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Introduction: Obstructive sleep apnea (OSA) is a highly prevalent chronic

disorder that is challenging to monitor clinically. While single-night laboratory-

based polysomnography (PSG) is the current gold standard for OSA assessment,

its utility is limited by cost and inaccessibility. Overnight pulse oximetry is a

feasible approach for simplified at-home monitoring of OSA. In this study, we

evaluate the performance of a modified finger-worn pulse oximetry device

(“Ring”) for OSA assessment.

Methods: In all, 25 patients with OSA [age: 55.5 ± 7.7 years (mean ± SD),

body mass index (BMI): 31.8 ± 5.1 kg/m2, 14M:11F, and Fitzpatrick scale

score I–II: 15, III–IV: 6, and V–VI: 4] completed up to four in-laboratory

PSG studies with simultaneous Ring oximetry measurements (90 studies in

total). Correlation and agreement analyses compared Ring-derived measures

of the oxygen desaturation index (ODI4RING, desaturations ≥4%) against PSG
measures (ODI4PSG and AHI4PSG). Likewise, Ring-derived hypoxic burden

(HBRING) was compared against its PSG counterpart (HBPSG). Receiver operator

characteristic (ROC) curve analysis quantified the ability of ODI4RING to identify

moderate-to-severe OSA (AHI4PSG > 15 events/h).

Results: Median [interquartile range (IQR)] of AHI4PSG was 18.0 [9.6, 31.7]

events/h. ODI4RING was positively correlated with ODI4PSG (Pearson r = 0.87,

rootmean square error [RMSE]= 6.6 events/h, intraclass correlation [ICC] = 0.85)

and AHI4PSG (r = 0.85, RMSE = 7.1 events/h, ICC = 0.84). The bias (mean

di�erence) and limits of agreement (1.96 SD) between ODI4PSG and ODI4RING
were 2.9 and 14.2 events/h, while for AHI4PSG and ODI4RING, the bias and limits

of agreement were 1.4 and 16.3 events/h, respectively. HBRING was positively

correlated with HBPSG (r = 0.75, RMSE = 24.6% min/h, ICC = 0.73), with

a mean di�erence of 3.7% min/h and limits of agreement of 60.6% min/h.

The receiver operator characteristic curve analysis of ODI4RING to identify

moderate-to-severe OSA produced an area under the curve of 0.92 (ODI4PSG
> 15 events/h, “excellent”) and 0.84 (AHI4PSG > 15 events/h, “excellent”).

Conclusion: Our results show that a low-cost, convenient, and simple-to-use

finger-worn pulse oximeter is a reliable tool for continuous monitoring of OSA

severity and therapy responses. It also o�ers excellent discriminative value for

screening moderate-to-severe OSA in this population.
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1 Introduction

Obstructive sleep apnea (OSA) is the most common sleep-

related breathing disease, estimated to affect approximately one

in four adults (Benjafield et al., 2019; Heinzer et al., 2015), in

which decreased upper airway muscle tone during sleep leads to

a repeating cycle of partial airway collapse (hypopnea) and total

obstruction (apnea) accompanied by oxygen desaturation and sleep

fragmentation (White, 2005). Untreated OSA is associated with

increased daytime sleepiness and fatigue, and increased risk of

cardiovascular and cerebrovascular disease, metabolic dysfunction,

and early mortality (Antic et al., 2011; Azarbarzin et al., 2018;

Javaheri et al., 2017; Marin et al., 2005; Bonsignore et al.,

2013; Marshall et al., 2008). Although awareness about the high

prevalence of OSA in the community is increasing, it frequently

remains undiagnosed, even in patients with moderate-to-severe

disease. Currently, an in-laboratory polysomnography (PSG) sleep

study is considered the gold standard tool for diagnosing OSA;

however, it is costly and resource-intensive, and thus access is

limited. Home sleep testing (HST) has become more common

as an alternative to in-lab PSG, using devices that record at a

minimum airflow, pulse rate, and pulse oximetry channels. Devices

and sensors must still be applied by an experienced professional

or under their supervision, and studies are scored manually by

a registered technologist. Thus, despite alleviating some of the

resource and patient burden, delays to diagnosis remain high, and

it is estimated that the majority of those with OSA are undiagnosed

and thus untreated (Heinzer et al., 2015). Therefore, the need for

a simple and easy-to-use screening tool for OSA that could help

identify those with undiagnosed or suspected OSA is significant.

