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Introduction: The Odds Ratio Product (ORP) is a validated EEG-based measure 
of sleep depth, more sensitive than traditional metrics. While it has been studied 
in healthy individuals and those with sleep–wake disorders, its relevance in 
psychiatric conditions remains unclear. This study examined ORP during sleep 
and its association with depressive symptoms in a large cohort referred to 
multiple U.S. sleep centers. 
Methods: We retrospectively analyzed data from 829 adults (48.85% female; 
mean age 43.49 ± 13.74 years) enrolled in two multicenter studies. Each 
participant completed the Patient Health Questionnaire-9 (PHQ-9) and 
underwent overnight polysomnography (PSG), with ORP calculated from central 
EEG channels. Mean and standard deviation ORP values were derived for the full 
night and Wake, stages 1, 2, 3, and REM sleep. Associations between ORP metrics 
and depression severity (PHQ-9 total and PHQ-9 ≥10) were tested using linear 
and logistic regressions, adjusting for age and sex. Model fit was assessed with 
the Akaike Information Criterion (significance level α = 0.05). 
Results: Fixed-effects models outperformed mixed-effects models. Mean ORP 
during the full night and light sleep (stages 1 + 2) showed a significant U-
shaped association with depression, indicating both high and low ORP values 
relate to greater depressive burden. In stage 3, higher mean ORP was linearly 
associated with more severe symptoms. Lower ORP variability across the night 
also correlated with higher depression scores. 
Conclusions: ORP shows potential as a non-invasive biomarker for depressive 
symptoms, with distinct associations depending on sleep depth. Integrating 
ORP into clinical PSG analyses could improve detection of depression-related 
sleep patterns. 
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1 Introduction 

The Odds Ratio Product (ORP) is a well-established metric 
used to assess sleep depth and the sleep-wake continuum. ORP 
provides a continuous, physiologically grounded measure of sleep 
depth, offering superior sensitivity to both subjective sleep quality 
and objective sleep architecture, capturing sleep instability and 
subtle arousal patterns. For example, some studies demonstrated 
that ORP better predicted sleepiness and sleep fragmentation 
in obstructive sleep apnea (OSA) patients than standard sleep 
stage percentages (Younes, 2023). Similarly, other studies found 
that ORP was more closely associated with subjective sleep 
quality and daytime functioning in a large community cohort, 
outperforming traditional metrics like total sleep time and sleep 
efficiency (Younes et al., 2022). Additionally, studies in insomnia 
populations have reported that ORP effectively captures increased 
sleep fragmentation and lighter sleep, correlating strongly with 
clinical symptoms, whereas conventional measures showed less 
sensitivity (Riemann et al., 2010). Due to these distinctions, several 
studies have explored ORP in several sleep disorders, such as 
idiopathic hypersomnia (Thomas et al., 2022), OSA and its changes 
during CPAP treatment (Penner et al., 2019), as well as in severe 
conditions such as OSA-insomnia comorbidity (COMISA; Younes 
et al., 2021). For this reason, the ORP has been utilized in sleep 
medicine as an alternative measure of sleep depth, differing from 
conventional methods recommended by the American Academy 
of Sleep Medicine (AASM; American Academy of Sleep Medicine, 
2023). ORP was first introduced by Younes et al. (2015) as 
part of a novel algorithm that quantifies sleep depth on a 0–2.5 
scale by analyzing the ratio of power in various EEG frequency 
bands—particularly delta, theta, alpha, and beta—recorded every 
3 s throughout the night. This method differs fundamentally from 
the AASM scoring rules (American Academy of Sleep Medicine, 
2023), which rely on 30-s epochs and categorical stage assignments. 
The ORP algorithm uses a database of EEG power spectra and 
applies odds ratio comparisons to determine the likelihood that 
a given 3-s epoch corresponds to wakefulness vs. deep sleep, 
yielding a continuous and granular index of sleep propensity. This 
development was guided by the recognition that traditional staging 
often fails to capture dynamic changes in brain activity, particularly 
within stages (e.g., varying depth within N2 sleep), and may 
overlook micro-arousals or instability that are clinically relevant. 
Thus, the development of the ORP originated from the need for 
a more continuous and physiologically relevant measure of sleep 
depth and arousability than traditional, stage-based scoring. By 
offering a fine-grained, epoch-by-epoch assessment, ORP enables 
improved detection of sleep fragmentation, cortical arousability, 
and stability of the sleep-wake continuum, making it especially 
valuable in clinical and research contexts where subtle sleep 
disturbances are present but not detected by standard scoring 
(Younes, 2023; American Academy of Sleep Medicine, 2023). 

Despite the growing application of ORP in healthy individuals 
and those with sleep–wake disorders, only a few studies have 
explored its use in psychiatric populations, even though sleep 
disturbances are highly prevalent and clinically significant in 
these patients. Psychiatric disorders are well-known to be highly 
comorbid with sleep disturbances and sleep-wake disorders. 

