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Modern power systems, characterized by complex interconnected networks and

renewable energy sources, necessitate innovative approaches for protection and

control. Traditional protection schemes are often failing to harness the vast

data generated by modern grid systems and are increasingly found inadequate

and challenging for some applications. Recognizing the need to address these

issues, this paper explores data-driven solutions, focusing on the potential of

machine learning (ML) in power system protection and control. It presents a

comprehensive review highlighting various applications which are challenging to

address from conventional methods. Despite its promise, the integration of ML

into power system protection introduces unique challenges. These challenges

are examined in the paper, and suggestions are provided to overcome them.

Furthermore, the paper identifies potential future research directions, reflecting

the progressive trends in ML and its relevance to power system protection and

control. This review thereby serves as an essential resource for practitioners and

researchers working at the intersection of ML and power systems.
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1 Introduction

Power systems, the backbone of modern civilization, have evolved from traditional

generation and distribution models to complex interconnected networks that incorporate

renewable energy sources and smart grid technologies. This evolution presents both

exciting opportunities and significant challenges in terms of power system protection

and control, calling for innovative approaches to ensure system stability, reliability, and

resilience (Hossain et al., 2018). Even though the existing traditional power system

protection and control methods are robust and have been well-developed over the last

century, they have been built upon mathematical models that may struggle with the

uncertainties and nonlinearities inherent in the complexity of modern grid systems

(Karlsson and Hill, 1994; Makarov et al., 2011). Therefore, in this rapidly evolving

landscape, traditional methods are becoming inadequate to handle the complexity of the

system. In addition, these traditional systems often fail to capitalize on the rich data

generated by the modern grid, which holds valuable insights into system operation and

behavior (Yu et al., 2015; Syed et al., 2021). On the other hand, there is an urgent

need for efficient and near real-time algorithms to analyze and make better use of these

available data.
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The potential solution to this issue might be harnessing

the capabilities of modern artificial intelligence (AI) techniques,

utilizing their advanced generalization and predictive abilities to

navigate the complexities of power system operations. Particularly,

the enormous amounts of data generated in the power system can

be processed using powerful tools present in machine learning

(ML), which is a subset of AI (Qiu et al., 2016). It has the capability

to learn from data, adapt to new conditions, and continuously

improve performance with experience (Chellappa et al., 2021).

In recent years, ML has emerged as a significant research area,

reflecting a broader trend across various scientific disciplines

(Badrinarayanan et al., 2017; Cui et al., 2021; Mahadevkar et al.,

2022). Figure 1A illustrates the annual growth in the publication of

ML papers, as indexed in Scopus (https://www.scopus.com) over

the last 20 years. To construct the graphs showing the trends, the

database was searched using keywords related to machine learning

and power systems, with consideration given to publications from

the year 2000 onwards. The swift increase over the last 5 years

stands as a testament to the field’s rapid advancement and the

widespread interest it has attracted.

In addition, the capabilities of data-driven approaches make it a

potentially invaluable asset in the era of smart grids and renewable

energy integration (Cui et al., 2021). Figure 1B shows the annual

growth in the number of publications that adapt ML techniques

to power system solutions. The substantial increase in recent years

is indicative of the industry’s progressive incorporation of these

modern techniques (Ernst et al., 2004; Hadidi and Jeyasurya, 2009;

Rudin et al., 2012; Alimi et al., 2020; Zhao et al., 2022).

Despite its promising potential, the integration of ML into

power system protection and control is still in its early stages and

is not without challenges (Mahadevkar et al., 2022). The objective

of this paper is to offer a comprehensive review of ML applications

in the realm of power system protection and control. It provides an

in-depth examination of the strengths, limitations, and potential of

various techniques as applied to these domains. Additionally, the

paper discusses the opportunities and challenges associated with

integrating ML into protection applications and suggests future

research directions, considering emerging trends in both the fields

of ML and power system protection and control. The remainder

of the paper is structured as follows: Section 2 introduces the basic

concepts and techniques of ML; Section 3 offers some of the key

performance requirements in power system protection and control;

Section 4 describes potential opportunities; Section 5 delves into the

bottlenecks in applying ML to power system protection; Section 6

explores future directions; and Section 7 presents the conclusions.

2 Machine learning: basic concepts
and techniques

Machine learning is a field that is concerned with the

development and study of algorithms that can automatically find

solutions to problems using input examples or training data (Pedro,

2012). It is a multidisciplinary field which consists of statistics,

computer science, linear algebra, and optimization, to mention

a few. The ability to learn from data makes ML algorithms

primarily useful for addressing highly non-linear problems such

as classification and function approximation where it is very

challenging or even impossible to model the relation between

input and output using traditional techniques (Ray, 2019); some

examples of these types of problems are image classification

(Gonzalez, 2007), text identification (Lecun et al., 1998), Atari

games (Mnih et al., 2013) and board game solving (Silver et al.,

2017). The learning process is often classified into supervised

learning, unsupervised learning, and reinforcement learning (RL).

2.1 Supervised learning

Supervised learning is the ML task of learning a function that

maps an input to an output based on example input-output pairs

(Simeone, 2018). It infers a function from labeled training data

consisting of a set of training examples. Examples of supervised

learning algorithms include Artificial Neural Networks (ANNs),

Support Vector Machines (SVM), Decision Trees (Safavian and

Landgrebe, 1991), and Random Forests (Jin et al., 2020). SVMs are

used for both regression and classification tasks, using a technique

that minimizes the error rate while maximizing the margin of

decision. Decision Trees and Random Forests are often used in

classification problems, creating a model that predicts the value of

a target variable by learning simple decision rules inferred from the

data features.

2.2 Unsupervised learning

Unsupervised learning, on the other hand, involves the use of

ML algorithms to analyze and cluster unlabeled datasets. These

algorithms discover hidden patterns or data groupings without

the need for human intervention. Common unsupervised learning

algorithms include K-Means Clustering and Principal Component

Analysis (PCA) (Hotelling, 1933). K-Means Clustering is a method

used to categorize unlabeled data into different groups or “clusters”

and PCA is a dimensionality reduction method used to reduce the

number of input variables in a dataset.

2.3 Reinforcement learning

RL is an area of ML where an agent learns to behave in an

environment, by performing certain actions and observing the

results or rewards of those actions (Sutton, 1988). The goal is to

learn a series of actions that maximize the final reward. Prominent

examples of RL algorithms include Q-Learning (Khenak, 2010) and

state-action-reward-state-action (SARSA).

Beyond traditional machine learning techniques, the

integration of supervised, unsupervised, and reinforcement

learning methods with deep learning (DL) and neural networks

(NNs) has become significantly popular in the past decade,

transforming multiple areas of artificial intelligence (AI). Deep

learning, in particular, deserves special attention due to its recent

advancements and numerous achievements within the field of

computer science. Currently, many researchers are adopting

deep neural networks for their specific applications, regardless of

whether the problems are supervised, unsupervised, or related
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FIGURE 1

(A) Number of ML papers over time, based on data from the Scopus database.; (B) Number of power system solutions with ML technics over time.

to reinforcement learning (RL) (Hatcher and Yu, 2018). Deep

learning, a subfield of ML, leverages NNs with three or more layers.

These networks attempt to simulate the behavior of the human

brain to “learn” from large amounts of data. While traditional

ML techniques are often handcrafted, DL models are capable of

automatic feature extraction from raw data, making them highly

effective and versatile. Convolutional Neural Networks (CNNs)

(Russakovsky et al., 2015), a specialized kind of NN, can be trained

using supervised learning techniques to identify objects within

images recognizing intricate patterns. Similarly, Recurrent Neural

Networks (RNNs) and Long Short-Term Memory networks

(LSTMs) (Sutskever et al., 2014) excel in sequential data tasks like

speech recognition and text translation. The advent of DL has not

only provided powerful tools for tasks previously mentioned, such

as image classification, text completion, and game playing, but it

has also opened doors to more complex problem-solving scenarios

that were previously challenging or even impossible to address. The

success of DL can be attributed to factors such as the availability

of large, labeled datasets, increased computing power, and the

development of advanced training techniques, altogether making

DL a vital part of the modern ML. In the diverse landscape of ML

methodologies, there are numerous algorithms, each with its own

strengths and applications. Figure 2 illustrates the list of commonly

used algorithms and architectures within the paradigm, capturing

techniques from traditional statistical models to the more recent

advances in DL.