Moreover, despite the chronic nature of OSA, clinicians rely on

PSG or HST measurement of OSA severity derived from a single

night to make treatment decisions. However, the known within-

subject night-to-night variability in respiratory events makes this

problematic. It has been estimated that single-night PSG studies

lead to misdiagnosis between 20 and 60% of the time (Roeder et al.,

2020; Punjabi et al., 2020; Skiba et al., 2015; Tschopp et al., 2021;

Lechat et al., 2022), whereas multi-night monitoring reduces the

likelihood of misdiagnosis (Lechat et al., 2022). More importantly,

PSG and HST with multiple channels (type 3) are not well suited

for serial assessments during therapy titration. Simple, reliable

tools are needed to objectively quantify changes in OSA severity

over time and evaluate responses to therapy. As more treatment

options emerge for patients, including the recent approval of

pharmacotherapy for OSA (Malhotra et al., 2024), the value of such

insights will increase. An incomplete treatment response could

indicate the need to modify therapy or dose/level or consider a

combination of therapies or interventions; however, clinical tools

to facilitate ongoing monitoring are currently lacking.

Single-channel pulse oximetry to determine the oxygen

desaturation index (ODI) has been shown to be a useful screening

tool for OSA severity (Chiner et al., 1999; Dumitrache-Rujinski

et al., 2013) that could be used by patients at home and over

multiple nights for continued monitoring of OSA; however,

accuracy varies across devices (Rashid et al., 2021). In this study,

we evaluate using a new modified, wearable finger-worn Ring

pulse oximeter device combined with custom algorithms for use

in the ongoing monitoring of OSA severity during a randomized

crossover trial across different therapeutic conditions. In the

primary analysis, the bias and limits of agreement between Ring

and gold-standard PSG measurements of OSA severity (ODI4

and AHI4) were assessed. The secondary analysis assessed the

intraclass and Pearson correlations between metrics and the ability

of Ring ODI4 to identify moderate-to-severe ODI4. An exploratory

analysis assessed the agreement between novel hypoxic burden

measurements derived from the Ring oximeter alone and standard

PSG measures.

2 Materials and methods

2.1 Study participants and design

This Ring oximetry ancillary study was conducted as part of a

larger study (NCT05793684), approved by the WIRB-Copernicus

Group Institutional Review Board (Aishah et al., 2024). Twenty-

five participants with mild-to-severe OSA met eligibility criteria

and were randomly assigned to the parent study across three

sites: Brigham and Women’s Hospital, Boston, Massachusetts

(N = 1); Clayton Sleep Institute, St. Louis, Missouri (N =
14), and Santa Monica Clinical Trials, Los Angeles, California

(N = 10). The exclusion criteria included clinically significant

cardiac disease, neurological disorders, non-OSA sleep disorders,

or uncontrolled hypertension. All participants provided informed

written consent prior to study participation. During the study,

participants completed up to four in-laboratory PSG studies under

different treatment conditions (baseline, placebo, and treated with

500mg Viloxazine, 500/75mg Viloxazine-Trazadone). In total,

90 in-laboratory PSG studies were performed, and simultaneous

Ring oximetry measurements were recorded successfully on all

PSG nights.

2.2 Sleep study measurements

In-laboratory PSGs included measurements of

electroencephalogram (EEG), electrooculogram (EOG), nasal

pressure, thermistor, body position, and pulse oximetry using a

finger probe. Oxygen saturation from PSG oximetry was sampled

at a minimum rate of 1Hz (10Hz preferred), the signal averaging

window was required to be between 1 and 3 s. In-lab PSGs were

scored by a centralized PSG center, following the American

Academy of Sleep Medicine (ASSM; Berry et al., 2017), with access

to all PSG channels but blinded to the Ring oximetry data. The

apnea–hypopnea index (AHI) was based on the AASM rule 1B for

identification of hypopneas (which specifies a ≥ 30% reduction in

airflow for ≥10 s and oxygen desaturation of ≥4%, AHI4PSG), as

has been used recently to determine eligibility in several prominent

OSA clinical trials (Malhotra et al., 2024; Schweitzer et al., 2023).