In particular, numerous studies have highlighted a strong, 
bidirectional relationship between depression and sleep disorders 
(Nutt et al., 2008; Franzen and Buysse, 2008). Depression can 
cause insomnia, and insomnia can worsen depression symptoms, 
creating a cyclical pattern (Fang et al., 2019). Notably, individuals 
diagnosed with insomnia are 10 times more likely to develop 
depression compared to those with healthy sleep patterns (Nutt 
et al., 2008; Jindal, 2004). This association has been consistently 
observed across different age groups, including young, middle-
aged, and older adults. The literature consistently reports both 
subjective and objective alterations in sleep architecture, continuity, 
and circadian regulation in patients with depression. Patients with 
major depressive disorder (MDD) frequently experience insomnia 
symptoms, including prolonged sleep onset latency, increased 
nocturnal awakenings, early morning awakenings, and reduced 
total sleep time. These disturbances contribute to perceived poor 
sleep quality and may exacerbate mood symptoms (Nutt et al., 
2008). Polysomnographic studies have identified specific alterations 
in sleep architecture associated with depression. These include a 
reduction in slow-wave sleep (SWS), which reflects diminished 
restorative sleep, and shortened REM sleep latency, characterized 
by earlier onset of rapid-eye-movement (REM) sleep after sleep 
initiation. Additionally, patients often exhibit increased REM 
density—a higher frequency of rapid eye movements during REM 
sleep—which has been linked to emotional dysregulation and 
may serve as a biological marker for depression (Fang et al., 
2019; Baglioni et al., 2016; Riemann et al., 2020). However, 
the interpretation of sleep architecture findings in depression is 
constrained by several important factors. Depression is a clinically 
heterogeneous condition, and its sleep-related manifestations can 
vary depending on subtype, symptom severity, and treatment 
status (American Psychiatric Association, 2022). Moreover, there 
is substantial overlap between the sleep architecture associated 
with depression and that seen in co-occurring sleep disorders, 
including obstructive sleep apnea (OSA), insomnia, restless legs 
syndrome (RLS), and periodic limb movement disorder (PLMD; 
Lee et al., 2019). These sleep conditions independently disrupt 
sleep continuity and structure, leading to increased arousals, 
reduced slow-wave sleep, altered REM dynamics, and overall sleep 
fragmentation (Wang et al., 2025). Such overlapping features 
make it challenging to attribute specific polysomnographic findings 
solely to depression. The effects of antidepressant medications, 
which commonly suppress REM sleep and alter NREM patterns 
(Steiger and Pawlowski, 2019) further complicate interpretation. 
In addition, the often-observed discrepancy between subjective 
sleep complaints and objective measures in depression suggests that 
traditional sleep metrics may not adequately capture the full extent 
of sleep disruption. This highlights the need for more sensitive 
and physiologically grounded indices, such as the ORP, which 
may better reflect both objective sleep instability and perceived 
sleep quality, serving as a novel and sensitive biomarker for 
detecting sleep characteristics associated with depressive symptoms 
in patients with comorbid sleep-wake disorders. 

Early detection of depression are essential for achieving full 
remission and improving long-term outcomes, including reducing 
the risk of recurrence, chronicity, and significant functional 
impairment (Perna et al., 2020, 2021). Consistent with this, strong 

Frontiers in Sleep 02 frontiersin.org 

https://doi.org/10.3389/frsle.2025.1635704
https://www.frontiersin.org/journals/sleep
https://www.frontiersin.org


Defillo et al. 10.3389/frsle.2025.1635704 

evidence supports the effectiveness of programs that integrate 
depression screening with appropriate follow-up interventions in 
improving clinical outcomes among adults (O’Connor et al., 2009; 
Siniscalchi et al., 2020; Siu et al., 2016). 

Among available tools, the Patient Health Questionnaire-
9 (PHQ-9; Kroenke and Spitzer, 2002; Kroenke et al., 2001; 
Spitzer et al., 1999) is considered one of the most reliable and 
widely adopted depression screening instruments. It offers high 
sensitivity and specificity for major depressive disorder, particularly 
in primary care (Maurer et al., 2018). Grounded in DSM-5 criteria, 
the PHQ-9 allows for both symptom severity assessment and 
provisional diagnosis. Its clinical utility and diagnostic accuracy 
have led to its endorsement by the United States Preventive Services 
Task Force (USPSTF) and other expert bodies for routine use in 
both primary and specialty care (O’Connor et al., 2009; Siniscalchi 
et al., 2020; Maurer et al., 2018; Lichtman et al., 2008; Costantini 
et al., 2021). 

Due to its brevity, psychometric strength, and ease of 
administration, the PHQ-9 is particularly well-suited for research 
exploring the relationship between depressive symptoms and 
physiological parameters such as sleep architecture. 

Despite clear recommendations, a substantial gap persists 
between the need for depression treatment and its actual delivery 
worldwide. Physician adherence to routine depression screening 
remains limited (O’Connor et al., 2009) and depressive symptoms 
are frequently underrecognized in patients attending outpatient 
specialty clinics (Wang et al., 2017). For example, unrecognized 
depression has been reported in 45 to 51% of medical patients and 
in ∼54% of surgical patients (Rahman et al., 2015). 

This underdetection is particularly concerning in specialty 
settings such as SCs, where patients typically undergo PSG to 
investigate sleep disturbances. Given the previously discussed 
bidirectional relationship between sleep and depression, systematic 
screening in these settings is especially warranted. However, 
barriers such as time limitations, lack of standardized protocols, 
and insufficient integration of mental health evaluation into sleep 
medicine workflows likely contribute to this gap. As a result, 
depressive symptoms often go unrecognized in patients undergoing 
evaluation for sleep-wake disorders. 

To date, no studies have specifically investigated the 
relationship between the ORP and depressive symptoms. Before 
ORP can be considered a potential biomarker for depression in 
sleep medicine, it is essential to first understand whether and 
how ORP correlates with depressive symptom severity. Therefore, 
the present study aims to evaluate ORP values across different 
sleep stages and examine their linear and non-linear associations 
with depressive symptoms, as measured by the PHQ-9, in a large 
cohort of patients referred for sleep-wake disorder evaluation at 
multiple SCs across the United States. This foundational analysis 
is a critical step toward establishing whether ORP can serve as 
a sensitive, objective indicator of depressive symptomatology in 
clinical sleep populations. 

If such associations are confirmed, ORP may serve as the 
foundation for an automated, physiology-based screening tool that 
passively identifies individuals at risk for depression during routine 
polysomnographic assessments. This approach could overcome 
key limitations of current screening practices by integrating 

mental health detection into existing sleep study protocols without 
requiring additional time or specialized clinical training. 