2.4 Training, validation, and testing

In machine learning, the training, testing, and validation

procedures are fundamental steps to develop, evaluate, and refine

predictive models. During the training phase, the model learns to

make predictions or decisions based on a given dataset, adjusting

its parameters to minimize the difference between its predictions

and the actual outcomes. The validation phase involves using a

separate part of the dataset (the validation set) to fine-tune model

parameters and prevent overfitting, which occurs when a model

learns the training data too well and fails to generalize to new

data. This step is used for selecting the best model version that

performs well on unseen data. Usually, the data is separated into

two sets: training and testing datasets. It is typical to separate the

training data again into several parts (say k parts), and one part

is reserved for validation and the rest is used for training. The

process is repeated taking each portion of the data as validation

set. This is normally referred to as k-fold cross validation (Wong

and Yang, 2017). Finally, the testing phase uses the test dataset,

which is distinct from the training dataset, to evaluate the model’s

performance, providing an unbiased assessment of how well the

model generalizes to new, unseen data. This structured approach

ensures the development of robust, accurate, and generalizable

machine learning models.

To identify the performance of a model various metrics and

parameters are used in the industry. A confusion matrix is one

such performance evaluation tool popularly adopted in machine

learning, representing the accuracy of a classification model. It

displays the number of true positives, true negatives, false positives,

and false negatives. By calculating the TPR and TNR as in

Equations 1, 2, this matrix aids in analyzing model performance

and identifying misclassifications (Fawcett, 2006).

The value TPR and TNR can be calculated using Equations 1,

2 respectively.

TPR=
TP

TP+FP
(1)

TNR=
TN

TN+FN
(2)

TP (True Positive): The count of instances accurately classified

by the model as belonging to the positive class, when they actually

are in the positive class.

FP (False Positive): The count of instances incorrectly classified

by the model as belonging to the positive class, when they actually

are in the negative class.

FN (False Negative): The count of instances incorrectly

classified by the model as belonging to the negative class, when they

actually are in the positive class.
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FIGURE 2

Classes of machine learning models.

TN (TrueNegative): The count of instances accurately classified

by the model as belonging to the negative class, when they actually

are in the negative class.

3 Key performances requirements of
power system protection

Power system protection and controls are critical components

of the electrical power grid infrastructure. Power system protection

involves deploying a set of strategies and devices designed to

detect and isolate faults in power systems, thus minimizing the

impact of such faults on the rest of the system. Protection control

strategies, on the other hand, are a set of measures initiated to

counteract severe disturbances, prevent system collapse, and enable

quick recovery to stable operating conditions. Importantly, the

term protection does not explicitly indicate that the protective

equipment can anticipate or prevent failures; the protective

structures designed do not anticipate problems.

Protective relays act only after an event of intolerable

conditions and their objective is to minimize the duration of

the problem, limit damage, reduce downtime and other problems

created by the event. In asset protection, this task is performed

by circuit breakers controlled by protection relays. They isolate

areas or problematic elements on the circuit. These actions can be

divided into two groups: primary and back-up. Primary protection

isolates the faulty equipment with exceptional speed and precision,

while backup protection acts as fail-safe, clearing faults missed

by the primary system. Backup protection is slower, but covers

a wider area, and its settings must be carefully calibrated to

adapt to varying system conditions (Phadke et al., 2016). Based

on these principles, it is clear that protection systems must

be fast enough and selective enough to isolate faults without

affecting the entire network, thereby improving power system

reliability. On the other hand, system protection response to

abnormal operating conditions affecting a wider area. In both

cases, the protection schemes should avoid excessive complexity.

Overall, the system should prioritize simplicity and effectiveness

while remaining economically viable (IEEE, 1988; CIGRE, 2001).

Although traditional protectionmethods have been well established

over the last century, the use of machine learning algorithms

as support can enhance key performance requirements of such

protection schemes.

The traditional protection and control strategies must ensure

five principles: reliability, selectivity, speed, simplicity, and

economy, to be considered as effective and efficient (Blackburn and

Domin, 2006), andmachine learning algorithmsmust contribute to

the fulfillment of these key performance requirements.

3.1 Reliability

Reliability is defined on top of two concepts: dependability and

security. Dependability is defined as the degree of certainty that the

relay will operate correctly. Security is the degree of certainty that

the relay will not operate incorrectly.

3.2 Selectivity

Protection relays have a designated protection, while also

offering delayed backup protection for adjacent zones. The

selectivity is a key requirement to minimize the extent of outages

during fault events and it is an area where traditional protection

struggles due to use of simple decision functions with a limited set

of inputs. Machine learning that can be effectively used to improve
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the selectivity of difficult protection problems by recognizing

patterns and complex scenarios.

3.3 Speed

In power system protection, rapid fault isolation is desirable,

but achieving very high-speed operation can lead to undesired

actions. Time remains a reliable means of distinguishing tolerable

from intolerable transients. It is desirable for a protection relay to

operate as soon as a fault is correctly detected. However, due to

the operating principles of traditional protections, there is a trade-

off between speed and false positive detections. Machine learning

algorithms can mitigate this by leveraging different detection

principles and input features that can help do an early detection

of the fault (Azhar et al., 2022).

3.4 Simplicity

The design of a protective relay system should give priority

to simplicity and straightforwardness, while still achieving the

intended objectives. Each additional unit or component that

enhances protection but is not essential to the basic protection

requirements should be carefully considered. Each added

element introduces a potential source of problems and increased

maintenance. Incorrect operation or unavailability of protection

can lead to catastrophic problems in an electrical system,

since problems in the protection system can significantly affect

the entire system, possibly more than any other component.

Simplicity gains relevance when considering machine learning

algorithms for power system protection. Machine learning

algorithms often exhibit nonlinear decision boundaries that

can cause incorrect classifications, even when the overall

performance of the algorithm is satisfactory (Huang W. R. et al.,

2020).

One of the most common shortcomings of machine learning

based protections when compared to traditional protections

comes from model interpretability. Traditional protections follow

clear physical principles that are well-understood. This makes it

possible to stack multiple components together in a meaningful

way. Machine learning algorithm interpretability is a whole

area that deals with this issue and aims to explain what is

often thought of as black-box algorithms that are inherently

complex (Molnar, 2020). On the other hand, machine learning

algorithms can be constrained to operate within a bounded

region of well-understood physical quantities e.g., a region of

the R-X plane. Constraining an inherently complex machine

learning algorithm allows it to be stacked on top of a

simpler but protection principle without increasing the whole

system complexity.

3.5 Economics

The balance between maximum protection and cost-

effectiveness is critical. Initial savings may tempt one to choose

FIGURE 3

Comparison of Conventional and Machine Learning-Based Relays.

Panel (A) shows the operation of a conventional relay based on

logic, while panel (B) illustrates a relay that uses machine learning

for decision-making.

the least expensive protection system. However, this can lead to

reliability issues, installation challenges, and higher maintenance

costs. The cost of protection may seem high up front, but it

pales in comparison to the potential cost of equipment damage

and downtime resulting from inadequate protection. Prioritizing

proper protection at the outset is wiser than cutting corners and

paying more later.

Reliability, selectivity, speed, simplicity, and economics are

crucial for providing uninterrupted power supply and reducing

the risk of power failures and outages. In the current context of

machine learning algorithms insertion, having robust scheme must

enhance these five key principles.

4 Opportunities for machine learning
in power system protection

Opportunities for ML in Power System Protection are vast

and continue to grow with the technological advancements in

both fields. Fundamentally, the machine learning model is capable

of making decisions that can replace the logics in conventional

protection systems, or assist the logical functions to make better

decisions, as illustrated in Figure 3 as applicable to asset protection.

In some cases, it is possible for conventional decision-making

processes to operate in parallel with machine learning models.
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FIGURE 4

Research paper selection criterion.