We also measured the ODI based on ≥4% desaturation (ODI4PSG)

and hypoxic burden (HB, area under the desaturation curve), based

on manually scored respiratory events (Azarbarzin et al., 2018).

Participants also wore a finger-based Ring pulse oximeter (Product

Name: Pulse Oximeter, Model: S9; Shenzhen Viatom Technology

Co. Ltd., Shenzhen, China) with modified firmware to meet our

requirements. Oxygen saturation from the Ring was recorded at
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1Hz; oxygen desaturation from the Ring oximeter was determined

as the number of desaturations ≥4% from baseline per hour over

total recording time using custom algorithms (ODI4RING). HB

from the Ring oximeter was also calculated (HBRING), as the area

under the desaturation curve based on automatically detected

oxygen desaturations ≥2% as described and validated by Esmaeili

et al. (2023), divided by the total recording time.

2.3 Statistical analysis

The primary outcome was the bias and limits of agreement

between ODI4RING and ODI4PSG. Repeated linked measurements

under different conditions within subjects may lead to an

underestimation of the limits of agreement if standard Bland–

Altman analyses (in which it is assumed measurements

are independent) are used. To account for this, we instead

implemented a mixed-model approach, as described by Carstensen

et al. (2008), including the subject-by-oximetry method and

subject-by-treatment interactions to ensure the variance is

correctly attributed between terms. This mixed-model approach

provides a modestly more conservative limit of agreement estimate

than simple difference variance reporting because we are modeling

how much the difference variance appears to be reduced by

the repeated non-independent estimates within subjects. The

mean difference was then determined from the oximetry method

coefficient and limits of agreement by the formula 1.96 ×
√
(2 ×

τ
2 + σ

2
PSG + σ

2
RING), where τ

2 is the oximetry method by subject

interaction variance and σ
2
RING and σ

2
PSG are the respective within-

oximetry method residual variances. Agreement and limits were

displayed on Bland–Altman plots for interpretation. The analysis

was repeated to compare ODI4RING and AHI4PSG. For secondary

outcomes, the intraclass correlation coefficients (ICCs) were also

determined between measurements (0.75–0.9: good reliability,

>0.9: excellent reliability). Pearson correlation analysis was used

to assess the strength of the linear relationship between the Ring

and gold-standard PSG measurements and the spread of observed

data around this model using the root mean square error (RMSE).

A correlation coefficient, r, >0.7 is considered a strong correlation,

with a minimum RMSE requirement of fewer than 10 events/h (i.e.,

the difference between “mild” and “moderate” OSA classification).

Receiver operator characteristic (ROC) curve analyses and area

under the curve (AUC) analyses were used to evaluate the

identification of moderate-to-severe OSA using the Ring with

a cutoff of AHI4PSG > 15 and ODI4PSG > 15. An AUC >0.8

(“excellent”) was considered sufficient sensitivity and specificity

for screening purposes. Optimal thresholds for identifying

moderate-to-severe OSA were determined from the optimal

operating point of the ROC curve, minimizing the misclassification

cost where, given the intended use as a prescreening tool, false

negatives were given twice the cost weighting of false positives.

Pointwise confidence intervals for AUC, sensitivity, and specificity

were calculated using bootstrapping with 1,000 iterations. In an

exploratory analysis, we repeated the previously described analyses

to assess the agreement between Ring- and PSG-derived hypoxic

burden measurements; in ROC analyses, the ability of the Ring

oximeter to screen for high HB (HBPSG > 60) was evaluated. In

the post-hoc subgroup analysis, descriptive statistics are reported to

describe the bias in different subgroups using the Fitzpatrick scale

for skin tone. Statistical analyses were performed using MATLAB

(Natick, MA) and R version 4.3.2.

3 Results

Patient characteristics are given in Table 1. The median

[interquartile range (IQR)] AHI4PSG was 18.0 [9.6, 31.7] events/h

and ODI4PSG 19.5 [12.7, 32.5] events/h. Of the 90 sleep studies, 55

exhibited moderate-to-severe OSA (AHI4 > 15) per PSG scoring,

25 exhibited mild OSA (5 ≤ AHI4 < 15), and 10 exhibited no

OSA (AHI4< 5). Ring analysis showed a median ODI4RING of 16.8

(10.7, 26.9) events/h. The maximum data rejection rate for the Ring

SpO2 data (null values as a percentage of total data points) across

all recordings was 0.13%. Example signal traces from PSG and Ring

recordings are shown in Figure 1.