2 Methods 

2.1 Sample characteristics 

This retrospective analysis is based on data collected 
in the context of two prior studies. The Sleep Analysis of 
Depressive Burden (SADB) study (ClinicalTrials.gov Identifier: 
NCT04232267) and the Sleep Signal Analysis for Current Major 
Depressive Episode (SAMDE) study (ClinicalTrials.gov Identifier: 
NCT05708222) are both cross-sectional, naturalistic, single-arm, 
multicenter trials sponsored by Medibio Ltd (Minnesota, USA). 
Participant recruitment for SADB occurred from December 
2019 to February 2022 across multiple U.S. sites, including 
sleep clinics in Ohio and Minnesota, while SAMDE recruitment 
took place from June 2023 to July 2024 across additional sites 
in Texas, North Carolina, South Carolina, Florida, Minnesota, 
and Ohio. Inclusion criteria encompassed adults aged 18–75 
(SADB) and 22–75 (SAMDE), able to provide informed consent 
and adhere to study procedures. Exclusion criteria differed 
slightly, with SADB excluding active substance abuse and SAMDE 
excluding pacemaker recipients, heart transplant patients, and 
those undergoing CPAP titration studies. Psychotropic medication 
use was permitted to enhance sample representativeness. 
Preliminary findings on depression prevalence in both cohorts 
have been reported in earlier publications (Daccò et al., 2023, 
2025). 

2.2 Harmonized protocol 

Both SADB and SAMDE studies adopted a harmonized 
protocol to ensure data comparability across sites and studies. 
Upon enrollment, participants completed self-administered forms 
capturing demographic and clinical variables, followed by the 
PHQ-9 to assess depressive symptom severity. Additionally, 
SAMDE participants completed a fully structured diagnostic 
interview using the Mini International Neuropsychiatric Interview 
for major depressive episode diagnosis (Sheehan et al., 1998). 

2.3 PSG measures and sleep variables 

PSG recordings in both studies adhered strictly to AASM 
guidelines (American Academy of Sleep Medicine, 2023), 
utilizing identical EEG derivations including six recommended 
channels (F4-A1, C4-A1, O2-A1) and backup channels (F3-A2, 
C3-A2, O1-A2). These standardized recording protocols and 
sleep staging criteria were applied uniformly, enabling reliable 
pooling and comparative analyses of sleep variables relevant to 
depressive burden. 
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2.4 Covariates 

Collected covariates included age, sex, medical history, 
comorbidities, and current medications, allowing control for 
confounding factors during analyses. The consistent methodology 
across multiple U.S. clinical sites—including those overlapping 
between SADB and SAMDE in Minnesota and Ohio—facilitated 
robust, generalizable insights into the relationship between sleep 
characteristics and depression. 

2.5 PHQ-9 

The PHQ-9 (Kroenke and Spitzer, 2002; Kroenke et al., 2001) 
is a validated 9-item self-report questionnaire widely used in 
depression assessment (Maurer et al., 2018). Its 9 items align with 
the 9 DSM-5 criteria for a Major Depressive Episode (American 
Psychiatric Association, 2022). Item response options for each item 
range from “not at all” (score of 0) to “several days” (score of 1), 
“more than half the days” (score of 2), and “nearly every day” 
(score of 3), reflecting how often each symptom has bothered the 
respondent over the past 2 weeks. The PHQ-9 total score for the 
nine items ranges from 0 to 27. The scores 5, 10, 15, and 20 
represent the cutoffs for mild, moderate, moderately severe, and 
severe depression symptoms, respectively. 

A cutoff of 10 or greater is a widely used threshold to screen 
for current Major Depressive Episode (cMDE). A recent and 
comprehensive Individual Participant Data Meta-analysis (Negeri 
et al., 2021), including approximately 44,500 participants, evaluated 
the accuracy of PHQ-9 to detect a cMDE through comparisons 
with the reference standard. Compared to reference standards, 
sensitivity and specificity for a cut-off of ≥ 10 ranged from 0.67 
to 0.88 and from 0.86 to 0.88, respectively. Specifically, compared 
to semi-structured psychiatric diagnostic interviews, sensitivity and 
specificity for a cutoff of ≥ 10 (95% CI) were 0.88 (0.82–0.92) 
and 0.86 (0.82–0.88). For fully structured interviews, sensitivity 
and specificity ranged from 0.67 (0.57–0.76) to 0.75 (0.66–0.82), 
and from 0.86 (0.80–0.90) to 0.88 (0.84–0.91). Overall, PHQ-9 
demonstrated satisfactory accuracy in depressive episode detection. 
Consistently, a score of ≥ 10 has been associated with an increased 
risk of major depression more than 2.6 times (Kroenke et al., 2001). 
Overall, based on the large body of scientific evidence concerning 
PHQ-9, this cutoff threshold (≥ 10) approach is advised as the most 
reliable for screening use in clinical practice and clinical trials (He 
et al., 2020). 

2.6 Sleep staging 

Sleep staging was performed using an automated system 
implemented via the STAGER software (Medibio Limited, Savage, 
MN, USA). This tool processes polysomnographic recordings 
stored in EDF format by focusing on EEG signals from six pre-
selected channels. The recordings are first segmented into 30-s 
epochs, during which a detailed spectral analysis is performed to 
compute absolute and relative power values across key frequency 
bands. These features are then input into a pipeline of machine 

learning and deep learning algorithms. Initially, a convolutional 
neural network and gradient-boosting machine learning algorithms 
are used, followed by two additional temporal-aware models, such 
as recurrent neural networks. An ensemble method integrates the 
outputs from these classifiers to assign each epoch to one of the five 
standard sleep stages (wake, N1, N2, N3, and REM) in accordance 
with the American Academy of Sleep Medicine (AASM) guidelines 
(American Academy of Sleep Medicine, 2023). Prior to analysis, 
the software requires the entry of lights-off and lights-on times to 
accurately delineate the sleep period. The performance of STAGER 
has been validated in a recent study (Grassi et al., 2023). In 40 
clinical PSGs, STAGER’s automatic staging achieved an overall 
percentage agreement of 83.8% (95 % CI = 82.3%−85%) vs. the 
majority vote of three AASM-certified technicians, with a Cohen’s 
κ of 0.78 (substantial agreement). Stage-specific positive-percent-
agreement was 90.7% for REM, 89.7% for N2, 87.3% for N3, 81.6% 
for Wake, and 51% for N1; except for a modest drop in Wake 
sensitivity, these values were statistically comparable to or higher 
than those obtained by individual human scorers. 

