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A large proportion of new energy generation is integrated into the power

grid, making it di�cult for the power grid system to maintain reliable, stable,

and e�cient operation. To address these challenges, this article proposes a

multiple microgrid hierarchical optimization structure based on energy routers

as the core equipment for energy regulation within microgrids. Considering

the uncertainty of renewable energy generation within microgrids, a two-

layer energy management bidding strategy based on risk indicators is further

proposed. In the process of trading, with the goal ofmaximizing a comprehensive

economy, the energy trading model of the distribution network center and

energy routers is divided into two sub-objectives for solving. In the first stage,

based on the interests and energy supply and demand relationships of each

microgrid, a risk assessment model considering wind and solar uncertainty is

established to determine the risk preferences and expected returns of each

microgrid. In the second stage, the original problem is decomposed into two

sub-problems: the minimum cost sub-problem and the maximum transaction

volume sub-problem. An asymmetric bargaining mechanism is adopted to

determine the production and sales payment of the microgrid containing energy

routers based on the contribution values of energy routers in each microgrid.

Finally, the rationality and e�ectiveness of energy routers as an intelligent

decision-maker in energy optimization are verified in a three-node system.

KEYWORDS

electricity market, multi-microgrids, conditional value at risk, scenery absorption,

energy routers

1 Introduction

With the vigorous development of society, the level of human industrialization

is increasing, and environmental pollution problems are becoming increasingly

serious. To solve the contradiction between human energy utilization and the living

environment, governments around the world are vigorously promoting the development

of renewable energy. To promote the clean and low-carbon transformation of

energy, advance the energy revolution, and improve energy efficiency, transforming

traditional power systems into new smart power systems is urgent to meet the growth

needs of clean and renewable energy (Hasankhani et al., 2021; Wei et al., 2021).
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The new smart power system can effectively integrate renewable

energy, thereby promoting the development of clean energy. In

the new smart power system, promoting the development of the

new power system by actively developing smart microgrids that

mainly consume new energy and achieving compatibility and

complementarity with the large power grid has become a key point

(Xiao, 2023; Xiaofan and Zhong, 2024).

In the new smart microgrid, the electricity market is no longer

monopolized by a few large power companies but the utilization

of advanced power electronics and information communication

technology to achieve distributed energy trading (ET) (Nan, 2023;

Xinyan et al., 2023). So, the emerging concept of the Internet of

Energy (IoE) was proposed, which can effectively achieve efficient

scheduling, management, and trading of energy through digital,

intelligent, and integrated technological means (Mishra and Singh,

2023; Safari et al., 2023). As the execution terminal of the IoE,

energy routers (ERs) have the ability to provide plug-and-play

ports for distributed power sources, energy storage, loads, and

the like and provide a continuous power supply for important

loads in the area in case of a power outage with the distribution

network (Koottappillil et al., 2022). Meanwhile, ER can serve as

the core control device for energy microgrids, controlling the flow

of electricity to adapt to constantly changing energy demands and

scales (Deng et al., 2023; Liu et al., 2023; Zhichen and Yuan, 2023).

Therefore, it is of great significance to study the collaboration

problem of a microgrid with ERs (MGER) in the IoE for promoting

innovation and progress in the energy industry, improving the

security and flexibility of energy supply, and achieving a clean,

efficient, and sustainable energy system.

At present, a large amount of research has been conducted both

domestically and internationally on collaborative optimization and

ET of multiple microgrid systems. In the coordination of multiple

microgrid systems, peer-to-peer (P2P) ET has become a new

means of multiple microgrid trading, which is used for energy

interaction between microgrids (Jiang et al., 2023). Extensive

research has been conducted on ET models and structures in

existing literature (Sousa et al., 2019; Hongjun et al., 2022). Tushar

et al. (2020) proposed a P2P ET and reserve scheduling model

between multiple microgrids, which effectively reduces the cost

of independent operation of microgrids by utilizing the method

of Shapley value for profit distribution. However, the optimized

model structure in massive data sets increases the complexity of

decision-making and operational difficulty. Shukla et al. (2024)

established a P2P transaction revenue model between microgrids.

With the goal of maximizing the revenue of each microgrid, the

complex decision-making problem of massive high-dimensional

data and uncertainty was solved by multi-agent deep reinforcement

learning, and the optimization of external transactions and internal

devices between microgrid groups was achieved. However, the

previously mentioned multiple microgrid optimization is very

time-consuming in a multiple microgrid structure containing ERs

due to multi-energy coupling and complex game relationships

during ET between microgrids. It cannot effectively utilize the

identity of ERs as the “energy center” and “information center” of

the energy microgrid.

To fill this gap, Zheng et al. (2018) established a multi-

energy hub (EH) non-cooperative game model by modeling the

energy production equipment, energy conversion equipment, and

energy storage equipment in the EH. Each EH played a game

with other EHs with the minimum operating cost and used the

interior point method to obtain the optimal strategy, which can

significantly reduce the operating cost of each EH and improve the

system’s operational flexibility. Mingyong et al. (2022) proposed

an algorithm for adaptively selecting energy and paths based on

the non-linear characteristics of the transmission loss function

and load types. It helps select the path with the lowest cost by

exhaustively searching and comparing all feasible transmission

paths, achieving the transmission with the lowest loss. Du et al.