From mixed-model analyses, the bias (mean difference) and

limits of agreement between ODI4PSG and ODI4RING were 2.9 ±
14.2 events/h (Figure 2A), and between AHI4PSG and ODI4RING,

TABLE 1 Patient characteristics.

Demographics and obesity

Age (years) 56 [50–62]

Sex, N (M:F) 14:11

BMI (Kg/m2) 32 [28–38]

Race, N (Black:White:Asian:Other) 3:18:1:3

Ethnicity, N (Hispanic:Non-Hispanic) 3:22

Fitzpatrick scale (I:II:III:IV:V:VI) 3:12:5:1:3:1

Polysomnography

Total sleep time (min) 387.3 [353.0, 424.0]

AHI4 (events/h) 18.0 [9.6, 31.7]

ODI4 (events/h) 19.5 [12.7, 32.5]

Hypoxic burden (%.min/h) 62.9 [41.2, 91.2]

Arousal index (events/h) 28.8 [19.6, 37.6]

Stage 1 (%TST) 12.2 [7.4, 17.0]

Stage 2 (%TST) 65.9 [60.8, 72.4]

Stage 3 (%TST) 8.7 [2.9, 14.0]

REM (%TST) 9.4 [4.6, 15.5]

T90 (%TST) 3.4 [0.8, 9.3]

Epworth sleepiness scale 9.5 [6.0, 12.0]

Ring metrics

Total recording time (min) 491 [487.3, 496.7]

ODI4RING (events/h) 16.8 [10.7, 26.9]

HBRING (%.min/h) 59.7 [38.6, 83]

The Fitzpatrick scale is a descriptive classification of skin tone, with I being the lightest and

VI being the darkest tone. Data are presented as median [interquartile range].

AHI4, apnea-hypopnea index with 4% oxygen desaturation; HB, hypoxic burden; ODI4,

oxygen desaturation index with 4% oxygen desaturation; T90, sleep time under 90% oxygen

desaturation; TST, total sleep time; REM, rapid eye movement; BMI, Body Mass Index.
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FIGURE 1

Example traces from simultaneous recordings of PSG and Ring data during a 10-min period of respiratory events. PSG signals are shown in blue and

Ring signals are shown in black. NPT, nasal pressure; E�ort THO, respiratory e�ort signal from the thoracic belt; E�ort ABD, respiratory e�ort signal

from the abdominal belt; SpO2, oximetry signal.

they were 1.5 ± 16.3 events/h (Figure 2B), respectively. We note

that limits of agreement were only slightly underestimated when

ignoring the effects of repeated measurements using standard

Bland–Altman analyses (±13.8 and ±16.2 events/h, respectively),

suggesting that correlations between within-subject repeated

measures in different treatment conditions are low. ODI4RING
was positively correlated with ODI4PSG (Pearson r = 0.87, 95%

CI [0.81, 0.91], RMSE = 6.6 events/h; Figure 2A), and AHI4PSG
(r = 0.85 [0.78–0.90], RMSE = 7.1 events/h; Figure 2B). The

ICC for ODI4RING vs. ODI4PSG and vs. AHI4PSG was 0.85 (95%

CI [0.78, 0.90]) and 0.84 [0.76–0.89], respectively, and for the

ROC curve analysis of ODI4RING to predict moderate-to-severe

OSA produced an area-under-curve (AUC) of 0.84 (95% CI [0.73,

0.92]; AHI4PSG >15 events/h, “excellent”, Figure 3A) and 0.92

[0.84–0.97] (ODI4PSG >15 events/h, “excellent”; Figure 3B). The

optimal cutoff for the screening of moderate-to-severe OSA by

AHI4PSG > 15 events/h (i.e., the gold standard) was determined

to be ODI4RING = 10.7 events/h, which was associated with a

sensitivity of 0.98 [0.91–1.00] and a specificity of 0.60 [0.42–0.74]

(Figure 3A). The optimal cutoff for the screening of moderate-

to-severe OSA by ODI4PSG > 15 events/h was determined to be

ODI4RING = 10.7 events/h, which was associated with a sensitivity
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FIGURE 2

Correlation (left) and Bland–Altmann (right) plots to compare (A) ODI4RING and ODI4PSG, (B) ODI4RING and AHI4PSG, and (C) HBRING and HBPSG. r,

Pearson correlation coe�cient. Bias and limits of agreement were calculated using mixed model analysis to account for within-subject repeated

measurements. PSG, polysomnography.