2.7 Odds ratio product 

The odds ratio product (ORP) is a continuous metric that 
quantifies sleep depth and wake propensity on a scale from 0 
(indicative of very deep sleep) to 2.5 (reflecting full wakefulness). 
Unlike conventional sleep staging, which classifies sleep in discrete 
30-s epochs, ORP is computed every 3 s from EEG recordings, 
allowing for a much more refined temporal resolution of sleep 
dynamics (Younes, 2023). In brief, the method initially applies a 
fast Fourier transform to brain wave bands from 0.33 Hz to 60 Hz in 
non-overlapping 3-s epochs. Then, the power across four frequency 
bands (Alpha 7.3–14.0 Hz, Beta 14.3–35.0 Hz, Delta 0.3–2.3 Hz, and 
Theta 2.7–6.3 Hz) is evaluated. For each band, the power is ranked 
into deciles based on a normative dataset derived from a broad 
array of clinical polysomnograms. These decile scores are then 
concatenated to form a unique four-digit “bin” number for each 
epoch. A lookup table, constructed from the frequency of these 
patterns during wake and arousal, converts the bin number into a 
probability that is normalized (by dividing by 40) to yield an ORP 
value between 0 and 2.5. 

This continuous measure enables the detection of subtle 
transitions between sleep and wake states that are not discernible 
with traditional, categorical staging. In addition, because ORP 
captures variations in sleep depth within the same conventional 
stage, it provides an enriched depiction of the sleep architecture. 
For example, a strong association between ORP values and the 
probability of spontaneous arousal in the subsequent epoch has 
been found, underscoring its validity as a sensitive indicator of 
sleep stability and depth (Younes et al., 2015). ORP can be 
graphically displayed as an epoch-by-epoch trace across the night, 
or summarized as average values within traditional sleep stages, and 
even as the percentage of total recording time spent in defined ORP 
ranges. These features offer significant advantages, particularly 
in clinical research, where they can help identify subtle sleep 
abnormalities that may underlie various sleep disorders or predict 
therapeutic outcomes. 
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In our study, the ORP value was computed for each non-
overlapping 3-s epoch throughout the entire polysomnographic 
recording, from lights-off to lights-on, using the central 
EEG channels (C4-A1 and C3-A2) among the six channels 
recommended by the AASM guidelines (Younes, 2023). These 
computations were performed via the API provided by Cerebra 
Medical LTD. (Winnipeg, CA). 

For the entire polysomnographic recording, the mean ORP and 
its standard deviation were computed and used in the statistical 
analyses. Additionally, the mean and standard deviation of ORP 
for each sleep stage (Wake, N1 + N2, N3, and REM) were 
also calculated and incorporated into the analyses. N1 has been 
incorporated into N2 (sometimes collectively referred to as light 
sleep). Algorithmically, despite merging N1 and N2, the STAGER 
software can differentiate each stage by identifying the presence of 
spindle bands and K-complex. 

Epochs in which the Cerebra API identified problems in the 
EEG signal (e.g., artifacts, noise, lack of signal) that prevented 
a correct ORP calculation, as well epochs the STAGER software 
staged as non-classified (U) for similar problems in the EEG signal, 
were excluded from the analysis. 

2.8 Statistical analysis 

We conducted statistical analyses to assess the associations 
between the mean and standard deviation of ORP during the whole 
PSG and two depression outcome measures: the total PHQ-9 score 
(continuous variable), and a dichotomized PHQ-9 score based on 
the conventional cut-off of 10 (that is, ≥10). We applied linear 
regression for the continuous PHQ-9 score and logistic regression 
for the PHQ-9 cut-off of 10. 

To account for potential non-linear relationships, both linear 
and quadratic terms for the ORP variables were included in 
the analyses. Age and sex were included as covariates in all 
models to adjust for potential confounding effects and isolate the 
residual association between ORP and depression measures. The 
independent variables were mean-centered prior to model fitting, 
and quadratic terms were computed after centering. This approach 
reduces multicollinearity between the linear and quadratic terms 
and enhances the interpretability of regression coefficients of the 
ORP variables. 

If a subject never exhibited a particular sleep stage or if 
EEG signal problems during certain epochs made it impossible 
to calculate the ORP, then the ORP variables for that sleep stage 
were deemed uncalculable for that individual. Consequently, these 
instances were excluded from the analysis of the ORP variable for 
those epochs. As a result, the overall number of epochs for certain 
sleep stages may be smaller than the total sample size used in the 
analysis of the entire PSG. 

Data were collected from multiple sleep centers, each of 
which potentially differed in equipment, protocols, and patient 
characteristics. Therefore, we evaluated both fixed-effects and 
mixed-effects models to determine if center-related variability 
should be incorporated into our analyses. To this end, we developed 
a grouping variable by aggregating centers based on their state 
location and management by the same organization, as centers 

under the same organization typically followed similar protocols 
and utilized the same PSG system. One exception was a Texas 
center (TX) where a subset of PSG recordings was performed using 
an alternative system; these recordings were assigned a distinct 
level within the grouping variable (TA). Because both SADB and 
SAMDE employed naturalistic recruitment and shared similar 
protocols, the study of origin was not treated as a separate factor 
in this grouping. 

For each independent-dependent variable combination, we 
evaluated four model structures: 1) Fixed-effects model (no random 
effects); 2) Mixed-effects model with a random intercept; 3) 
Mixed-effects model with a random intercept and a random 
slope for the independent variable; 4) Mixed-effects model with 
random effects for the intercept, independent variable, and 
covariates. All mixed-effects models were initially fitted using 
Maximum Likelihood (ML) to ensure comparability between 
models, including the fixed-effects model. For mixed-effects models 
with more than one random effect (models 3 and 4), we tested 
three different covariance structures for the random effects: 
independent, diagonal, and full covariance matrix. Model selection 
was guided by the Akaike Information Criterion (AIC), which 
balances model complexity against goodness-of-fit by penalizing 
unnecessary parameters. The model with the lowest AIC was 
considered the most parsimonious and best-fitting for each 
independent-dependent variable pairing. If a mixed-effects model 
was selected as the best model, it was refitted using Restricted 
Maximum Likelihood (REML) to obtain more accurate estimates 
of variance components. 