(2021) proposed a centralized energy routing algorithm for multi-

energy interconnected energy systems to achieve the minimal loss

of multi-energy flow. To achieve congestion-free transmission, two

priority sorting methods are proposed to determine the energy

transmission priority of multiple transactions based on quotation

and transaction volume. However, the essence of the centralized

energy routing algorithm is to place all computational burden on

the network control center, requiring the network control center to

have extremely high computing power.

Therefore, Guo et al. (2018, 2019a) proposed a decentralized

Dijkstra algorithm to solve the energy routing problem between

multiple ET pairs. Each designated ET pair uses the Dijkstra

algorithm to calculate the optimal transmission line from their own

perspective. However, it can only generate single-path solutions.

To reduce losses, some smaller capacity transmission lines may

be ignored, which may lead to network congestion. Koottappillil

et al. (2022) and Chenlei et al. (2023) explored the operation of

the energy internet and introduced a routing algorithm for ERs to

find the shortest loss route. First, the source router and the target

router are selected, and the algorithm is used to identify different

paths between the two routers for reducing the network congestion

and enabling the ER microgrid to allocate energy reasonably. The

operation mechanism of the previously mentioned comprehensive

energymicrogrid group is complex without considering the organic

connection between the MGER and the upper level microgrid. It

makes the collaborate and optimize operation between microgrid

groups difficult, which is not conducive to the development of the

comprehensive energy microgrid group system containing ERs.

Guo et al. (2019b) proposed a discrete bias minimum consensus

algorithm to discover the optimal power source candidate with the

lowest power loss considering the bidirectional ET between ERs

and distribution networks, as well as the role exchange between

distribution networks and router microgrids. Feng et al. (2019) and

Weifeng et al. (2021) proposed an energy management architecture

for ERs in specific scenarios, which utilizes the characteristics of

bidirectional energy flow, information monitoring, and remote

operation to achieve energy conservation and efficiency. However,

the disadvantage of ERs is that the ERs lack flexibility and

scalability, and the impact of uncertain factors such as the output

of wind turbines and photovoltaics among microgrids on energy

supply is not considered. Therefore, when considering the interests

and energy demands of MGER, it is necessary to seek a reasonable

collaborative optimization operation strategy to ensure the orderly

and reasonable energy interaction of ERs in the context of uncertain

wind and solar power output, maximizing social profits and

ensuring fairness in income distribution among microgrids.
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In response to the mentioned issues, this article proposes a

multiple microgrid bidding energy management strategy with ERs.

The methods proposed in this article can be summarized as follows:

1. This article proposes a multiple microgrid structure

containing ERs, which treats the multi-MGER as a multi-agent

system composed of ERs as intelligent individuals. The ER is

regarded as a public information and energy flow platform that

shares its activity information with the distribution network center.

2. Under this structure, this article proposes a comprehensive

energy microgrid optimization operation strategy based on

a conditional value at risk (CVaR) and Nash negotiation

model. This strategy aims to achieve the effectiveness and

rationality of energy interaction between MGER and distribution

networks while maximizing social welfare and ensuring fairness in

income distribution.

3. A CVaR-based master–slave distribution company profit

model is established to measure the risk of wind and solar

uncertainty. The contribution of microgrids to social welfare is

measured by the degree of loss of transaction costs of MGER.

Each microgrid conducts asymmetric bargaining based on the

size of social profit contribution to achieve fair distribution of

cooperative surplus.

Finally, the effectiveness of the proposed method is verified

through case analysis. The simulation results show that this method

can achieve the maximization of social profits for MGER in a

multiple microgrid structure. Based on the cooperation benefits of

microgrid alliances, the MGER can achieve fair energy distribution

in terms of social profit contribution. This provides a feasible

reference scheme for the operation decision-making of multiple

microgrid systems with ERs between economic benefits and

risk levels.

2 Modeling

When considering the mode of a distribution network center

and multiple microgrids containing ERs, the interaction mode

between the energy microgrid and the distribution network center

is expressed as a Stackelberg game model. As a leader, the

distribution network center provides pricing decisions to enable

energy microgrids to participate in energy management and

achieve maximum social profits. As an ER that follows the decision-

making changes of the distribution network center, there is only

a “black box” of output and usage. It shares energy configuration

through cooperation in the distribution network center. As a leader,

the distribution network center needs to make a choice between

expected profits and CVaR in order to maximize social profits. The

multiple microgrid structure with ERs is shown in Figure 1.

The distribution network center will incorporate all

participants’ ERs into the black box of the “power bank” for

unified management to achieve optimal energy supply between

interconnected multi-energy systems (MES). In addition to the

potential risks brought by the uncertainty of ER microgrids,

wind and solar power generation is considered to improve the

practicality of the model, and the uncertainty brought by risk

factors is considered in the distribution network center so that

the interconnected MES can control the overall risk level from an

overall perspective.

To clearly describe the coupling relationship of various energy

sources in ERs under multiple microgrids, a matrix approach

is adopted from the perspective of port devices to describe the

interrelationships and interactionmodes of electrical energy in ERs.