There are many power system protection and control functions

that can be improved by using ML techniques (Rajapakse et al.,

2002; Zhou et al., 2010; Jayamaha et al., 2019). These areas offer

a rich landscape for innovation, where ML can contribute to

developing new solutions and improving existing methodologies.

In this section, potential application areas are explored, ranging

from power system stability to emergency control, mis-operation

detection, and more.

There is a vast amount of literature covering potential

application areas of ML techniques in power system protection and

emergency control. Therefore, a selection criterion was designed

as illustrated in Figure 4 to select several representative research

papers for each application. Initially, this selection criterion selects

all the research papers that contain the following metadata: (1)

machine learning techniques such as traditional machine learning

(i.e; SVM, DT...etc.), deep learning and reinforcement learning,

(2) Potential power system protection and emergency control

applications such as power system stability, high impedance fault

detection. . . etc. Then a pool of research papers was created by using

IEEE Xplore (https://ieeexplore.ieee.org), Scopus (https://www.

scopus.com) and Google Scholar databases. This pool comprised

of candidate research papers which were peer-reviewed (journal

and conference papers), contained specific key words and published

within a time range of 2004–2024.

Figure 5 shows the percentages of different papers categorized

based on the application. Still there were considerable number

of papers under each application. Therefore, a limited number of

papers were selected manually considering the quality, number of

citations and diversity of algorithms utilized, to include in this

review.

4.1 Power system stability

Maintaining the stability of the power system is one of the

main objectives of a power system protection and control system.

Generally, persisted contingencies or multiple contingencies occur

in power systems beyond the designed tolerance level of protection

and control systems is the root cause of power system instabilities

and blackouts. Power system stability can be mainly categorized

into voltage stability, rotor angle stability, frequency stability,

oscillatory stability, and inverter driven stability (Hatziargyriou

et al., 2020). Most of these stability phenomena occur within

several seconds which is not feasible to detect using model driven

approaches in real-time. Therefore, many researchers have drawn

their attention on ML based data driven approaches which can

predict the power system stability status within few milli-seconds

with an acceptable accuracy. In this section, several ML-based

assessment and control action design approaches are discussed

under each stability category.

4.1.1 Voltage stability
The voltage stability of a power system can be defined as

the ability of the system to maintain a steady voltage close to

nominal value at all buses after the system has been subjected to

a disturbance. Conventional voltage stability assessment methods

such as continuation power flow (long-term voltage stability)

and transient stability analysis (short-term voltage stability) lack

the applicability for large power systems in real-time due to

high computation time and model dependency. Recently, there

are many voltages stability assessing approaches proposed in

literature based on ML due to their data driven nature. These

approaches use both shallow and DL algorithms. Assessing short-

term voltage stability of a power system is a time sensitive process

which requires trajectory feature identification within few seconds

therefore feature engineering approaches can be seen in Zhu et al.

(2016, 2020), Yang et al. (2018), Dharmapala et al. (2020), and

Dharmapala and Rajapakse (2024). These features are Time Series

Shapelets (TSS) in Zhu et al. (2016) and Zhu et al. (2020), pre-

identified templates in Dharmapala and Rajapakse (2024) and

online induction motor slip in Yang et al. (2018). On the other
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FIGURE 5

Percentages of pooled research papers categorized based on the applications.

hand, deep learning algorithms such as LSTM can grasp features

without pre-processing (feature computation). LSTM based SVS

assessment schemes can be found in Zhang et al. (2021) and Zhu

et al. (2021). A loadability prediction scheme to assess long-term

voltage stability is proposed and validated using real-time data from

phasor measurement units (PMUs) in Dharmapala et al. (2020). A

summary of utilizedML algorithms in these approaches is tabulated

in Table 1.

4.1.2 Rotor angle stability
The ability of the interconnected synchronous machines in a

power system to remain in synchronism under normal operating

conditions and to regain synchronism after being subjected to a

small or large disturbance is defined as the rotor angle stability

(Hatziargyriou et al., 2020). Generally, rotor angle instabilities

occur within few seconds. Therefore, rotor angle stability is another

area where data driven ML based approaches are frequently

applied. In Amjady and Majedi (2007), the power system is

partitioned into subsets each including two or more synchronous

machines using the data from each partition. ANN is trained

and final decision is obtained through a voting mechanism.

Proximity to pre-identified voltage templates are used as features

to a SVM classifier in Rajapakse et al. (2010) to differentiate

rotor angle stability/instability. In Gomez et al. (2011), direct

voltages measurements are input to a SVM classifier to predict

the transient stability status after a disturbance. A small signal

stability assessment scheme is proposed in Dorado-Rojas et al.

(2021) by utilizing deep learning CNN. Time and frequency

domain measurements have been utilized to extract features in

Kamwa et al. (2009) and fuzzy rule base is used to improve the

decision boundary tuning. Similar to deep learning-based voltage

stability assessment applications, these deep learning approaches

use sequential measurements without feature identification. Some

of these ML approaches found in literature are tabulated in Table 2.

4.1.3 Frequency stability
Frequency stability refers to the ability of a power system

to maintain steady frequency level following a significant

imbalance between severe system upset resulting a significant

imbalance between generation and load (Hatziargyriou et al., 2020).

Frequency instabilities initiate in the form of sustained frequency

swings or large frequency deviations and can be led to tripping

of generators and/or loads. Due to the fast response, it is difficult

to differentiate stable frequency swing from unstable frequency

swing; however enhancement of ML techniques enables the power

system frequency stability assessment and control applications.

In Behdadnia et al. (2021), a practical PMU measurement-based

frequency stability analysis scheme which can detect and eliminate

erroneous measurement is proposed. The main factors that

contribute to the power system frequency response is considered

when training the ML model in Bo et al. (2014) and Xie and Sun

(2021). Bandwidth requirement of PMUdata for frequency stability

analysis is reduced in method proposed in Tripathi (2018). Few of

the frequency stability applications found in literature are tabulated

in Table 3.

4.1.4 Oscillatory stability
The resonance, in general, occurs when energy exchange takes

place periodically in an oscillatory manner. These oscillations grow

in case of insufficient dissipation of energy in the flow path and

are manifested (in electrical power systems) in magnification of

voltage/current/torque magnitudes (Hatziargyriou et al., 2020).

Oscillatory stability monitoring and controlling is a highly

researched area, but application of AI is relatively limited.

Eigenvalue region prediction of critical stability modes results

from inter-area oscillations is proposed in Teeuwsen et al. (2006).

A scheme which provides offline training, update and online

predicting is proposed in Liu et al. (2021). In Cepeda et al. (2022),

deep learning-based assessment scheme is proposed which only

uses system frequency as the input. An optimal control strategy
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TABLE 1 Summary of ML based voltage stability applications.

ML algorithm Input features Description Year Ref.

DT V/I/P/Q Pre-identified Time Series Shapelets (TSS) are used identify

short-term voltage stability (SVS) status

2016 Zhu et al., 2016

ANN V/I/P/Q/ Topology Geometry and power injection-based sequences are

proposed to grasp the spatial-temporal patterns of SVS.

2020 Zhu et al., 2020

SVM V Voltage templates identified through fuzzy mean clustering

are used identify short-term voltage stability (SVS) status.

2024 Dharmapala and

Rajapakse, 2024

SVM V/P/Q SVS status is assessed using online induction motor slip and

trajectory extrapolation method to assess SVS status.

2018 Yang et al., 2018;

Zhu et al., 2021

RF V/I/P/Q Local measurement based well-established indices are used

as inputs to the regression to predict the loadability margin

for long-term voltage stability.

2020 Dharmapala et al.,

2020

LSTM V/P/Q DL sequential data analysis framework is utilized to assess

SVS status.

2021 Zhang et al., 2021

SVM V/P/Q/ Topology Spatial attention-based LSTM algorithm is utilized to

improve the SVS assessment accuracy

2021 Zhu et al., 2021

TABLE 2 Summary of ML based rotor angle stability applications.

ML algorithm Input features Description Year Ref.