FIGURE 3

Receiver operator curves to identify moderate-to-severe OSA using (A) ODI4RING, as defined by AHI4PSG ≥ 15 events/h; (B) ODI4RING, as defined by

ODI4PSG ≥ 15 events/h; and (C) HBRING, as defined by HBPSG ≥ 60%min/h. AUC, area under the curve, >0.8 = “excellent”. The red circles denote the

optimal cuto� point in ODI4RING or HBRING at the associated sensitivity and false positive (1 – specificity) values for screening, corresponding to (A)

ODI4RING = 10.7 events/h, (B) ODI4RING = 10.7 events/h, and (C) HBRING = 49.9%min/h.
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of 0.97 [0.88–1.00] and a specificity of 0.67 [0.47–0.81] (Figure 3B).

In the exploratory analysis, HB from the Ring oximetry, HBRING,

was positively correlated with HBPSG (r = 0.75 [0.65–0.83], RMSE

= 24.6%min/h; Figure 2C), with a mean difference of 3.7%min/h

and limits of agreement of ±60.6%min/h (Figure 2C). The ICC

for HBRING vs. HBPSG was 0.73 [0.62–0.81], ROC analysis using

HBRING to predict moderate-to-severe HBPSG > 60%min/h, AUC

= 0.84 [0.74–0.91], and optimal threshold was determined to be

49.9%min/h, associated with a sensitivity of 0.87 [0.75–0.94] and

specificity of 0.64 [0.47–0.76] (Figure 3C).

4 Discussion

This study has shown that the Ring oximeter device combined

with custom algorithms can reliably detect OSA events andmonitor

OSA severity. The mean differences between ODI4RING and PSG

measurements were small, the ring slightly underestimates the

severity of OSA on average (−2.9 events/h vs. AHI4PSG, −1.4

events/h vs. ODI4PSG). A visual analysis of the Bland–Altman

plot suggests that bias tends to be greater at high values of

ODI4. The limits of agreement of ODI4RING with AHI4PSG
and with ODI4PSG were ±14.2 events/h and ±16.3 events/h,

respectively: 95% of the differences lie within this range. Good

reliability was observed between ODI4RING and both AHI4PSG and

ODI4PSG measurements (ICC = 0.84–0.85). Correlations between

ODI4RING and both AHI4PSG and ODI4PSG were strong (r =
0.85–0.87), with an RMSE of 6.6 and 7.1 events/h, respectively,

meaning that the standard deviation of the difference between

the observed and predicted values was less than the difference

between mild and moderate OSA classification (10 events/h). The

ROC curves showed that the Ring can identify moderate-to-severe

sleep apnea per AHI4PSG criteria with excellent discriminative

value (AUC = 0.84), with an optimal threshold cutoff selected

of ODI4RING = 10.7 events/h for high sensitivity (0.98) but

lower specificity (0.60). The optimization model was preferentially

weighted for high sensitivity to maximize the number of true

positives included, considering the intended application of the Ring

as a prescreening tool; however, in different situations, alternative

optimal operating points on the ROC curve could be chosen to

increase specificity at the cost of lower sensitivity, for example, to

make treatment decisions.

We think that the observed underestimate in ODI4 with

the Ring vs. PSG is predominately attributable to the use of

the total recording time as a denominator in the Ring ODI4

calculations vs. total sleep time for PSG metrics: Indeed, in

exploratory analysis, using PSG total sleep time instead as the

denominator for Ring ODI4, we instead see a small positive

mean bias (+2.8 events/h with ODI4Ring vs. ODI4PSG; see

Supplementary Figure S2), suggesting that the Ring could, in fact,

be more sensitive to oxygen desaturations than the PSG finger

probe if sleep time is better accounted for. A greater bias at

higher ODI4 values is not seen in a sleep-time-adjusted analysis.

Sensor placement at the fingertip with the PSG probe vs. the base

of the finger using the Ring may also contribute to differences.

Nevertheless, systematically underestimating OSA severity may

have important clinical implications on diagnosis or classification

if not accounted for in the interpretation of metrics, for example,

by using adjusted thresholds. We note that the optimal screening

cutoff for moderate to severe OSA identified using ODI4RING is

lower than the standard AHI criteria (10.8 vs. 15) and still produced

excellent discrimination.

