpretation would be
obtained if the analysis were conducted not only for the whole day
but also for each meal: breakfast, lunch, and dinner. Third, this
study used datasets from public databases. Those datasets do not
contain sequence data such as the FASTQ files obtained from the
next-generation sequencers, but only relative abundance data of
gut bacteria. Therefore, it is not possible to perform alpha-diversity
analysis using Simpson’s diversity index or beta-diversity analysis
using UniFrac distance, which can be performed from FASTQ files
using analysis tools such as QIIME2. In other words, the analyses
that can be carried out are limited. Thus, the analysis we can carry
out is limited. Another limitation is the presence of unmeasured
and uncontrolled confounding factors. Social contexts, such as
economic status, marital status, and occupation, are possible
confounding factors that should be considered in the future. In
addition, the composition of the gut microbiota and the sleep
quality are known to be affected by seasonal changes (Davenport
et al., 2014; Seidler et al., 2023). Seasonal influences also need to be
considered, as the survey was conducted in summer. Furthermore,
this study has conducted a causal search using a Gaussian Bayesian
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network, but this causal search is only an estimation of the causal
relationship, not a determination of it. Therefore, intervention
trials would need to be conducted to determine that there is a causal
relationship between Alistipes and Sellimonas and sleep quality. For
example, if isolatedAristipes alone were transplanted into the gut of
germ-free mice and the sleep conditions of the transplanted mice
were altered by the transplant, these causal relationships would
be further clarified. About the sleep parameters measurement, this
study utilized HARU-1, a portable EEG-based sleep monitoring
device, for sleep stage classification. While HARU-1 has been
validated against PSG with a reported agreement of 75%−78%
(Matsumori et al., 2022), the validation study was conducted
with a small sample size (n = 30), and no large-scale replication
studies have been performed. This raises concerns about the
generalizability of its sleep staging accuracy to broader populations.
Additionally, HARU-1 does not record EMG or EOG, which
are critical for differentiating REM sleep from wakefulness and
detecting muscle atonia. As a result, the classification accuracy
of REM sleep and transitions between N2 and N3 may be lower
than that of PSG. Furthermore, while several consumer-grade sleep
trackers (e.g., Fitbit, Actiwatch) have been compared with PSG
in past studies, HARU-1 has not been systematically evaluated
against these devices. Future research should include comparative
validation studies involving HARU-1, PSG, and other wearable
sleep monitors to assess its reliability in different populations
and settings.

To summarize this study, a cluster analysis was performed
using EEG-derived sleep parameters results from various survey
data collected from healthy men and women. The sleep
characteristics were observed in each cluster, and the intestinal
bacteria differed among the clusters. We predicted a causal
relationship between EEG-derived sleep parameters and intestinal
bacteria. The results showed a relationship in which an increase in
Alistipes caused an increase in the duration of non-REM sleep stage
3, and an increase in Sellimonas caused an increase in the duration
of non-REM sleep stage 2. Based on the results of this study, it
may be possible to predict sleep quality by monitoring intestinal
bacteria. Furthermore, controlling the intestinal bacteria may
contribute to improving sleep quality. A limitation of this study
is that it is only an estimation of a causal relationship and it has
not been established. Therefore, future studies will be conducted to
establish this causal relationship, such as transplantation of isolated
bacteria into germ-free mice or intervention studies.
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