By linking the input, output, and conversion of electrical energy

together, constraints are imposed to simplify the calculation of

the distribution network center. It can simultaneously meet the

energy supply and distribution needs of microgrids at different time

periods. The energy conversionmatrix model is shown as follows in

Equations (1–3);

Z = XI (1)
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


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(2)

{

Xmn = amn � cmn

Xnn = ann � bnn
(3)

where Z, X, and I represent the port output power matrix, the

conversion coupling matrix, and the port input power matrix of

the ER, respectively. In the conversion coupling matrix X, Xnn on

the diagonal represents the network loss coefficient and distribution

coefficient of energy in the transformation, Xmn outside the

diagonal represents the conversion coefficients of energy between

device m and device n, and the conversion coefficient includes

energy allocation coefficient and energy efficiency coefficient;

a represents the energy allocation coefficient. If the sum of

coefficients for the same port equipment is 1, b is the port

energy conversion efficiency, and c is the energy transmission loss

coefficient.

3 MES mathematical model

3.1 Distribution network center decision
model

As a leader, the distribution network coordinates the

supply and demand of microgrids. When microgrids have a

purchasing demand for energy, the distribution network needs to

provide energy. When microgrids produce too much energy, the

distribution network needs to purchase electricity to increase the

penetration rate of new energy in the microgrid itself. It requires

retailers to coordinate with the distribution network when there

is a mismatch within the microgrid. Generally, the sales price is

lower than the purchase price to encourage production consumers

to arrange internal energy. However, in the coordination process,

microgrids themselves cannot have unlimited access to energy

during low-price periods, and the distribution network itself is not

an infinite functional system, which may lead to the collapse of the

power grid. So to achieve coordinated management and reduce
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FIGURE 1

Multi-energy system model.

the impact on Distribution Network (DN) , the goal of retailers

is to maximize social profits while controlling risk levels to cope

with uncertainty. The decision-making model of the distribution

network is shown as follows in Equations (4) and (9):

Pr = max
µit
Pb
,µt

Ps ,P
it
Pb
,piPs

T
∑

t=1

N
∑

i=1

π i
(

µt
DsP

i,t
Ps
-µt

DbP
i,t
Db

+ µ
i,t
Pb
Pi,t
Pb

)

+β

N
∑

i=1

Cvar (4)

µ
t,min
Pb

6 µ
i,t
Pb

6 µ
t,max
Pb

, ∀i ∈ N, ∀t ∈ T (5)

µ
t,min
Ps

6 µ
i,t
Ps

6 µ
t,max
Ps

, ∀i ∈ N, ∀t ∈ T (6)

T
∑

t=1

µ
i,t
Pb

/T 6 µ
i,t
Pb,ave

, ∀i ∈ N (7)

T
∑

t=1

µ
i,t
Ps/T > µ

i,t
Ps,ave

, ∀i ∈ N (8)

ζ i −

T
∑

t=1

(

µt
DsP

i,t
Ps − µt

DbP
i,t
Pb

+ µ
i,t
Pb
Pi,t
Pb

)

6 ηi,w + ηi,v, ∀i ∈ N, (9)

where i denotes the producer and seller measure, t denotes the

time measure, N denotes the total number of producers and

sellers, T the sum of all times, � denotes the total capacity of

producers and sellers, and π i denotes the probability that producers

and sellers are willing to take a risk when purchasing electricity.

β weighting factor for the producer-seller’s profit abandonment

at load shedding; ζ i auxiliary calculation of Value at Risk (VaR)

associated with the producer-seller; γ is the constraints associated

with the Lagrangian multiplier operator; ηi,w and ηi,v are the

wind and light conditions’ value-at-risk indicators, respectively;

µt
Ds is the price of energy purchased by producers and sellers

from the distribution grid network; µt
Db

is the price of energy

sold by producers and distributors to the distribution network; µi,t
Pb
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is the price of energy sold by producers and distributors to the

distribution network; Pi,tPs is the producers and sellers selling to the

distribution grid energy; Pi,t
Db

is producers and sellers purchasing

energy from the distribution grid network; µ
t,min
Pb

and µ
t,max
Pb

are

the upper and lower bounds, respectively, on the sale of energy

from producers and sellers in the distribution network; µ
t,min
Ps

and µ
t,max
Ps

are the upper and lower bounds, respectively, for the

purchase of energy from producers and sellers in the distribution

network;µi,t
Pb,ave

is the average price of energy sold by producers and

distributors to consumers; and µ
i,t
Ps,ave

is the average price of energy

sold by producers and distributors to the distribution network.

Equation (4) is the objective function, which consists of two

components: (1) the expected retailer’s revenue (the expected

revenue from sales to production consumers minus the expected

cost of purchases from the DN) and (2) the trade-off between

the expected revenue and the risk (CVaR multiplied by the

weighting parameter β). A larger value of β implies a greater

preference for risk aversion. Lower values of β are chosen to obtain

higher revenues to reduce expected costs. In contrast, conservative

retailers tend to choose larger values of β to increase the weight of

risk aversion. Constraints 5 and 6 constrain the transaction price

offered to consumers to the interval. To limit the retailer’s market

power, Constraints 7 and 8 set the daily average price to impose the

retail price. In the process of operation, the agreement is assumed to

have an impact on retailers and production consumers. The impact

of value β on the revenue can be calculated through Constraint 9.