To assess the association between each ORP independent 
variable and the total PHQ-9 score (linear regression), 
statistical significance was evaluated using the t-test for 
the regression coefficient. The regression coefficient itself 
was used to quantify the direction of the association, while 
the standardized regression coefficient (β coefficient) was 
computed to facilitate the interpretation of the magnitude 
of the effect. We also quantified the additional variance 
explained by the ORP terms as the change in the coefficient 
of determination (R²), calculated by subtracting the R² of  
the covariate-only model from the R² of the full model that 
included both covariates and the two ORP terms (R² = R²full 
– R²covariates). 

For the association between each ORP independent variable 
and the PHQ-9 cut-off 10 outcomes (logistic regression), 
statistical significance was assessed using the z-test for the 
regression coefficient. Also in this analysis, the regression 
coefficient itself was used to quantify the direction of the 
association, while the standardized regression coefficient (β 
coefficient) was computed to facilitate the interpretation 
of the magnitude of the effect. We also assessed the gain 
in discriminative ability by computing the change in the 
area under the receiver-operating characteristic curve 
(AUC), defined as the difference between the AUC of 
the full model (covariates + ORP terms) and that of the 
covariate-only model. 

All statistical analyses were performed using Python (version 
3.12.1; Python Software Foundation, 2024). Statistical significance 
was set at α = 0.05. 
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FIGURE 1 

Participant selection flow diagram. 

3 Results 

3.1 Descriptive statistics 

Of the 864 PSG initially available for this study, 829 were finally 
included in the analysis (292 from the SADB study, 232 from the 
SAMDE Phase 1 study, and 305 from the SAMDE Phase 2 study; 
Figure 1). Thirty-two were excluded from the analysis because the 
Sex was not provided by the subject (29 from the SAMDE Phase 
1 study) or was indicated by the subjects as “other” (2 from the 
SAMDE Phase 2 study and 1 from the SAMDE Phase 1 study). 
Moreover, three additional subjects were excluded because age was 
missing (2 from the SADB study and 1 from the SAMDE Phase 1 
study). Descriptive statistics for the entire sample are summarized 
in Table 1. 

Participants were grouped into seven distinct groups based on 
their recruitment centers, which have been used in the random-
effect models: Minnesota (MN) with 262 subjects, South Carolina 
(SC) with 202 subjects, Texas (TX) with 121 subjects, North 
Carolina (NC) with 113 subjects, Ohio (OH) with 107 subjects, 
the alternative PSG machine in Texas (TA) with 14 subjects, and 
Florida (FL) with 10 subjects. Descriptive statistics stratified by 
recruitment center are summarized in Supplementary Tables S2 
and S3 in the Supplementary materials. 

Descriptive statistics for the entire sample and stratified by 
recruitment center are summarized in Table 1. 

3.2 Assessing the role of age and sex as 
covariates in the ORP-depression 
association 

To assess the appropriateness of including age and sex as 
covariates, we first examined their association with depressive 
symptoms. In all models tested—including linear regression 
models using the PHQ-9 total score as the dependent variable and 
logistic regression models using a dichotomized PHQ-9 cutoff of 

10—both age and sex were significantly associated with depression 
outcomes (all p-values <0.001). Age was negatively associated 
with depressive symptoms, indicating a decrease in symptom 
severity with increasing age. Furthermore, female participants 
exhibited higher levels of depressive symptoms compared to 
males. Full results are available in the Supplementary materials 
(Supplementary Tables S4–S9). 

3.3 Model selection and center effects 

The analysis examined the associations between the mean and 
standard deviation of ORP during the whole PSG and depression 
severity, as measured by the PHQ-9 total score (linear regression) 
and the dichotomized PHQ-9 based on a conventional cut-off score 
of 10 (logistic regression). Linear regression models were applied to 
the continuous PHQ-9 score, while logistic regression models were 
used for the dichotomized PHQ-9 outcome. 

For all analyses, model selection based on the Akaike 
Information Criterion (AIC) consistently favored the fixed-effects 
model over the mixed-effects alternatives. Despite data being 
collected from multiple sleep centers, the variability between 
centers did not seem to substantially influence the associations 
between ORP and PHQ-9 outcomes. The lack of a significant center 
effect indicates that the relationships observed are robust across 
different clinical settings and are unlikely to be driven by site-
specific differences in equipment, protocols, or patient populations. 
Complete results, including the AIC values for all models, are 
provided in the Supplementary materials (Supplementary Tables S6 
and S7). 

3.4 Association of PHQ-9 with mean ORP 

For the linear regression models, the mean ORP during the 
whole PSG (from light-off to lights-on) showed no significant 
linear association with PHQ-9 total scores (β = 0.022, p = 0.521). 
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TABLE 1 Descriptive statistics for full sample. 

Property Total sample (n = 829) 

Mean/number§ std 
dev/%§ 

Age (years) 43.49 13.74 

Females 424§ 48.85§ 

Body mass index (BMI) 32.40 8.87 

BMI, underweight and healthy 
weight (BMI of 24.9 or less) 

149§ 16.04§ 

BMI, overweight (BMI of 25–29.9) 232§ 17.97§ 

BMI, obesity (BMI of 30–39.9) 315§ 38.00§ 

BMI, severe obesity (BMI of 40 or 
more) 