We also have demonstrated for the first time that it is feasible

to calculate HB from a stand-alone wearable device using the

oximetry signal alone. HBRING and HBPSG showed moderate-to-

good agreement (ICC = 0.73). Hypoxic burden has been shown

to be sensitively associated with a greater risk of cardiovascular

disease and mortality (Azarbarzin et al., 2018, 2020), adding to

the increasing evidence that intermittent hypoxemia plays a key

role in the systemic long-term physiological consequences of OSA.

Thus, in the future, monitoring oximetry-based metrics may be

very useful for predicting disease risk and stratifying those whomay

most benefit from treatment.

The findings presented here are comparable with other

wearable oximetry devices. A recent systematic review showed

considerable variability in oximeters’ performance across studies,

with mean differences between oximetry to AHIPSG that ranged

from −13.7 to 4.8 events/h (Khor et al., 2023) and sensitivity

and specificity of ODI values that ranged from 49 to 97% and

64 to 100%, respectively, for classifying AHIPSG >15 events/h

(Khor et al., 2023). A wireless finger-worn oximeter and cloud-

based analysis system (Oxistart, Biologix Sistemas Ltd., Brazil) were

shown to accurately detect OSA, with a mean difference of 2.9

events/h and limits of agreement of ±16.5 events/h compared to

AHI4PSG and an AUC 0.96 classifying moderate-to-severe OSA

(Pinheiro et al., 2020). However, direct comparisons are challenging

given differences in populations, OSA diagnostic criteria, ODI

thresholds, and the selected optimal operating threshold between

studies. The WatchPAT (Itamar Medical Inc., Caesarea, Israel)

measures peripheral arterial tonometry in addition to oximetry,

heart rate, and actigraphy and was found to detect AHI > 15,

with an average sensitivity and specificity of 92.21 and 72.39%,

respectively, in a recent meta-analysis of previous evaluation

studies, with considerable variability between studies (Iftikhar et al.,

2022). A commercial wrist-worn oximetry device (Galaxy Watch 4,

Samsung, South Korea) can distinguish moderate-to-severe OSA

(AUC: 0.80–0.91); however, device data rejection rates were high

(26.5–52.3%; Jung et al., 2022; Browne et al., 2024).

Oximetry monitoring using a wearable device also provides

specific advantages over the current gold standard, PSG. Unlike

PSG, with many channels to precisely monitor multiple parameters

across one night, the Ring could easily be used over multiple nights

at home to provide accurate, multi-night, and averaged metrics to

follow changes over time, for example, to assess treatment efficacy.

The substantially lower cost of an oximetry device compared to a

full PSG system allows for its use in a broader range of settings,

including underserved communities and lower-income countries,

where a full PSG is not feasible. Currently, night-to-night variability

is recognized as a significant source of inconsistent measurement

of OSA within a patient and can often lead to misdiagnosis (Roeder

et al., 2020; Punjabi et al., 2020). Repeated measurements of OSA

severity to reduce the effects of night-to-night variability correlate

better with adverse cardiovascular outcomes than with single-

night measures and reduce the misdiagnosis of OSA (Lechat et al.,
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TABLE 2 Measurement bias by Fitzpatrick scale subgroup.

Fitzpatrick
scale

AHI4PSG –
ODI4RING
(events/h)

ODI4PSG –
ODI4RING
(events/h)

HBPSG –
HBRING
(%min/h)

I, II (N = 15) 0.2 [−3, 7.6] 1.7 [−1.6, 7.5] 1.8 [−12.4, 17]

III, IV (N =
6)

1.7 [−1.8, 5.5] 2.8 [0.0, 5.5] 3 [−8, 27]

V, VI (N = 4) 1.6 [−11.1, 4.6] 2.3 [−2.2, 5.5] −1.8 [−20.5, 20]

Data are presented as median [interquartile range]. The Fitzpatrick scale is a numerical

classification schema for human skin color, where I is the palest and VI is the darkest tone.

AHI4PSG , apnea–hypopnea index from PSG (hypopneas scored by >4% desaturation

criteria); ODI4PSG , oxygen desaturation index from PSG (hypopneas scored by >4%

desaturation criteria); ODI4RING , oxygen desaturation index from Ring oximeter (hypopneas

scored by >4% desaturation criteria); HBPSG , hypoxic burden from PSG; HBRING , hypoxic

burden from ring oximeter.