3.2 ER decision model

As an ER microgrid that changes with the response of the

distribution network, ERs participate in the production and

distribution of energy. Therefore, ERs are referred to as producers

and sellers. As followers that change with the response of the

distribution network, ERs determine their transactions based on

changes in risk and operating costs:

Pi,t
Pb
,Pi,tPs ∈ arg

{

max

N
∏

i=1

(

Ci
Non

(

xiNon
)

-
(

Ci
Tra

(

xiTra
)

+CeiPay

))αi

(10)

Ci
Non

(

xiNon
)

=

T
∑

t=1

[

µ
i,t
Pb
Pi,t
Pb
-µi,t

PsP
i,t
Ps+c

i
E

(

Pi,tEc+P
i,t
Ed

)]

, ∀i ∈ N (11)

Ci
Tra

(

xiTra
)

=

T
∑

t=1

[

µ
i,t
Pb
Pi,t
Pb
-µi,t

PsP
i,t
Ps+c

i
E

(

Pi,tEc+P
i,t
Ed

)]

, ∀i ∈ N (12)

Pi,t
Pb

+ Pi,tGen + Pi,t
Ed

= Pi,tPs + Pi,t
load

+ Pi,tEc : λ
i,t
pro , ∀i ∈ N, ∀t ∈ T (13)

0 6 Pi,t
Pb

6 Pmax
Pb,i

:[λi,t,−
Pb

, λi,t,+
Pb

], ∀i ∈ N, ∀t ∈ T (14)

0 6 Pi,tPs 6 Pmax
Ps,i :[λ

i,t,−
Ps , λi,t,+Ps ], ∀i ∈ N, ∀t ∈ T (15)

0 6 Pi,tEc 6 Pmax
Ec,i :[λ

i,t,−
Ec , λi,t,+Ec ], ∀i ∈ N, ∀t ∈ T (16)

0 6 Pi,t
Ed

6 Pmax
Ed,i

:[λi,t,−
Ed

, λi,t,+
Ed

], ∀i ∈ N, ∀t ∈ T (17)

∑

i

αi = 1, ∀i ∈ N (18)

∑

i

CeiPay = 0, ∀i ∈ N (19)

where Ci
Non and Ci

Tra are the operational costs with or without

containing ET; xiNon and x
i
Tra are decision variables with or without

containing operational trading, and their influencing factors are

shown in Equations (18) and (19); αi reflects the trading capacity

during the trading process; ciE is the cost of losses in the process

of charging and discharging by the producers and sellers; Pi,tEc is

the producer’s storage capacity; Pi,t
Ed

is the producer’s discharging

capacity; Pi,tGen is the capacity of the producer in a unit of time; Pi,t
load

is the load of the producer and seller in a unit of time; Pmax
Pb,i

, Pmax
Ps,i ,

Pmax
Ec,i , and Pmax

Ed,i
are the upper values of the main grid transmission

and reception and the upper values of the producer’s and the seller’s

charging and discharging, respectively.

xiNon =

[

Pi,t
Pb
,Pi,tPs,P

i,t
Ec,P

i,t
Ed
,SOCi,t

]

(20)

Equation (20) considering prices and multiple scenarios, the

responses of production consumers are modeled by the lower level

problems (Equations 10–17). The objective Function (Equation 10)

of the producer and seller as a follower has two parts: the first term

represents the internal cost function of the producing consumer

without a transaction term, and the second term models the

cost of a transaction term with a transaction cost equal to the

sum of the internal cost function and the payments made by

other producers and sellers. The internal cost functions without

or with transactions are denoted as Equations (11) and (12), and

the functions include the ET cost with the distribution network

and battery.

The difference between the two expressions lies in whether

to directly consider transactions with the storage power station,

which ensures the power balance of the ER at each unit time and

in each pattern of production and sales. Constraint 13 ensures

that the sum of the export power of production consumers

with surplus energy equals to the sum of the import power of

remaining production consumers. The energy transactions between

the distribution network and production consumers are subject to

Constraints 14 and 15. Constraints 16 and 17 define the restrictions

on energy transmission and reception between the distribution

network and producers and sellers, while Constraint 19 reflects that

different trading capacities in the trading process are smaller than

their production capacities.

3.3 Asymmetric bargaining decomposition

In this article, the MES is jointly established by multiple

microgrids containing ER, and the distribution center only needs
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to consider the total configuration cost of the MES and the risk

operation cost brought by CVAR calculation when configuring. The

distribution network center needs to configure MES reasonably

to minimize the operating cost of the system. At the same time,

each microgrid containing ERs will adjust the output of various

equipment in the system according to the configuration of the

distribution network center to flatten the net load. Therefore, this

problem belongs to a double-layer optimization problem. This

article requires the use of solvers or heuristic algorithms to solve

the problem of maximizing the overall social profit of multiple

microgrids. As can be seen from the model in Section 2, the

microgrid model and distribution network model belong to non-

convex linear models. To facilitate the solution, it is necessary to

relax these non-linear constraints in the non-convex problem of

joint optimization of multiple energy microgrids and decompose

the problem into two subproblems to solve it, that is, to solve the

global cost minimization subproblem (P1) and the energy greedy

acquisition subproblem (P2) following the distribution company to

complete market clearing and enable the problem to be solved by

the solver (Yanchun et al., 2023; Yang et al., 2024).