133§ 27.99§ 

Total sleep time (hours) 5.47 1.20 

Apnea-hypopnea Index 15.64 20.53 

Sleep efficiency 79.24 14.48 

SpO2 < 88% (percentage) 4.24% 11.29% 

Respiratory arousal index 11.71 16.13 

Periodic leg movement arousal 
index 

1.30 3.31 

Spontaneous arousal index 7.84 6.08 

Total arousal index 21.14 16.94 

PHQ-9 total score 8.17 5.75 

avg ORP all stages 1.27 0.31 

avg ORP N1 + N2 1.12 0.30 

avg ORP N3 0.60 0.26 

avg ORP REM 1.41 0.36 

avg ORP wake 2.17 0.18 

std dev ORP all stages 0.57 0.12 

std dev ORP N1 + N2 0.40 0.08 

std dev ORP N3 0.21 0.07 

std dev ORP REM 0.26 0.07 

std dev ORP wake 0.20 0.08 

Avg, average; N1, Non-REM Sleep Stage 1; N2, Non-REM Sleep Stage 2; N3, Non-REM 
Sleep Stage 3; ORP, Odds Ratio Product; PHQ-9, Patient Health Questionnaire, 9 items 
(major depression module); REM, Rapid Eye Movement; std dev, standard deviation; §Values 
indicate frequencies and percentages. 

However, a significant positive quadratic relationship was detected 
(βquadratic = 0.078, p = 0.001), suggesting that the relationship 
follows a U-shaped or convex pattern (Figure 2). Since the variables 
were mean-centered, this indicates that individuals with either 
higher (shallower sleep) or lower (deeper sleep) mean ORP values 
across the night were more likely to experience higher depression 
scores than individuals with average mean ORP values during the 
whole PSG. 

When considering specific sleep stages, mean ORP during N1 + 
N2 also exhibited a non-significant linear relationship (β = 0.016, 
p = 0.625), but a positive significant quadratic effect was present 
(βquadratic = 0.073, p = 0.003) that indicates a similar U-shaped 

relationship as observed above. Instead, the mean ORP in N3 
showed a significant positive linear association with PHQ-9 scores 
(β = 0.12, p = 0.004), but no significant quadratic relationship 
(βquadratic = 0.0, p = 0.991), signifying that as the mean ORP 
in N3 increases indicating shallower sleep in N3, individuals are 
expected to have higher PHQ-9 total scores (Figure 3). These 
findings suggest that ORP levels in N3 sleep might follow a more 
straightforward linear association with depression severity, whereas 
the relationship follows a quadratic trajectory for N1 + N2 and 
overall sleep stages. Finally, no significant association resulted for 
the mean ORP during the REM stage and during Wake epochs with 
the PHQ-9 total score. 

All significant associations in the linear regression models could 
be interpreted as of small magnitude based on the conventional 
effect size interpretations that consider a β of 0.1 as indicative of 
a small effect (Cohen, 1988). 

For the logistic regression models, in which a dichotomized 
PHQ-9 total score as above or below the threshold of 10 was used as 
the dependent variable, mean ORP during the whole PSG did not 
exhibit a significant linear relationship with increased depression 
risk (β = 0.042, p = 0.589), though a significant positive quadratic 
association was observed (βquadratic = 0.248, p = 0.001), indicating 
a potential U-shaped relationship. This indicates that individuals 
with either higher or lower mean ORP values are at a higher risk 
of having a PHQ-9 total score above the threshold of 10 than 
individuals with average mean ORP values during the whole PSG. 

Similarly, for N1+N2, the linear effect was non-significant (β 
= 0.02, p = 0.793), whereas a significant positive quadratic effect 
was found (βquadratic = 0.233, p = 0.002) that indicates a U-
shaped relationship as observed above. In contrast, mean ORP in 
N3 showed a significant linear association with higher odds of 
having PHQ-9 scores above 10 (β = 0.255, p = 0.020), but the 
quadratic term was not significant (βquadratic = 0.041, p = 0.668). 

All significant associations in the logistic regression models 
could be interpreted as having a small magnitude based on 
conventional standards, as a β below 0.3 is usually indicative of a 
small effect (Cohen, 1988). 

These results highlight a complex relationship between mean 
ORP and PHQ-9. While ORP in deep sleep (N3) shows a more 
direct association with depression scores, ORP in lighter sleep 
stages (N1 + N2) and during the whole PSG exhibits non-linear, 
U-shaped patterns. Complete results are reported in Tables 2, 3. 

3.5 Association of PHQ-9 with standard 
deviation ORP 

For the standard deviation of ORP, the results were more 
nuanced. For the linear regression models, the standard deviation 
of ORP during the whole PSG exhibited a significant negative 
linear association with PHQ-9 total score (β = −0.104, p = 0.002), 
indicating that lower variability in ORP during the whole PSG was 
associated with higher depression severity. However, no significant 
quadratic relationship was found (βquadratic = −0.019, p = 0.422). 
When examining specific sleep stages, the standard deviation of 
ORP in N1 + N2 showed no significant linear (β = −0.031, p = 
0.380) or quadratic (βquadratic =−0.022, p = 0.393) association with 
PHQ-9 total score. In contrast, the standard deviation of ORP in N3 
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FIGURE 2 

U-shaped relationship of mean ORP in whole polysomnography with PHQ-9 score. Gray circles show each participant’s mean ORP across the entire 
polysomnography (0 = very deep sleep, 2.5 = full wakefulness) against their total PHQ-9 score. The solid blue line represents values predicted by the 
best-fitting age- and sex-adjusted fixed-effects quadratic regression; the translucent band is the 95% confidence interval. The linear term was not 
statistically significant, whereas the quadratic term was positive and significant, yielding a U-shaped curve. This indicates that both higher (shallower 
sleep) and lower (deeper sleep) mean ORP values are associated with higher depressive-symptom burden. 

displayed a significant positive linear association with PHQ-9 total 
score (b = 0.095, p = 0.020), indicating that lower variability in 
ORP during N3 was associated with lower depression. No quadratic 
relationship was found (βquadratic = −0.001, p = 0.949). Finally, 
no significant association resulted for the standard deviation of 
ORP during the REM stage and during Wake epochs with PHQ-9 
total score. 

As for mean ORP, all significant associations in the linear 
regression models for the standard deviation of ORP could be 
interpreted as of small magnitude based on the conventional effect 
size interpretations that consider a b of 0.1 as indicative of a small 
effect (Cohen, 1988). 