2023). Algorithmically identifying events also avoids uncertainty

introduced by the inter-scorer variability in human scoring of

AHI measures (Thomas et al., 2020; Collop, 2002). These sources

of variability are also inherent in current single-night HST

approaches to quantifying residual OSA severity on therapy and

could potentially be mitigated through unobtrusive multi-night

oximetry to get a more accurate representation of the true ongoing

therapeutic response. Providing clinicians and/or patients with

simple objective measurements of treatment efficacy or disease

progression over time could help inform decisions about the best

management strategies on an individualized basis.

It is known that oximetry-based metrics, including ODI and

hypoxic burden, may be systematically underestimated in people

with darker skin due to an underestimation of oxygen desaturation

using pulse oximetry (Sjoding et al., 2020). The current study

was not sufficiently powered to perform a formal analysis of the

effects of skin pigmentation on the reliability of oximetry metrics.

However, we note that the average bias was similar across the

groups in our study (Table 2). Future studies are required to better

explore this in a large diverse cohort.

Including other clinical features or spectral or non-linear

characteristics of the oximetry signal into a multivariate classifier

of OSA could further improve performance as a screening

tool (Terrill, 2020; Behar et al., 2019), but the current study

sought to limit the complexity of this initial validation study. In

general, multivariate models have shown marginal improvements

in accuracy compared to classifying with ODI alone (Uddin et al.,

2018).

4.1 Strengths and limitations

This study was performed in a sleep laboratory under

controlled conditions; metrics determined by the Ring device

at home in an uncontrolled environment may exhibit greater

variability compared with more controlled conditions. However,

it could be argued that measurements made using minimally

disruptive equipment in a usual sleep environment may be a

better representation of true disease severity. Oximetry-based

monitoring uses the total recording time as the denominator to

assess metrics compared to total sleep time used in a PSG study

with simultaneous EEG recording, which likely contributes to

the average underestimate of oximetry metrics from the Ring.

Measurement bias may be greater in those with reduced sleep

efficiency, for example, patients with comorbid insomnia or other

complex sleep disorders. Ongoing work to determine sleep–wake

staging using Ring accelerometry, oximetry, and pulse data could

help address these concerns. Our study is a proof-of-concept

trial conducted as part of a separate clinical trial; therefore,

we did not perform a priori sample size calculations. Post-hoc

power simulations indicated the current sample size provided

a power of 0.991 to detect a clinically meaningful effect of 5

events/h (based on the median absolute difference between two

repeated gold-standard PSGmeasurements of OSA severity; see the

Supplementary material for details). Nevertheless, further studies

with larger sample sizes across diverse populations are warranted

to validate these findings. This study involved a prescreened

population of OSA patients under different therapeutic conditions,

only 10/90 PSGs exhibited no OSA per the gold-standard

assessment (AHI4 < 5). We think that this is representative of a

target population for the intended use of continued monitoring

of OSA and in individual responses to therapy; however, it is

likely not reflective of a screening population. Including more

non-OSA control subjects, that is, better reflecting a community

cohort, would better describe the performance for a target use

for screening, and may result in different, potentially improved,

sensitivity and specificity of the device. The ROC optimal operating

thresholds may be different in this population, where more subjects

are expected to have low AHI. Finally, the oximetry metrics

explored in this study do not distinguish between central and

obstructive respiratory events, whose gold-standard classification

requires measuring respiratory effort. The diagnostic accuracy from

the Ring alone may be lower in those with complex or central

sleep apnea. The current findings may also not be representative of

OSA patients with excluded comorbidities (e.g., significant cardiac

disease or uncontrolled hypertension). However, pulse oximetry

could still be used as a useful screening tool that could help

clinicians identify those that may require a full PSG, and future

algorithm development could enhance the ability to predict central

events from obstructive events using event-based features.

4.2 Conclusion

Ring oximetry measures of OSA severity showed strong

correlations with current gold-standard PSG criteria and were able

to identify moderate to severe OSA with excellent discriminative

value. This study shows the Ring oximeter has substantial promise

as an accessible tool for the identification and multi-night

monitoring of OSA severity.
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