First, the producer and seller can cooperate with other

producers and sellers to minimize the operating cost, while at

the same time, the producer and the seller maximize the amount

of energy they can obtain from the distribution network under

a limited constraint, which can be called greed. Therefore, we

decompose the problem of optimal scheduling to the minimum

cost subproblem P1 and the maximum transaction volume

subproblem P2, which is Equation (21) as:

P1 min Ci
Nonx

i
Non, ∀i ∈ N. (21)

for Constraints 5 through 9.

Trading volume maximum acquisition has been formulated as

P2max

N
∏

i

(

Ci
Non

(

xiNon
)

-CeiPay

)ai
(22)

for Constraints 13 through 19.

The decisions of the two subproblems affect each other.

When the distribution network determines the supply and price

through Equation (21), the market price of electricity will be

affected, thereby affecting the decisions of electricity traders and

consumers. Question 2 needs to consider these price factors and

make appropriate bargaining decisions through Equation (22).

This creates a feedback loop between the problem in Equation (21)

and the problem in Equation (22). The decisions of the distribution

network will affect the decisions of the microgrid, which, in

turn, will affect the decisions of the distribution network layer.

This feedback loop can lead to adjustments in market prices

and supply and demand, ultimately tending toward an optimal

equilibrium state.

4 Optimization solution

By relaxing the non-linear term, problems trapped in local

optima can be transformed into global optima. Additional boosting

variables need to be introduced for expansion, and then the method

of spatial branch and bound, which is the algorithm for solving the

most general Mixed-Integer Nonlinear Programming (MINLP),

can be used. It differs from the traditional branch and bound

methods used to solve mixed-integer linear programming (MILP)

problems in that relaxation is no longer a simple linear relaxation

but, rather, approximates the functions in each constraint and

optimization objective using the functions of convex under

estimator or concave over estimator, providing a lower/dual bound

for pruning. The branch-and-bound method not only needs to

reduce the upper and lower bounds of integer variables but also

needs to limit the variables included in the constraint and update

the corresponding approximation function (Lin, 2021).

In the process of relaxing variables, themain discussion is about

the constraints on ET. In the process of ET, energy selling and

energy purchasing cannot occur simultaneously for the same buyer

and seller due to there being mutual exclusion between them.

The complementary relaxation condition of the lower level

model can be expressed as follows:

0 > λ
i,t,+
Pb

⊥Pi,t
Pb
−Pmax

Pb 6 0, ∀i ∈ N, ∀t ∈ T (23)

λ
i,t,−
Pb

⊥Pi,t
Pb

≥ 0, ∀i ∈ N, ∀t ∈ T (24)

0 > λ
i,t,+
Ps ⊥Pi,tPs−Pmax

Ps 6 0, ∀i ∈ N, ∀t ∈ T (25)

λ
i,t,−
Ps ⊥Pi,tPs ≥ 0, ∀i ∈ N, ∀t ∈ T (26)

0 > λ
i,t,+
Ec ⊥Pi,t,wEc −Pmax

Ec 6 0, ∀i ∈ N, ∀t ∈ T (27)

λ
i,t,−
Ec ⊥Pi,tEc ≥ 0, ∀i ∈ N, ∀t ∈ T (28)

0 > λ
i,t,+
Ed

⊥Pi,t
Ed
−Pmax

Ed 6 0, ∀i ∈ N, ∀t ∈ T (29)

λ
i,t,−
Ed

⊥Pi,t
Ed

≥ 0, ∀i ∈ N, ∀t ∈ T (30)

0 6 Pi,t
Pb
⊥µ

i,t
Pb
−λi,tpro−λ

i,t
Pb

> 0, ∀i ∈ N, ∀t ∈ T (31)

0 6 Pi,tPs⊥−µ
i,t
Ps+λi,tpro−λ

i,t
Ps > 0, ∀i ∈ N, ∀t ∈ T (32)

At the optimal solution point of the lower model, we have ∇L

= 0; that is Equations (33–36).

∇L/Pi,t
Pb

= 0 (33)
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∇L/Pi,tPs = 0 (34)

∇L/Pi,tEc = 0 (35)

∇L/Pi,t
Ed

= 0 (36)

Constraints 24 through 32 are used to replace the lower model,

and the calculation can transfer the original two-tier collaborative

planning model into a single-tier MPEC problem.

The preceding linearized model has complementary relaxation

constraints and non-linear bilinear terms, making it a non-convex

model that is not suitable for a direct solution. Therefore, in this

section, the Big M method will be used to apply convex constraints

to the non-convex parts of the previously described model, and

strong duality theory will be used for linearization.