ANN δ Hybrid intelligent system is used by incorporating NNs and

interpreter to assess rotor angle stability

2007 Amjady and

Majedi, 2007

SVM V Direct voltages or proximity to pre-identified voltage

templates are utilized to detect transient rotor angle

instabilities.

2010 Rajapakse et al.,

2010; Gomez et al.,

2011

CNN V, I A variant of CNN called Multi Channel Deep Convolution

Neural Network (MCDCNN) is used to assess small signal

stability

2021 Dorado-Rojas et al.,

2021

DT δCOI , VCOI , ω Fuzzy ruled based classifier is used to assess transient

stability status within few seconds.

2009 Kamwa et al., 2009

using thyristor-controlled series capacitors (TCSC) to damp power

system oscillations is proposed in Ernst et al. (2004) and in this

method Reinforcement Learning (RL) is utilized to obtain the

control policy. A summary of various ML approaches found in

literature for oscillatory stability monitoring and controlling is

tabulated in Table 4.

4.1.5 Inverter driven stability
The dynamic behavior of Inverter Based Generators (IBGs)

is clearly different from conventional synchronous generators.

Typical IBG relies on control loops and algorithms with fast

response times, such as the PLL and the inner-current control

loops (Hatziargyriou et al., 2020). In this regard, the wide timescale

related to the controls of CIGs can result in cross couplings

with both the electromechanical dynamics of machines and the

electromagnetic transients of the network, which may lead to

unstable power system oscillations over a wide frequency range.

The research found in literature on inverter driven stability is

mainly focused on controller optimization using ML techniques

such as RL. In Gheisarnejad and Khooban (2020), a control

scheme based on Active Disturbance Rejection Controller (ADRC)

is implemented with optimal setting training process. A data-

driven optimal control strategy for Virtual Synchronous Generator

(VSG) operation is proposed in Li Y. et al. (2021) with control

targets of maintaining frequency within operating limits, damping

oscillations, and smoothing frequency response. A summary of

various RL approaches to inverter controller tuning that found in

literature is tabulated in Table 5.

4.2 Communication infrastructure for
protection and control

IEC 61850 standard (Report, 2014) is developed in 2014 to

standardize power system communication network and automate

systems. Because of the standard object-oriented approach, it allows

interoperability between devices regardless of different vendors.

IEC 61850 is the protocol used by power system protection

and control devices for communication. Generic Object-Oriented

Substation Event (GOOSE) and Sample Values (SV) are two main

data protocols proposed in the standard. GOOSE messages are

triggered by certain events in the power system and are transmitted

to take necessary reactionary precautions, i.e., a trip command is

sent to a circuit breaker via GOOSE message after a relay picks up

excessive current readings. On the other hand, SV messages carry

periodic samples of critical grid parameters such as bus frequency,

voltage etc. Due to the critical nature of the places of their use, i.e.,
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TABLE 3 Summary of ML based frequency stability applications.

ML algorithm Input features Description Year Ref.

DT V/δ/f time-series data when predicting power system frequency

stability

2021 Behdadnia et al.,

2021

SVM PG/Pr/1P/f f A variant of SVM called v-SVR is used to predict (regress)

frequency after a disturbance.

Another variant of SVM called,

ǫ-SVR is utilized to predict the frequency stability using

powerline frequency samples.

2014 2021 Bo et al., 2014

Tripathi, 2018

CNN-LSTM PG/PL/1P/V/δ Two-stage ML model is proposed to predict power system

dynamic frequency and optimal load shedding strategy,

which can fully exploit both spatial and temporal dynamic

measurement.

2018 Amjady and

Majedi, 2007; Xie

and Sun, 2021

TABLE 4 Summary of ML based oscillatory stability applications.

ML algorithm Input features Description Year Ref.

DT Not specified Generic algorithm-based feature selection method is

incorporated with the classifier which uses minimum

number of inputs.

2008 Teeuwsen et al.,

2006

RF Pbr/Qbr/Vb/ δb A variant of RF called Random Bit Forest (RBF) is utilized to

speed the real-time oscillatory stability assessment in

complex power systems.

2021 Liu et al., 2021

LSTM f Proposed a big data platform to analyze the streaming data

that comes fromWAMS to perform a real-Time Oscillatory

Stability Predictive Assessment.

2022 Cepeda et al., 2022

RL δ/ω RL framework is applied to obtain the optimal control

strategy to damp power system oscillation.

2004 Ernst et al., 2004

measurements for power system protection, frequency, and voltage

control. Due to the importance of these data, these communications

infrastructures are becoming more vulnerable to cyber-attacks.

There are several research that can be found in literature to identify

such intrusions using ML. In Ustun et al. (2021a), based on the

frequency and nature of GOOSE messages a ML based approach

is utilized to differentiate usual operation from cyber-attacks. An

intrusion detection and communication traffic monitoring system

based on SV data is proposed in Ustun et al. (2021b). A SVM

based approach to identify compromised devices in a smart grid

is proposed in Kaygusuz et al. (2018). These approaches are

summarized and tabulated in Table 6.

4.3 Emergency control

Modern power systems are characterized by a significant

increase in uncertainties and the risk of major outages due to their

operation close to limits, decreased inertia, and the integration of

renewable energy sources with fluctuating output. This necessitates

a rethinking and enhancement of emergency control strategies,

which have traditionally been designed offline based on worst-case

or typical operational scenarios. One of the promising approaches

to tackle these challenges is to implement a RL based agent which

can interact with the power system environment (Ernst et al.,

2004). These tools can harness real-time data frommultiple sources

to provide accurate, near-instantaneous assessments of the grid’s

status. Such models could not only forecast potential threats but

also suggest optimal reactive measures in real time, enhancing

the adaptability and robustness of the system. Moreover, the

development of distributed energy resources such as solar plants,

wind plants, and battery storage systems, provides an opportunity

to create localized emergency control strategies. By allowing areas

of the grid to function independently during crises, these resources

can help mitigate the risk of widespread blackouts. In this section,

we explore a variety of ML methodologies that are employed to

efficiently handle the complexities of emergency control problems.

An innovative approach introduced in Li et al. (2022)

utilizes an autonomous control method based on the DDPG

to effectively mitigate issues associated with under-voltage load

shedding. Also adaptive under voltage load shedding and

emergency control schemes using deep reinforcement learning

(DRL) is proposed in Huang Q. et al. (2020). Similarly,

Chen et al. (2021) presents a model-free emergency frequency

control strategy, leveraging reinforcement learning to navigate

the complexities of such scenarios. Notably, it introduces

a multi-Q-learning-based method to limit the number of

emergency scenarios that should be addressed when designing

the system. To learn the optimal solutions for identified

general emergency scenarios, DDPG algorithm is adopted. In

a similar vein (Vu et al., 2021), proposes an emergency load

shedding technique aimed at enhancing the voltage recovery of

post-fault conditions. This technique notably incorporates safe

RL to ensure the reliability and safety of the implemented

solutions. Collectively, these studies emphasize the growing

support on advanced RL techniques in developing responsive

control mechanisms for emergencies and illustrating a shift

toward self-adjusting systems in power grid management. Table 7
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TABLE 5 Summary of ML based inverter driven stability applications.

ML algorithm Input features Description Year Ref.

DDPG vo , iL , e Actor-critic based Deep Deterministic Policy Gradient

(DDPG) algorithm is utilized to optimal controller setting

training of Active Disturbance Rejection Controller (ADRC).

2020 Gheisarnejad and

Khooban, 2020

RL ω, ROCOF, p The optimal and adaptive control policy is designed using

Deep Deterministic Policy Gradient algorithm for Virtual

Synchronous Generator (VSG).

2021 Li Y. et al., 2021

TABLE 6 ML based power system communication applications.

ML algorithm Input features Description Year Ref.

SVM, DT, RF GOOSE data frame Several ML algorithms are utilized to measure the

performances of cyber-attacks detection.

2021 Ustun et al., 2021a

XRT SV data frames XRT is trained and compared with several other ML

algorithms to assess the performances.

2021 Ustun et al., 2021b

SVM Network data After processing input data SVM based approach is utilized

to identify compromised devices in a smart grid.