For the logistic regression models, a significant negative linear 
association of small magnitude (Cohen, 1988) was observed with 
the standard deviation of ORP during the whole PSG (β =−0.227, 
p = 0.005), indicating that higher variability in ORP was associated 
with a lower likelihood of depression scores above 10. However, no 
quadratic association was found (βquadratic = −0.077, p = 0.333). 
For N1 +N2, N3, REM, and Wake, no significant associations were 
found for either the linear or quadratic terms. 

These findings underscore a nuanced association between 
the variability of ORP and depression. Specifically, the standard 
deviation of ORP during the whole PSG was significantly and 
negatively associated with PHQ-9 scores in linear regression 
models, suggesting that greater overall variability is linked to 
lower depression severity, albeit with a small effect size. In 
contrast, variability during deep sleep (N3) showed a trend 
toward a positive association with depression, while no significant 

associations emerged in lighter sleep stages (N1 + N2), REM, 
or Wake periods, and no quadratic effects were observed in any 
model. Consistent with these findings, logistic regression revealed 
a significant negative linear association during the whole PSG. 
Complete results are reported in Tables 2, 3. 

4 Discussion 

Our study aimed to investigate whether and how depressive 
symptom severity is associated with the Odds Ratio Product (ORP), 
a sensitive EEG-derived index of sleep depth and arousability, 
across different sleep stages. We examined this relationship in 
a large cohort of individuals referred for sleep-wake disorder 
evaluations at multiple sleep centers (SCs) across the United States. 
This work addresses a critical gap, as no prior studies have assessed 
ORP in relation to depressive symptoms, despite known challenges 
in detecting non-linear or heterogeneous sleep alterations in 
depression using conventional PSG metrics. 

Our primary finding was a significant quadratic (U-shaped) 
association between PHQ-9 scores and mean ORP across the full-
night PSG (Figure 2). Both high and low ORP values were linked 
to elevated depression scores, suggesting that individuals with 
depressive symptoms may exhibit either hyperarousal (high ORP) 
or hypersomnolence (low ORP) phenotypes. This is consistent 
with the well-documented heterogeneity of sleep disturbances 
in depression, which can include both insomnia-like symptoms 
(e.g., increased fragmentation, prolonged sleep latency) and 
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FIGURE 3 

Linear relationship of mean ORP in N3 with PHQ-9 score. Gray circles show each participant’s mean ORP during stage N3 (0 = very deep sleep, 2.5 = 
full wakefulness) against their total PHQ-9 score. The solid blue line represents values predicted by the best-fitting age- and sex-adjusted 
fixed-effects quadratic regression; the translucent band is the 95% confidence interval. The linear term reached statistical significance, while the 
quadratic term did not; consequently, the fitted relationship is strictly linear. This indicates that higher (shallower sleep) mean ORP values are 
associated with higher depressive-symptom burden. 

hypersomnia (e.g., increased total sleep time, excessive sleep depth) 
depending on subtype and individual variability (Geoffroy et al., 
2018; Selvi et al., 2018). 

Stage-specific analysis further supported this interpretation. A 
similar U-shaped relationship emerged between PHQ-9 scores and 
ORP in N1 + N2, while a positive linear association was observed 
in N3 (Figure 3), indicating that lighter deep sleep (higher ORP 
in N3) was associated with more severe depressive symptoms. 
These results align with evidence that depression is frequently 
accompanied by reduced slow-wave sleep (SWS) and diminished 
slow-wave activity (SWA), contributing to poor sleep quality, 
memory deficits, and emotional dysregulation (Benca et al., 1992; 
Armitage et al., 1992; Plante et al., 2012). No significant associations 
were found in REM or wake epochs. The lack of ORP correlation 
with REM may be attributable to unmeasured pharmacologic 
effects, particularly antidepressants, which are known to suppress 
REM duration and prolong REM onset latency (Wilson and 
Argyropoulos, 2005), though medication data were not available in 
this cohort. 

We also observed a small but statistically significant negative 
linear relationship between the standard deviation of ORP over the 
entire PSG and PHQ-9 scores (Cohen, 1988), indicating that lower 
ORP variability may be associated with greater depressive symptom 
severity. This effect was most evident in N3 sleep. In contrast, no 
significant variability-related findings were observed in N1 + N2, 
REM, or wake stages. Reduced variability could reflect impaired 
sleep-state transitions or diminished neurophysiological flexibility 
in individuals with depression. 

Our models adjusted for key demographic covariates. Age 
was negatively associated with PHQ-9 scores, consistent with 
epidemiological evidence of decreasing symptom severity with 
age. Female participants reported significantly higher depressive 
symptoms than males, reflecting well-established gender disparities 
in depression prevalence and onset, particularly emerging around 
puberty (Rahman et al., 2015). 

Although the dataset included participants from multiple 
SCs, no meaningful center-level differences were observed 
in the association between ORP and depressive symptoms, 
supporting the generalizability of our findings across varied clinical 
environments. Nevertheless, future research should continue to 
examine whether institutional protocols, regional practices, or 
demographic differences contribute to site-specific variation. 

In sum, our findings highlight ORP’s potential as a sensitive, 
objective marker of depressive symptomatology, capable of 
capturing both hyperarousal and hypersomnolence within sleep 
architecture. This may inform the development of automated, 
physiology-based screening tools that passively detect depressive 
risk during standard PSG, addressing persistent gaps in depression 
recognition in sleep clinic settings. 

5 Limitations 

This study presents several limitations that should be 
considered when interpreting the findings. First, the retrospective 
design and reliance on data from two distinct studies may 
introduce heterogeneity due to variations in recruitment 
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TABLE 2 Association between ORP average values during overall and specific sleep stages and PHQ-9. 