Using the Big M method, the original non-linear constraint

is equivalently transformed into a mixed-integer linear constraint

by introducing several 0–1 variables. This article discusses the

constraint problem of ET. In the process of ET, it is impossible to

sell energy and purchase energy simultaneously for the same buyer

and seller. Therefore, there exists a transmission and distribution

model as shown in Equation (37) regardless of whether energy

increases or decreases. Constraints 5 and 6 are transformed into

Constraints 38 and 39. The 0-1 power distribution is shown in

Equation 40.

Pi,tPs � P
i,t
Db

= 0 (37)

0 6 Pi,t
Pb

6 Pmax
Pb,iM, ∀i ∈ N, ∀t ∈ T (38)

0 6 Pi,tPs 6 Pmax
Ps,i M, ∀i ∈ N, ∀t ∈ T (39)

Pi,tPs (t) ∈ {0, 1}, Pi,t
Db

(t) ∈ {0, 1} (40)

Pi,tPs is the energy sold by producers and sellers sell to the

distribution network, Pi,t
Db

is the energy purchased by producers

and sellers from the distribution network, and M is a sufficiently

large constant.

The bilinear term can be linearized based on strong duality

theory, which can transform the previous model into a Mixed

Integer Second-Order Cone Programming (MISOCP) model that

can be optimized and solved. The objective function is shown

as follows:

max
T
∑

t=1

N
∑

i=1

[

µ
i,t
Pb
Pi,t
Pb
-µi,t

PsP
i,t
Ps+c

i
E

(

Pi,tEc+P
i,t
Ed

)]

+λ
i,t
pro

(

Pi,tPs + Pi,t
load

+ Pi,tEc − Pi,t
Pb

− Pi,tGen − Pi,t
Ed

)

+ λ
i,t,−
Pb

Pi,t
Pb

+ λ
i,t,+
Pb

(

Pi,t
Pb

− Pmax
Pb,i

)

+ λ
i,t,−
Ps Pi,tPs

+λ
i,t,+
Ps

(

Pi,tPs − Pmax
Ps,i

)

+ λ
i,t,−
Ec Pi,tEc + λ

i,t,+
Ec

(

Pi,tEc − Pmax
Ec,i

)

+λ
i,t,−
Ed

Pi,t
Ed

+ λ
i,t,+
Ed

(

Pi,t
Ed

− Pmax
Ed,i

)

+ β
N
∑

i=1
C var (41)

The constraints are Equations (13–19, 23–32, 38, 39). The

commercial solvers can be used to solve this convex optimization

problem and obtain market clearance.

5 VaR and CVaR calculations based on
the Cornish–Fisher expansion

5.1 Scene generation and reduction

In the probability distribution modeling of wind and

solar power generation scenarios, data from a specific power

company in Jilin Province is utilized as a foundation. To mitigate

computational challenges stemming from the considerable

randomness, volatility, and uncertainty introduced by variables

like weather, season, and region in large-scale output scenarios,

the k-means method is applied to streamline wind and

solar power generation scenarios. Employing the approach

of minimizing Euclidean distance, the number of clusters

represented by the cluster center is determined, resulting in the

identification of 10 clusters corresponding to the cluster center

(Li and Shanshan, 2018; Mingqian et al., 2023).

Figures 2A–C show the power generated by wind turbines

in microgrids 1, 2, and 3, while Figures 3A–C show the

power generated by photovoltaics in microgrids 1, 2, and 3.

It can be seen from the figures that the wind and solar

power output is greatly affected by natural resources and

time with great uncertainty and volatility. The probabilities of

each are presented in the figures after considering the speed

and accuracy.

5.2 CVaR calculation

The Cornish–Fisher method is a continuous asymptotic

expansion method for the quantile of a standardized random

variable. It expands the quantile function of a true distribution into

a polynomial function about the quantile function of a standard

normal distribution. The first four orders of the expansion are

expressed as follows:

ϕ-1
cf (α, κ3, κ4) = zα +

κ3
6

(

z2α − 1
)

+
κ4−3
24

(

z3α − 3zα
)

−
κ23
36

(

2z3α − 5zα
) (42)

where zα is the quantile of the standard normal distribution at

α and κ3 and κ4 denote skewness and kurtosis, respectively.

Under this quantile expansion, the loss random variable can be

expressed as follows:

VaR = µl+σlϕ
-1
cf (α, κ3, κ4) (43)

where µl and σl denote the expectation and standard deviation

of the loss random variable in period l, respectively. It can be

seen that the asymptotic expansions and values of the quantiles

are obtained by estimating the skewness κ3 and kurtosis κ4 from

the samples without knowing the true distribution of the loss

random variable.
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A B C

FIGURE 2

Wind turbine stochastic scenarios and probabilities: (A) Microgrid 1 turbine stochastic generation scenario; (B) Microgrid 2 turbine stochastic

generation scenario; (C) Microgrid 3 turbine stochastic generation scenario.

A B C

FIGURE 3

Optical machine random scenarios and probabilities: (A) Microgrid 1 opto-machine stochastic power generation scenario; (B) Microgrid 2

opto-machine stochastic power generation scenario; (C) Microgrid 3 opto-machine stochastic power generation scenario.