2018 Kaygusuz et al.,

2018

gives a summary of ML based methods to solve the emergency

control problems.

4.4 Mis-operation of protection systems

Mis-operation in a part of the system happens when it doesn’t

perform as planned or functions outside its assigned area of

protection. When a protection system either fails or operates

improperly, it leads to a less stable state. This not only disrupts

the safeguarding of the system’s equipment but also contributes

to outages in transmission and negatively impacts the overall

reliability of the system. The Subcommittee for Protective Relay

at MRO has analyzed mis-operation submissions from the period

between 2010 and the initial quarter of 2016, categorizing them as

shown in Figure 6 (MRO Protective Relay Subcommittee, 2017).

The leading three causes identified are connected to mistakes in

logic, faults in design, and errors made by personnel that were left

uncorrected. Additionally, there were Mis-operations traced back

to specific failures in the relay system and errors in the DC system.

Mis-operation in power system protection is a grave concern,

leading to the development of numerous techniques and practices

to reduce its occurrence. In the WECC report (Western Electricity

Coordinating Council, 2018), Mis-operations Reduction Strategies

are classified into seven distinct subjects, and some of the report’s

recommendations are provided below.

• Ground overcurrent protection: Coordination with system

changes and contingencies is vital when designing ground

instantaneous overcurrent (50G). The 50G should be set

higher than the maximum external fault current plus an

additional margin. Moreover, due to the variability in fault

levels, coordination studies are necessary, and the impact of

mutual coupling must be taken into account during the design

of Ground time-overcurrent 51(G).

• Human performance during commissioning: A comprehensive

commissioning process is recommended, with specific

practices outlined to identify errors before the energizing of

new equipment.

• Knowledge transfer: It is essential to have a well-documented

plan for sharing knowledge.

• Limited Information for Investigations

• Root cause analysis: Employing staff members trained in root

cause analysis to conduct event investigations can enhance

the examination beyond the obvious cause, identifying hidden

errors elsewhere in the system.

• Settings validation: Despite the development of many

techniques to reduce mis-operations, no sufficient method

has been established to detect mis-operation in real time.

Consequently, analyzing and finding solutions from ML

techniques remains an open field for researchers. However,

some work related to mis-operation detection based on PMU

data analyzing is proposed. A tool has been implemented to

detect real-time mis-operations in transmission line relays

as described in Esmaeilian et al. (2015). This tool utilizes

time-synchronized measurements gathered from both ends

of the line during disturbances. The proposed methodology

effectively confirms whether the line tripping was due to a

mis-operation of protective relays. The paper referenced in

Banerjee et al. (2019) explores methods for enhancing real-

time situational awareness of power systems. It utilizes PMU

data to identify dynamic events occurring within the system.

Additionally, the paper proposes various options for a data-

driven model and investigates the performance of certain

patterns in classifying PMU disturbance data. A summary

of approaches used for mis-operation detection is given in

Table 8.

4.5 High impedance fault detection

Unlike most power system line faults, High Impedance

Faults (HIF) prevent the generation of sufficient current that is

required to trip the over-current relays due to high grounding
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TABLE 7 Summary of ML based methods to solve the emergency control problem.

ML algorithm Input features Description Year Ref.

DDPG P, V An autonomous voltage control method based on DDPG is

used to address the problem of under voltage load shedding.

2022 Li et al., 2022

DDPG / multi-Q

learning

1fo agent is developed to shed the load to bring the system to the

nominal frequency after a certain disturbance.

2021 Chen et al., 2021

DQN f Deep reinforcement learning agent is used to solve the

problem of under-voltage load shedding. Model parameter

uncertainties and noise in the input signal is investigated

2020 Huang Q. et al.,

2020

DRL V ,1Pshed ,Tpf Utilizing safe RL-based load shedding in power systems to

improve the safe restoration of electric grid voltage following

the occurrence of faults.

2021 Vu et al., 2021

FIGURE 6

Breaker failure mis-operation per cause code.

impedance. These faults could jeopardize human safety by

unintentional contact with an energized exposed conductor. Hence

it is an important but difficult task to detect these types of

faults. Therefore, there are specially designed algorithms for HIF

detection. In HIF detection, after feature extraction from the

measurements a boundary should be found to separate a faulty

state from healthy ones. Among different classification methods

ML-based methods have higher accuracy in pattern classification,

fast response, noise removal ability and prediction capability

(Hotelling, 1933). An approach which uses TT- transform to

extract time-time distribution features is proposed in Nikoofekr

et al. (2013). In Moravej et al. (2015), Dual Tree- Complex

Wavelet Transform (DT-CWT) is utilized for extraction features

and then fed to the NN classifier. Deep neural networks have

been utilized in Rai et al. (2021) and Sirojan et al. (2022) to

grasp unique characteristics at an event of HIF and different such

event from power system switching operations and measurement

noises. A summary of these ML approaches is tabulated in

Table 9.

4.6 Photovoltaic systems and inverter
based generation

Over the last two decades, the growing number of inverter-

based generation (IBG) resources has brought multiple challenges

for power system protection. The variable nature of wind and

solar power, the electrical characteristics of inverter circuits

and the growing number of generators in distribution systems

make protection challenging from the optics of conventional

methodologies. Emerging challenges have been widely identified

and studied; nevertheless, reliable fault detection, classification,

and localization are still a matter of discussion. The complex

nature of phenomena that arise from the growing penetration

of renewable and IGB resources has prompted researchers to

employ ML techniques to address these issues (Wischkaemper and

Brahma, 2021). As stated before, protection issues have been widely

identified, and photovoltaic (PV) systems are no exception. In Alam

et al. (2015), the authors thoroughly review the types of faults

affecting PV arrays, the methods used to detect them, and their
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TABLE 8 PMU data-based methods to identify the relay mis-operations.

ML algorithm Input features Description Year Ref.

PMU data based V, I A real-time method to detect transmission line relay

mis-operation is implemented using time synchronized

measurements obtained from both ends of the line.

2015 Esmaeilian et al.,

2015

PMU data based V, I A method based on energy functions is developed to

monitor the mis-operations of distance relays.

Real-Time Identification of Dynamic Events in Power

Systems using PMU Data

2019 Banerjee et al., 2019

TABLE 9 Summary of ML based high impedance fault detection.

ML algorithm Input features Description Year Ref.

ANN I Adaptive Resonance Theory (ART) based neural network

scheme is employed to HIF detection.

2013 Nikoofekr et al.,

2013

V, I A variant of NN called Probabilistic Neural Network (PNN)

is used as the classifier.

2015 Moravej et al., 2015

CNN I DL-based edge computing paradigm is used to enable

real-time HIF detection framework.

2022 Sirojan et al., 2022

V Convolution autoencoder is utilized which can distinguish

switching operation from HIF even at a noise level of 40 dB

2021 Rai et al., 2021

shortcomings. The authors identify three types of faults in PV

arrays: line-to-ground, line-to-line, and arc.Moreover, they identify

challenging issues for conventional protections: the line-to-ground

blind spot, line-to-line faults under low light conditions, high

impedance paths inside the array, and the detection of arc faults. On

the other hand, conditions such as open-circuit and partial shading

are identified as disturbances that need to be reliably detected. The

wide variety of array shapes and sizes make it necessary to design

algorithms with normalized input features that can work reliably at

any scale; normalization of electrical quantities is usually done with

respect to VOC and ISC (Yi and Etemadi, 2017) and (Kumar et al.,

2023) uses the rate of change of the conductance and the fill factor.

Pure measurements are used in Zhao et al. (2015), Yi and Etemadi

(2017), Madeti and Singh (2018), and Kumar et al. (2023) use

feature engineering for trans-forming the original measurements

into quantities that can improve the algorithm. In contrast, series

arc faults in PV systems produce very little changes in voltage

and current; detection of series arc faults in PV systems can be

made using advanced signal processing techniques that can detect

signature waveforms produced during the fault; this approach is

adopted in Kumar et al. (2023) using a DL algorithm. A summary of

ML based PV system protection approaches is provided in Table 10.