PHQ-9 total score 
(Linear model) 

Linear term Quadratic term 

N b β p-value (t) b β p-value (t) R2 R2 

increase 

avg ORP all stages 829 0.400 0.022 0.521 4.6241 0.078 0.001∗ 12.2% 1.2% 

avg ORP N1 + N2 829 0.318 0.017 0.625 4.7361 0.073 0.003∗ 12.1% 1.1% 

avg ORP N3 790 2.623 0.120 0.004∗ 0.0191 0.000 0.991 13.6% 1.4% 

avg ORP REM 783 0.203 0.013 0.714 2.2185 0.049 0.082 13.1% 0.3% 

avg ORP wake 829 0.447 0.014 0.75 2.9756 0.017 0.458 11.1% 0.1% 

PHQ-9 >= 10 
(Logistic model) 

Linear term Quadratic term 

N b β p-value (t) b β p-value (t) AUROC AUROC 
increase 

avg ORP all stages 829 0.134 0.042 0.589 1.879 0.248 0.001∗ 0.681 0.019 

avg ORP N1+N2 829 0.067 0.02 0.793 1.94 0.233 0.002∗ 0.678 0.017 

avg ORP N3 790 0.856 0.225 0.023∗ 0.291 0.041 0.668 0.688 0.015 

avg ORP REM 783 0.058 0.021 0.795 0.623 0.094 0.226 0.676 0.001 

avg ORP wake 829 −0.048 −0.009 0.932 1.188 0.071 0.448 0.664 0.003 

avg, average; AUROC, Area Under the Receiver Operating Characteristic Curve; b, unstandardized linear regression coefficient; N, number of subjects included in the analysis; N1, Non-REM 
Sleep Stage 1; N2, Non-REM Sleep Stage 2; N3, Non-REM Sleep Stage 3; OR, Odds-Ratio; ORP, Odds Ratio Product; PHQ-9, Patient Health Questionnaire, 9 items (major depression module); 
REM, Rapid Eye Movement; t, t-test; β, standardized linear regression coefficient; ∗p < 0.05 (bolded values are significant). 

TABLE 3 Association between ORP standard deviation values during overall and specific sleep stages and PHQ-9. 

PHQ-9 total score 
(Linear model) 

Linear term Quadratic term 

N b β p-value (t) b β p-value (t) R2 R2 

increase 

sd ORP all stages 829 −5.072 −0.104 0.002∗ −7.781 −0.019 0.422 12.0% 1.0% 

sd ORP N1 + N2 829 −2.202 −0.031 0.38 −18.718 −0.022 0.393 11.2% 0.2% 

sd ORP N3 790 7.720 0.095 0.02∗ −1.232 −0.001 0.949 13.0% 0.8% 

sd ORP REM 783 −1.525 −0.018 0.59 3.017 0.002 0.897 12.8% <0.1% 

sd ORP wake 829 0.582 0.008 0.837 51.268 0.053 0.023∗ 11.8% 0.6% 

PHQ-9 >= 10 
(Logistic model) 

Linear term Quadratic term 

N b β p-value (t) b β p-value (t) AUROC AUROC 
increase 

sd ORP all stages 829 −1.929 −0.227 0.005∗ −3.925 −0.077 0.333 0.674 0.013 

sd ORP N1 + N2 829 −0.234 −0.019 0.815 0.872 0.008 0.931 0.662 <0.001 

sd ORP N3 790 2.172 0.153 0.117 6.134 0.073 0.465 0.680 0.007 

sd ORP REM 783 −0.334 −0.023 0.775 0.563 0.005 0.955 0.675 <0.001 

sd ORP wake 829 0.391 0.03 0.73 16.93 0.16 0.062 0.668 0.007 

AUROC, Area Under the Receiver Operating Characteristic Curve; b, unstandardized linear regression coefficient; N, number of subjects included in the analysis; N1, Non-REM Sleep Stage 1; 
N2, Non-REM Sleep Stage 2; N3, Non-REM Sleep Stage 3; OR, Odds-Ratio; ORP, Odds Ratio Product; sd, standard deviation; PHQ-9, Patient Health Questionnaire, 9 items (major depression 
screening module); REM, Rapid Eye Movement; t, t-test; β, standardized linear regression coefficient; ∗ p < 0.05 (bolded values are significant). 
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periods, clinical settings, and polysomnographic equipment, 
potentially affecting the results. However, this approach provides 
a more naturalistic picture, enhancing the generalizability of 
the findings. Second, while the PHQ-9 is a validated tool for 
assessing depressive symptoms, its use as a self-report measure 
is subject to biases and may not capture the full spectrum of 
depressive disorders, particularly in populations with comorbid 
conditions. This could lead to less reliable correspondence 
between subjective and objective measures. Third, the automated 
sleep staging and ORP computations, though efficient, depend 
on EEG signal quality; epochs with artifacts or signal loss 
were excluded, which might have led to data attrition and 
potential bias. Furthermore, the inclusion of participants on 
various psychotropic medications, without monitoring due 
to unavailable data, introduces potential confounding effects, 
as these medications can influence both sleep architecture 
and depressive symptomatology. Lastly, while mixed-effects 
models were employed to account for center-related variability, 
unmeasured confounding factors inherent to each site may still 
influence the results. Moreover, although our analyses were 
adjusted for the key demographic confounders of age and sex, we 
acknowledge that other potential influences, such as body mass 
index, comorbid sleep-disordered breathing, education, or the 
use of psychotropic and hypnotic medications, were not fully 
accounted for. Therefore, some residual confounding cannot be 
entirely dismissed in this initial study. These limitations will be 
addressed in future research. 

6 Conclusion  

Our findings highlight the potential utility of ORP analysis 
in clinical sleep settings as a non-invasive marker for depression 
severity. Given that ORP can be derived directly from standard 
PSG data, its integration into routine sleep assessments may 
enhance the identification of clinically significant depressive 
symptoms. Moreover, the observed patterns of ORP variability 
open promising avenues for developing machine learning models 
capable of screening for depressive burden based on sleep 
architecture and EEG-derived metrics. This approach could 
facilitate more personalized and efficient diagnostic pathways 
within sleep clinics, especially in populations presenting with sleep-
wake disturbances. 
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