Considering the potential uncertainty in multiple aspects of

energy supply, consumption and trading on a time-series basis

increases the risk of distribution network operation. I denotes the

number of microgrids and the risk of multiple uncertainties in the

real-time phase can be expressed as follows Equation (44):

CVaRR-T[i]

= VaR+ 1
s·(1−α)

·
s

∑

s=1

[

s
∑

s=1
π i,wηi,w+

s
∑

s=1
π i,vηi,v-VaR

]

(44)

where s1, s2,..., sN are sample data and α is the confidence level; the

ηi,w and ηi,v auxiliary variables related to the scenery produced by

consumer i and scenario w are used to calculate the CVaR.

To avoid false regression and eliminate heteroscedasticity, it

is usually necessary to take the logarithm of the data from the

wind and solar series with time attributes without changing the

properties of the time series and correlation to obtain smooth data

and make the data closer to a normal distribution. The formula for

taking the series is as follows Equation (45): (Peng et al., 2023):

rt = −log
(

p
)

+ log
(

p
)

(45)

to estimate the percentage of failures at a 95% confidence level.

1. It is clear that most of r is smaller than the corresponding VR

and CVaR estimated values; that is, the risk estimates are essentially

valid. If r is greater than the corresponding VaR or CVaR value,

then the risk estimation fails. It is clear to see that the CVaR is more

reliable for the data.

2. In comparison with the theoretical values and the CVaR

method, the VaRmethod is clearly inappropriate for measuring risk

in the electricity bidding market.

3. The CVaR method estimates market risk well, while the VaR

method has a significant difference with the reality when estimating

the risk.

6 Analysis of examples

6.1 Example data

In this article, the three-node model of Figure 1 is used to give

the parameters of three microgrids for arithmetic calculations. The

parameters of the devices are set according to Peng et al. (2021) and
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Na et al. (2023). To estimate the percentage of failures at 95 per cent

confidence level in Table 1. The parameters of each device are given

in Table 2. The computer configuration I7-12700, RTX3060 12G,

and MATLAB2021b are used for the simulation.

The producer-marketer and load tariff phase-in tariffs are

shown in Table 3.

6.2 CVaR impact analysis

The comparison of expected profit with CVaR is shown in

Figures 5–7. This article calculates the CVaR and expected profit

at a 95% confidence level for different risk factors. By modifying

the parameters from Equation (41), β, the effect of this parameter

on the balance between expected profit and profit variability

(measured by CVaR) is described as follows.

The first point in Figure 4 is obtained by solving for the

parameter β close to 0, which represents the maximum profit that

the producer and the seller may get when they are in a condition of

risk aversion and is approximated to be the optimal trading strategy

of the producer and seller when they do not take into account the

CVaR. It can be seen that as the degree of bidding increases, the

producer and seller become more and more risk-averse, and the

expected return decreases accordingly.

The distribution network, as a leader, takes the maximization

of overall profit as the overall goal, analyzes the impact of different

risk indicators on the trading profits of each producer and seller,

and thus guides the producers and sellers of new ET of outputs and

promotes the amount of new energy consumption.

Figure 5 shows the change in the trading curves of producers

and sellers when comparing different risk indicators (β = 0.1, β

= 0.5, β = 0.9), which clearly illustrates the impact of different

risk indicators on the producer-seller’s interest. The impact of β

on the optimal pricing strategy is examined to clearly illustrate

the retailer’s attitude toward risk. As we can see, y’s positive

TABLE 1 Comparative analysis of CVaR and VaR.

Producer and marketer 1 VaR 52.9%

CVaR 0.8%

Producer and marketer 2 VaR 62.3%

CvaR 1.1%

Producer and marketer 3 VaR 48.6%

CVaR 0.6%

CVaR, conditional value at risk; VaR,.

axis is the profit obtained from the producer-seller’s sale of the

power, which consists of the profit from the sale of the power

to the loads and the profit from the sale of the power to

the distribution network. While y’s negative axis is the cost of

purchasing power to the producer and seller, which includes the

cost of purchasing power from the distribution network and the

cost of losses due to the constant charging and discharging of

batteries.

When comparing vertically between producers and sellers 1, 2,

and 3, it can be seen in the figure that at points 6–19, the constant

sale of electricity to the loads and the distribution network gets

better profit when the price of electricity is higher. The negative

axis shows that the cost of energy storage and electricity purchase

changes faster when the constant output changes, but overall, the

producers and sellers are in a gainful state. When comparing the

impacts under different risk indicators horizontally, the producers

and sellers are affected by the risk indicators, the risk gradually

increases, and they constantly seek energy to increase the demand

for peaks and increase the demand for purchased power in the

flat period to hoard energy. It indicates that the producers and

consumers try to maximize their profits by trading energy with

each other.

6.3 Analysis of simulation results

The transaction price between the distribution network and

producers and sellers depends on the attitude of producers and

sellers toward risk, which is caused by the uncertainty of wind

and solar power output. Retailers determine reasonable prices

within a price range by setting minimum and maximum values,

thereby maximizing social welfare. Therefore, retailers seeking risk

may offer competitive prices to attract production consumers to

participate in energy sharing while taking on relatively high risks.