The proliferation of IBG has changed the topology of power

systems by allowing generation resources to be located on the

demand side and connected to distribution circuits as microgrids

or active distribution systems. Protection issues and challenges have

been studied and identified (Kumar et al., 2023): low fault currents,

protection blinding, sympathetic tripping, and islanding detection.

Moreover, unlike passive distribution grids, the distributed nature

of this type of generation makes power system protection a shared

responsibility, as upstream protections may not be enough to

guarantee a safe operation, e.g. the need to cease to energize

during islanding. Unintentional islanding is a situation that arises

when an active distribution system is disconnected from the bulk

power system. Fast and reliable islanding detection has proven to

be challenging for traditional protection methodologies as these

are heavily dependent on the operating state before the fault or

require additional infrastructure that makes them expensive and

complex (Lidula et al., 2009). Islanding detection can be carried

out by leveraging signal processing techniques that extract features

from voltage and current signals, these features can be used to

train classifiers that can improve detection. Particularly, features

derived from the discrete wavelet transform (DWT) decomposition

of voltage and current signals carry the necessary information to

successfully detect islanding in active distribution grids (Lidula and

Rajapakse, 2010, 2012). Several ML based approaches proposed for

microgrid related protection functions are presented in Table 11.

4.7 Transformer inter-turn faults

Faults in power transformers can lead to interruptions,

equipment damage, or even issues with the stability of the

entire system. Short circuits in a few turns, known as inter-

turn faults, generate a fault current among the involved windings

that can cause thermal overload in the region and create other

conditions such as phase-phase faults, phase-ground faults, and

over-fluxing (Subramanian, 2020). Thus, it is important to have

a comprehensive protection scheme for power transformers.

Although tradition-al challenges such as inrush current, core

saturation, external faults, etc. affect it, conventional protection

relay, based on elements such as current differential, Buchholz,

Volt/Hz, and overcurrent, has been widely used for many years

(Pani et al., 2020). The frequency response analysis (FRA) also is

a method widely used to recognize the changes on the winding

impedance changes after an internal fault occurs (Khalili Senobari

et al., 2018). The main drawback of this technique is lack of

consistency in analysis, as there is no universally accepted code

for interpreting FRA (Li Z. et al., 2021). The use of digital image
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TABLE 10 ML based protection for PV arrays.

ML algorithm Input features Description Year Ref.

GBSSL Varray(pu) Iarray(pu) A small set of labeled and unlabeled observations are

arranged in a connected graph. The weight of the edges is a

function of the distance between points. The labels are

propagated from adjacent labeled nodes to unlabeled nodes.

2015 Zhao et al., 2015

Ensemble of

stacked SVM

FF,
dg
dt

The chosen features are engineered so that they are not

dependent on the size of the array. Both features are

calculated for multiple time steps. An additional feature is

then created by doing a multiresolution signal

decomposition on the fill factor signal. Lastly, two stacked

SVM are used to detect the fault.

2017 Yi and Etemadi,

2017

kNN Ee , T, V , I, P This method is used primarily for fault classification, it can

detect the following conditions: line-to-line fault, open

circuit, partial shading with and without a faulted bypass

diode, and shading with inverted bypass diode.

2018 Madeti and Singh,

2018

GBSSL Varray Istring . Per-string currents is used to increase the number of features

in the GBSSL. Multiple normalization approaches for input

features and ML algorithms are compared. GBSSL is

compared with SVM and kNN. This method can detect

line-to-line faults and open circuit conditions.

2020 Kumar et al., 2023

GAN, CNN i(t) A generative adversarial network is trained. After training

the GAN, transfer learning is used to create a deep neural

network using the transformer from the GAN and a CNN.

2019 Lu et al., 2019

SVM, linear

regression and

Naïve Bayes

Varray(pu) Iarray(pu) The normalized current, voltage and fill factor are combined

to create multiple features. Each ML algorithm has a

different performance depending on the input variables,

hierarchical classification is a technique that selects the best

classifier for each situation to improve the overall

performance.

2020 Eskandari et al.,

2021

TABLE 11 ML based protection for microgrids.

ML algorithm Input features Description Year Ref.

SVM, GPR V, I Two algorithms are used, the first is a SVM to classify the

fault into LLL, LLG, LG and LL. Localization is done using a

GPR, this can predict the distance at which the fault

occurred on a line.

2021 Srivastava and

Parida, 2022

NN v(t), i(t) Here, the FFT of one cycle of the signals is fed into a NN to

detect faults.

2022 Marin-Quintero

et al., 2022

DT, SVM,

PNN

v(t), i(t) A DWT decomposition is used to train multiple classifiers

for islanding detection in active distribution grids.

2009 Lidula et al., 2009

DT v(t), i(t) A DWT decomposition is used to train a decision tree for

islanding detection in active distribution grids.

2010, 2012 Lidula and

Rajapakse, 2010,

2012

processing methods for FRA interpretation has been the focus

in Aljohani and Abu-Siada (2016) and Vosoughi and Samimi

(2022). ML techniques, such as decision trees (Bigdeli et al., 2021),

SVM (Liu et al., 2019), and ANN (Behkam et al., 2022a,b,c), have

effectively been used to interpret the FRA signatures for classifying

types of faults. This enhances the precision of fault diagnosis

by minimizing errors in subjective analysis. Voltage and current

waveforms from the transformer terminals or magnetization inrush

current are some of the features used by researchers to classify

and identify internal faults. DL frameworks, including classification

autoencoders, have been employed by some researchers (Duan

et al., 2019). Additionally, other ML techniques such as decision

trees, random forest, and gradient boost classifiers (Simões et al.,

2021), have been applied to analyze differential current.

4.8 Post-event analysis

Due to the increased demand and the integration of microgrids

and renewable energy, the complexity of power systems has

reached a level that makes it challenging to detect events, estimate

stability issues, and prevent potential blackouts. This behavior is

caused by non-linear higher-order elements and the time-varying

nature of power grids, demanding efficient algorithms for dynamic

monitoring, control, and protection (Zhang et al., 2011; Thomas

et al., 2020). PMUs have been essential in studying post-fault

anomalies during significant events worldwide. However, their

extensive distribution has raised challenges upon scaling up data

analysis (Dahal et al., 2014). Despite the abundance of high-

resolution PMU data, the optimization of PMU data to predict
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anomalies is still a developing topic, which highlights the need to

apply supervised learning techniques. Long periods of data can be

analyzed in order to detect patterns and potential anomalies in

the system and characterize its behavior in response to external

factors (Hou et al., 2020). One of the analyzed strategies involves

event detection and clustering to form a hierarchy of events for

PMU data. Classification tools, such as continuity, correlation,

SNR, among others, give analysts a means for event detection

and inputs for case simulations (Hou et al., 2020). Some of ML

based approaches proposed for post-event analysis are presented

in Table 12.

5 Exploring the bottlenecks in
applying ML to power system
protection

Despite the substantial progress of applying ML to power

system applications over the past decade, it’s surprising to observe

that ML isn’t popular in practical applications in power system

protection. In Wischkaemper and Brahma (2021), it is mentioned

that there isn’t a single commercial relay that uses ML for either

primary or backup protection at the time. This chapter delves into

the complex challenges involved in integrating ML into power

system protection applications.

5.1 Lack of interpretability

A central challenge lies in the lack of interpretability of modern

ML models. These models, particularly complex ones like deep

neural networks, are frequently considered “black boxes,” meaning

it’s hard to grasp why they make certain decisions (Zaker et al.,

2013; Rojas-Dueñas et al., 2020; Aghababaeyan et al., 2023). This

lack of clarity becomes critical when dealing with power systems,

where every decision carries far-reaching consequences. A single

misstep could potentially trigger a system-wide blackout, causing

significant damage to a region’s economy (Yamashita et al., 2009;

Alhelou et al., 2019). Hence, the need for transparency and

explainability in decision-making is vital, an aspect that current ML

models often fail to meet.

5.2 Lack of guaranteed performance

Another significant concern in the application of ML to

power system protection is the lack of guaranteed performance.