6.3.1. Iteration analysis
The cplex solver is used to solve themodel, and then the optimal

risk transaction value for each producer and seller will be figured

TABLE 3 Time division and real-time tari�s for each time period.

Peak period 7:00–12:00 15:00–21:00 1.10 (yuan/k Wh)

Flat section 12:00–15:00 21:00–23:00 0.83 (yuan/k Wh)

Valley section 23:00–07:00 0.49 (yuan/k Wh)

TABLE 2 Capacity parameters for producers and sellers.

Producers
and
sellers

SOC
down (%)

SOC
up (%)

SOC
initial (%)

Storage
capacity
(MW)

Fan capacity
(MW)

Optical capacity
(MW)

Cost of
energy
storage

(CNY/MW)

1 10% 90% 60% 10 10 2 80

2 10% 90% 60% 10 6 1.5 80

3 10% 90% 60% 10 3 1 80

SOC, State of Charge; CNY, Cost of energy storage.
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A B C

FIGURE 4

Expected profit and CVaR of producers and sellers with di�erent values of β: (A) Expected profit and CVaR for producer and marketer 1; (B) Expected

profit and CVaR for producer and marketer 2; (C) Expected profit and CVaR for producer and marketer 3.

A B C

FIGURE 5

Trading curves of producers and sellers with di�erent values of β: (A) β = 0.1; (B) β = 0.5; (C) β = 0.9.

A B C

FIGURE 6

Iterative convergence results of microgrid alliance: (A) MG 1 profit iteration situation; (B) MG 2 profit iteration situation; (C) MG 3 profit iteration

situation.

out by sorting and looping algorithms to obtain the optimal price

curve for maximizing overall welfare. The convergence iteration

situation is shown in Figure 6.

Figure 6 shows the iterative convergence results of

each Microgrid (MG) cost. The proposed method achieves

convergence after a total of 86 iterations, with a calculation

time of 689 s. After the iteration convergence results are met,

the residuals of each microgrid iteration converge to within

10−3. Therefore, it indicates that the methods proposed

in this article have good convergence performance and
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FIGURE 7

Purchased and sold power pricing curves.

FIGURE 8

Transmission line trading power.

computational efficiency, meeting the needs of optimization

scheduling.

6.3.2 Analysis of optimization results
Figures 7, 8 present the pricing curves and transaction

power of each producer and seller when maximizing

the comprehensive benefits under the leadership of the

distribution network.

Figure 7 shows the optimized pricing curve for producers and

sellers. The negative price represents the selling price of energy

for producers and sellers, while the positive price represents the

purchasing price of energy. For the sake of profit, when the

operators of the distribution network sell energy to producers

and sellers, the selling price tends to be higher than the purchase

price. Constrained by the load price, the purchase price cannot be

higher than the load price, making it profitable for producers and

sellers. Figure 8 shows the optimal trading power curve based on
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the pricing curve in Figure 7, which combines the overall welfare

maximization with the risk-value and risk-return curves brought

by uncertain loads. Positive represents the purchasing quantity of

producers and sellers, and negative represents the selling quantity.

It can be seen that during periods 0–7 and 19–23 when the

load is lighter, the transaction is smoother. During periods 8–

16, producers 1 and 2 sell more electricity, while the purchased

electricity needs to be able to meet the demands of providing the

electricity to the load.

7 Conclusion

In this article, a dual-layer energy interaction framework for

multiple microgrids with ERs is proposed, which can help the

distribution network center coordinate energy transactions with

ERs. Taking the multiple microgrids containing ERs as a multi-

agent system, its activity information can be shared with the

distribution network center. On this basis, we propose a Stackelberg

game theory model, whereby the distribution network center serves

as the leader and the microgrid containing ERs serves as followers.

At the same time, risk measurement methods—VaR and CVaR

calculation—are introduced to identify and quantify potential

losses under uncertainty in wind and solar output. Leaders make

a balanced choice between income and risk to determine price

conditions under current risk indicators, encourage followers to

engage in ET, expand wind and solar consumption, and improve

overall returns of microgrid groups. In the multiple microgrid

bidding strategy with ERs considering the uncertainty of wind

and solar power generation proposed in this article, there are

two stages of energy management. In the first stage, a master–

slave distribution company profit model based on the conditional

risk value is established based on the interests and demands of

each microgrid and the energy supply and demand relationship,

achieving a risk measurement of the dual uncertainty of wind

and solar power. In the second stage, the previous problems

will be decomposed into the minimum cost subproblem and

the maximum transaction volume subproblem for asymmetric

bargaining, and the fair allocation of energy will be carried out

based on the contribution value of each microgrid containing ERs.

The simulation results show that the model enhances the ability

of the multiple microgrid system with ERs to cope with uncertain

wind and solar output, improve the effectiveness and rationality

of energy interaction between the microgrid with ERs and the

distribution network while maximizing the profits of the multiple

microgrid and ensuring fairness in the distribution of benefits

to participants.

Future work will include analyzing and establishing

optimization problems of microgrids with ERs under different

configurations, further considering classification research on ER

microgrids, and determining the impact of different microgrids

on multiple microgrid systems to improve the widespread and

universal application of ER-based multiple microgrid systems.
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