Traditionally, the performance ofMLmodels is established through

“testing and validation.” But one must question if this standard

method of testing is adequate for crucial applications such as

power system protection and control. Consider an ML model that

demonstrates an accuracy of 99% during testing. While this might

seem commendable in many fields (Wu and Chen, 2016; Islam

et al., 2018) in power system applications, a 1% error margin could

result in severe consequences. This seemingly small percentage

of error could provoke a massive system failure, emphasizing

the severity of even minor inaccuracies. Therefore, ensuring safe

operation in the relevant region is essential. This safety factor is

inherently incorporated into traditional methods. These established

methods function safely and optimally within certain operating

conditions, and while they might operate less efficiently outside

these limits, they maintain a safe mode of operation. ML models,

if they are to be utilized in power system protection, must follow

these same rigorous standards of safety.

Moreover, a fundamental issue lies in the methodology used to

test MLmodels. Typically, these models are validated using a subset

of data from the entire dataset. Although a model may exhibit a

perfect accuracy of 100% for this specific subset, it doesn’t assure

a similar level of performance for the entire continuous region of

operation. Practically speaking, testing an ML model across the

entirety of this continuous region is not feasible, given the infinite

number of data points it encompasses. This adds another layer of

complexity to the problem, presenting the need to develop a robust

method that can validate the model’s performance across the entire

operating region, rather than just a data subset.

5.3 Scarcity of high-quality data

The scarcity of high-quality data in the power system sector

presents a formidable challenge when developing data driven

technics. ML models succeed on high-quality data, with their

performance directly dependent on it (Sessions and Valtorta, 2006).

However, unlike the field of computer engineering, where ML

models are traditionally applied, the power system industry relies

on tangible sensors such as current and voltage transformers.

The data these sensors generate can contain noise and may be

imbalanced, both factors that could deter model performance

(Vega et al., 2007). Additionally, the necessary infrastructure

for effective data collection often falls short. Furthermore,

although data is collected and stored, much of it remains

inaccessible to the wider research community due to security and

privacy constraints.

5.4 Uneven datasets

Adding to these difficulties is the issue of an uneven balance

between normal and abnormal data. Power systems typically

operate in a ’normal’ state, meaning that 99.9% of stored

data reflects this healthy state. Yet, to construct a robust ML

model, exposure to data representing abnormal or alert states

is crucial. This lack of ’abnormal’ data scenarios forces the

model to ’unlearn’ most of the time, with only a few in-

stances providing opportunities for new learning. Also, the uneven

dataset for training led to biases in the ML model (Mehta

et al., 2019). Consequently, developing a ML model solely from

practical sensor data is challenging. To overcome these hurdles,

combining practical sensor data with simulated data may be

necessary for developing a robust model. This approach could

help to counterbalance the issues arising from data quality,

accessibility, and imbalance, ultimately improving the model’s

ability to predict and react to both normal and abnormal states

within power systems.
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TABLE 12 ML based post-event analysis.

ML algorithm Input features Description Year Ref.

SVM

KNM

DT

WT

V/I/P/ ROCOF Post disturbance analysis using PMU data based on

algorithm as SVMmethod, K Nearest Neighbors Method

and Decision Tree Method

2020 Thomas et al., 2020

SVM I/V/P Based on current, voltages and power measurements,

SVM-base smart relays are design to mitigate the cascade of

failures in order to avoid blackout

2011 Zhang et al., 2011

AHC I/V/F Events detection and classification based on PMU records. 2014 Dahal et al., 2014

WT

PCA

V/I/P/ ROCOF A data analysis approaches applied to PMU data to

characterize the system behavior and their response to

external factors.

2020 Hou et al., 2020

5.5 Adversarial challenges

An additional obstacle lies in dealing with adversarial examples.

These are specifically crafted inputs that aim to deceive a NN,

leading to incorrect classification of a given input (Goodfellow

et al., 2015). The presence of adversarial examples poses a

significant challenge for the successful application of ML to power

system protection. In the context of power systems, an adversarial

example could be a seemingly changed input designed to induce

misclassification (Chen et al., 2018). For instance, an adversarial

example might make a normally operating power system appear

to be in a state of fault, or it could mask an actual fault, making

it seem like the system is operating under normal conditions. The

successful identification and handling of such instances is vital to

avoid potentially disastrous consequences, such as shutdowns or

system failures.

5.6 The curse of dimensionality

The challenge of scalability is another significant factor to

consider when applying ML to power system protection. In the

context of analyzing a complex power grid, the volume of data

to be processed can be substantial. As a result, the state and

decision spaces, which are the sets of possible states and actions

respectively, can increase dramatically with the number of elements

in the grid. This issue is referred to as the ‘curse of dimensionality’.

The curse of dimensionality presents a unique set of challenges. It

becomes increasingly difficult to efficiently analyze and process data

as the size of the power grid grows. A ML model might perform

excellently on a smaller scale but struggle as the number of features

increases. The exponential growth of possible states and actions can

quickly overwhelm computational resources and lead to extended

processing times.

5.7 Integrating ML models into existing
power systems

The integration of ML models into existing power system

infrastructures brings its own set of challenges. These power

systems, often built and enhanced over many decades, rely on

deterministic engineering principles. As such, they incorporate

detailed requirements and safeguards to ensure robust and reliable

operation. ML, by contrast, is fundamentally a probabilistic

approach, and its integration into these deterministic systems can

lead to significant technical and operational complications. On

a technical level, many existing systems were not designed with

ML integration in mind. Implementing such models might require

extensive modification or even a complete redesign of current

systems. Moreover, ML models typically demand substantial

computational resources that the existing hardware might not

be able to provide. An additional challenge arises from the lack

of established regulations. As the application of ML in power

system protection is relatively novel, comprehensive standards

and guidelines have not yet been defined. This situation can

cause uncertainty about compliance and safety, complicating the

integration of ML into power systems even further.

6 Future direction

The prediction of the future of ML technology is challenging,

especially considering its rapid growth. It’s evident that AI and ML

will play a significant role in the development of future applications.

While these technologies are not yet mature enough to be directly

applied to power system protection, there are certain promising

innovations within the field that are demonstrating substantial

potential and undergoing consistent development. There should be

significant attention required to overcome the barriers mentioned

in Section 5 to bring the ML models to real practical applications.

In the following sections, there is an examination of these new

advancements, along with an exploration of how they might be

applied in power system protection. Figure 7 presents a summary

of possible future advancements and their potential to address the

bottlenecks/challenges presented in Section 5.

6.1 Power system protection with
explainable ML models

Explainability or interpretability is a prerequisite to ensure the

scientific value and safety of the outcome (Doshi-Velez and Kim,

2017). In this context, research directions such as explainable ML

models have emerged over the past decade (Ribeiro et al., 2016;
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FIGURE 7

Challenges and solutions in applying machine learning models to power system protection.

Došilović et al., 2018). The idea is to make the decision-making

process of the ML models understandable by humans, providing

clear explanations for their predictions. This will be a solution to

when it comes to current barriers of applying deep neural network

to practical applications. If deep neural network’s black box nature

is clearly interpretable, there will be trust among the communities

to apply it to critical applications such as a power system (Machlev

et al., 2022). With the advent of these explainable ML models, the

future of power system protection looks promising. The use of these

models can bring about enhanced system protection, optimized

operational efficiency, and increased reliability. There are some

works that have started to emerge in the power system such as

emergency control (Zhang et al., 2022).

6.2 Use of emerging technologies for
protection applications

6.2.1 Liquid neural networks
A groundbreaking type of network known as the liquid neural

network, which possesses the ability of continuous learning during

its operation, not limited to just the training process, was developed

recently (Hasani et al., 2021). It is demonstrated that liquid neural

network has the ability to steer an autonomous car with the

by processing the data with only 19 neurons and 253 synapses

in the network (Lechner et al., 2020). Traditionally this kind of

task is achieved from a CNN, and it requires many neurons and

synapses to achieve such a task. This method helps to reduce

the size of the network which internally helps to understand

them and explain the behavior of the NN. The development

of this innovative method holds great promise for applications

involving decision-making based on dynamic data streams that

evolve over time. As a result, this novel approach could be

effectively utilized in creating adaptive, compact models for power

system protection applications, particularly in scenarios where the

topology undergoes continuous changes over time.

6.2.2 Physics-informed neural networks
A physics-informed neural network (PINN) is a type of NN

which is trained to solve supervised learning problems while

considering any given laws of physics described by non-linear

partial differential equations. It is shown that the method is

effective for solving some classical non-linear problems in fluid

dynamics, quantum mechanics and reaction-diffusion systems

(Raissi et al., 2019). PINNs work by enforcing the known physical

laws as constraints during the learning process, thereby guiding the

network to learn a solution that not only fits the data but also aligns

with the underlying physics of the problem. Generally traditional

ML models often do not incorporate any prior knowledge about

the physical system they are modeling. PINNs, on the other hand,

are designed to incorporate physical laws and equations that govern

the system as a part of the NN architecture. This is one of the key

advantages when applying PINN based ML models to complex,

physics-based applications such as a power system.

There are several reasons why PINNs could be particularly

useful for power system protection applications. The most

important advantage is that improved generalizability. As the

PINNs incorporate the fundamental physics that govern power

systems, they offer a higher level of generalizability compared to
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traditional ML models. This offers a reliable protection decision

even in scenarios that have not been explicitly encountered during

the training phase. There is a significant attention among the power

system community to apply PINNs to solve traditional power

system problems (Misyris et al., 2020; Bragone et al., 2022; Huang

and Wang, 2022). Nevertheless, the method is not readily applied

for power system protection applications. However, as PINNs’

predictions are grounded in the known physical laws, which can

make their outputs more understandable and reliable to power

system engineers. This transparency can lead to higher trust and

adoption of these models in future.

6.3 Applying transfer learning to enable
knowledge sharing across di�erent ML
models

Transfer learning is a concept in ML that includes storing

knowledge gained while solving one problem and applying it to

a different but related problem (Ribani and Marengoni, 2019). It

takes the advantage on the knowledge which obtained from one

task to another related task. In essence, transfer learning allows

us to leverage pre-existing models that have been trained on large

datasets, potentially saving significant computational resources

and time in model development (Zhuang et al., 2020). On the

other hand, power systems are reliable by design, meaning that

events like faults are relatively rare, making it challenging to

gather a sufficient quantity of data to train ML models. As the

transfer learning allows to leverage the pre-existing models, it could

be used to solve the problem of data scarcity (Pan and Yang,

2010).

6.4 Multi-agent reinforcement learning in
emergency control

In power systems, emergencies often arise due to unpredictable

disturbances like equipment failure, power demand surges,

or natural disasters, potentially leading to blackouts. These

emergencies require fast and efficient decision-making for control

actions to prevent system collapse. Multi agent reinforcement

learning (MARL), with its capability to process large-scale

multidimensional data and make timely decisions, offers a

promising approach to managing these emergencies (Busoniu

et al., 2008; Chu et al., 2020). MARL involves deploying multiple

RL agents across the power system (Biagioni et al., 2022). Each

agent focuses on a specific area or component of the system,

reducing the complexity of the problem space it needs to

manage. In addition, the agent, embedded with Deep RL, takes

actions like adjusting generator output, controlling switchgear, or

managing demand response to maintain system stability (Wang

et al., 2021). This approach can enhance the learning efficiency

and decision-making ability of the overall system. However, the

coordination between multiple RL agents is complex, as changes

in one area may affect the others (Canese et al., 2021). Advanced

methods and communication protocols need to be developed

to ensure the efficient operation of the overall system. Looking

forward, as the power systems continue to grow and become

more integrated with renewable energy sources, the complexity

of managing these systems under emergency conditions will

only increase. However, with the continuous advancements in

RL and its ability to learn and adapt from experience, MARL

provides a robust toolset for future power system protection and

emergency control.

6.5 Power system protection with
generative AI

As we look toward the future of power system protection,

the integration of generative AI will play a significant role in

the future. This advanced form of artificial intelligence, capable

of generating new data and models, promises to revolutionize

the way power systems are monitored and protected. These

AI models could simulate a vast range of potential scenarios,

including rare and complex fault conditions, enabling the

development of more robust protection strategies. Additionally,

the adaptive nature of generative AI means that protection

systems could continuously evolve in response to changing grid

conditions and emerging threats, such as cyber-attacks or extreme

weather events.

7 Conclusions

In conclusion, this paper has underlined the importance

of traditional methods in power system protection, methods

that have been transparently and robustly developed over the

past century. Given the high cost associated with protection

failures, these traditional methods do not need to be completely

replaced if they continue to follow the five principles outlined in

Section 3. Nevertheless, clearly there exists room for enhancement

within these conventional methods, and in specific scenarios,

ML techniques may offer valuable augmentation to classical

approaches. The paper has emphasized potential applications

of ML that tackle challenges in power system protection that

are difficult to overcome with traditional methods, as detailed

in Section 4. Despite the considerable number of research and

development efforts that have been reported to date, many

of these efforts are still a long way from being translated

into practical applications. This paper concludes that the use

of ML technology for power system protection is still in its

early stages. It identifies significant barriers to implementing

ML in power system protection, as described in Section 5.

Unlike many traditional ML problems, these obstacles cannot be

easily resolved simply by increasing data or computing power.

Therefore, the necessity to continuously develop understandable

and validatable methods in the future is underscored. This

ongoing development is essential to ensure that power system

protection maintains its robustness and adaptability to emerging

challenges, as comprehensively described in Section 6. However,

while these ongoing developments aim to tackle these challenges

individually using different models, a universal ML model that
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addresses all the challenges highlighted in Section 5 is not yet

available. Furthermore, to the best of our knowledge, a machine

learning model has not been practically implemented in real-time

protective relays by manufacturers, nor has any such experience

been documented.

However, an analysis of the pie chart in Figure 5 reveals that

a significant number of publications have focused on solving

the problems of high impedance fault detection and voltage

stability. This rise in research is credited to advancements in

deep learning techniques, which have notably improved high

impedance fault detection. Additionally, the deployment of

Phasor Measurement Units in power networks has facilitated

the development of machine learning models aimed at resolving

voltage stability issues. Consequently, these two applications are

likely to become a reality, potentially addressing the concerns

discussed in Section 4. Despite the transformative potential of ML

in various aspects of the power system, the continued reliance on

proven, traditional methods for system protection is expected in

the foreseeable future.
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Nomenclature and abbreviations

Term Description Term Description

V Voltage magnitude VCOI Voltage magnitude at center of inertia

I Current magnitude ω Angular speed

P Active power f Frequency

Q Reactive power PL Active power consumption by loads

δ Rotor angle Pr Spinning reserve

δCOI Rotor angle at center of inertia PG Active power injection by generators

1p Active power shortage ROCOF Rate of change of frequency

Pbr Active power flow of branches VO Output voltage

Qbr Reactive power flow of branches iL Inductor current

Vb Voltage at buses e Voltage tracking error

δb Phase angle of buses PO Active power output

FF Array fill factor 1Pshed The total amount of load shedding

Varray(pu) Array voltage normalized to Voc Tpf Fault clearing time

Iarray(pu) Array current normalized to Isc T Temperature

Ee Irradiance Voc Open circuit voltage

g Conductance Isc Short circuit current

1fo Average frequency deviation at the center of inertia (COI) AHC Agglomerative Hierarchical Clustering

DT Decision Tree RL Reinforcement learning

SVM Support vector machine XRT Extremely randomized trees

RF Random Forrest DDPG Deep deterministic policy gradient

LSTM Long short-term memory DQN Deep Q network

ANN Artificial neural network GA Genetic algorithm

CNN Convolutional neural network ADRC Active disturbance rejection controller

VSG Virtual synchronous generator GOOSE Generic object-oriented substation event

SV Sample value ART Adaptive resonance theory

TSS Time series shapelet KNN K Nearest Neighbors Method

PCA Principal component analysis WT Wavelet transform

GPR Gaussian Process Regression GBSSL Graph-based semi-supervised learning

PNN Probabilistic Neural Networks PNN Probabilistic Neural Networks
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